BH STATE COUNTING

Amit Ghosh Saha Inst of Nucl Phys Kolkata

In collaboration with Partha Mitra

STATE COUNTING

- Number of punctures carrying label j, m is $s_{j, m}$
- Conditions on each configuration $s_{j, m}$:

$$
\begin{array}{r}
2 \sum s_{j, m} \sqrt{j(j+1)} \in[A-\epsilon, A+\epsilon] \\
\sum m s_{j, m}=0
\end{array}
$$

- To get the dominant configuration the entropy

$$
S=\log d\left[s_{j, m}\right]=\log \left[\frac{\left[\sum s_{j, m}\right)!}{\Pi s_{j, m}!}\right]
$$

is to be maximized subject to above conditions
$\cdot 2 \sum \delta s_{j, m} \sqrt{j(j+1)} \in[-\epsilon, \epsilon], \sum m \delta s_{j, m}=0$

CONFIG. LABELLED BY [J,m]

- This gives : $\bar{s}_{j, m}=\left(\sum \bar{s}_{j, m}\right) e^{-2 \lambda \sqrt{j(j+1)}-\alpha m}$
- The m-constraint gives $\alpha=0$
λ is determined by the Eq. $1=\sum e^{-2 \lambda \sqrt{j(j+1)}}$
- However, one is really interested in the total no. of states $d=\sum d\left[s_{j, m}\right]$
- Assumption : Expand \boldsymbol{d} around the dominant configuration $s_{j, m}=\bar{s}_{j, m}+\delta s_{j, m}$ where $\delta s_{j, m}$ must satisfy the two constraints, to $2^{\text {nd }}$ order
- Sum over $\delta s_{j, m}: d=\frac{\text { const }}{\sqrt{A}} e^{\lambda A}$, const $\sim o(1)$

CONFIG. LABELLED BY [m]

- No. of punctures carrying label m, no matter what j they come from :

$$
s_{m}=\sum_{j} s_{j, m}, j=|m|,|m|+1,|m|+2, \ldots
$$

- Maximize

$$
\log \left[d\left(s_{m}\right)\right]=\log \left[\frac{\left(\sum s_{m}\right)!}{\prod s_{m}!}\right]
$$

subject to the same two earlier conditions

- One has to be more careful here : For each m there exists one $j(m)$ which turns out to be the minimum value of j that yields the m, that is

$$
j(m)=|m| \forall m \neq 0, \quad j(0)=1
$$

CONFIG。[m]

- This gives : $s_{m}=\left(\sum s_{m}\right) e^{-2 \lambda \sqrt{j(m)(j(m)+1)}-\alpha m}$
- As before $\alpha=0$ from the m-constraint and λ is determined by the Eq. $(3=2+1)$

$$
1=\sum_{|m| \neq 1} 2 e^{-2 \lambda \sqrt{|m|(|m|+1)}}+3 e^{-2 \lambda \sqrt{2}}
$$

- The result is very close to Meissner et al except $\lambda=0.79$ not 0.746 in $S=\lambda A-\frac{1}{2} \log A$
- [j,m] = Physics Letters B 616 (2005) 114 [m] = Physical Review D 74 (2006) 064026

PRECISE COUNTING

- Strict area condition $A=2 \sum s_{j, m} \sqrt{j(j+1)}$ implies :

$$
0=\sum \delta s_{j, m} \sqrt{j(j+1)}
$$

- The $1^{\text {st }}$ factor is an integer, whereas the $2^{\text {nd }}$ one is an irrational number
- So any two arbitrary terms cannot cancel each other, only those with rational ratios can
- As a result the sum splits into several classes, each class contains terms having rational ratios, which are separately zero - this implies the following :

MORE MULTIPLIERS.。.

- The area condition is actually not one condition, but several :

$$
A_{[j]}=2 \sum_{j \in[j]} s_{j, m} \sqrt{j(j+1)}=\text { const. }
$$

where $[j]$ is a class of spins for which $\sqrt{j(j+1)}$ has rational ratios between any two spins

- This means there are [j] number of Lagrange's multipliers $\lambda_{[j]}$ satisfying

$$
\begin{aligned}
\sum_{[j]} \sum_{j \in[j]} e^{-2 \lambda_{[j]} \sqrt{j(j+1)}} \sum_{m} e^{-\alpha m} & =1 \\
\sum_{m} m e^{-\alpha m} & =0
\end{aligned}
$$

DEPARTURE FROM LINEARITY

- Since for each $\boldsymbol{j} \in[\boldsymbol{j}]$

$$
s_{j, m}=\left(\sum s_{j, m}\right) e^{-2 \lambda_{[j]} \sqrt{j(j+1)}}
$$

there are exactly $[j]$ equations to determine all the multipliers

$$
\frac{A_{[j]}}{A}=\frac{\sum_{j \in[j]} \sqrt{j(j+1)}(2 j+1) e^{-2 \lambda_{[j]}} \sqrt{j(j+1)}}{\sum_{[j]} \sum_{j \in[j]} \sqrt{j(j+1)}(2 j+1) e^{-2 \lambda_{[j]} \sqrt{j(j+1)}}}
$$

- The entropy : $\quad S=\sum_{[j]} \frac{\lambda_{[j]} A_{[j]}}{4 \pi \gamma \ell_{P}^{2}}$
- In general this entropy is non-linear in area

NUMERICAL COMPUTATIONS

- $\boldsymbol{A}_{[j]}$ depends on the total area \boldsymbol{A} and $\boldsymbol{\lambda}_{[j]}$ are determined by $A_{[j]}, A$ - so $\lambda_{[j]}=\lambda_{[j]}[\boldsymbol{A}]$
- Most values of \boldsymbol{A} cannot be expressed as a sum of any spin, for such values there are no states! This is depicted in the graph :

HOW BIG ARE THESE OSCL?

- This is clearly counter-intuitive from the point of view of semi-classical Physics, but this is a true spectrum
- semi-classically one should have a large enough width which should average out these oscillations
- But how big these oscillations are? Is there a scale?
- Since $\boldsymbol{\lambda} \boldsymbol{s}$ depend on the ratios of sub-areas, the entropy is non-universal
- Usually $\boldsymbol{E} \sim \sqrt{\boldsymbol{A}}$ and so the temperature is also non-universal
- Averaging is essential

