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Some basic questions

What is a quantum black hole?

How does it form?

What role is played by fundamental discreteness?

How does Hawking radiation show up in a suitable approximation?

Is there information loss?

What is black hole entropy in a dynamical setting?

· · · · · ·
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Some approaches

In classical theory: Metric gµν and matter fields φ.

*Non-perturbative: background independent

g , φ→ (q, π) (φ,Pφ) H(q, π, φ,Pφ)→ Ĥ

– attempt to follow evolution of a matter-geometry initial state

* Perturbative: fix background

g = g0 + h, φ = φ0 + χ

h→ ĥ, χ→ χ̂

– compute 〈ĥ(x)ĥ(x ′)....〉, 〈ĥ(x)ĥ(x ′)χ̂(x ′′)....〉



* AdS/CFT: so far no approach to bh formation – a first step is to
study gravitational collapse with qg corrections in asymptotically
AdS spacetimes.

* Other: g , φ are ”emergent” collective degrees of freedom and
shouldn’t be quantized ... so a collective motion ansatz such as
cooper pairs, Laughlin wavefunction, BE condensate needed ... for
an unknown ”fundamental” QG Hamlitonian.

Approach: motivated by LQG – apply polymer quantization to
ADM theory.



The model

Gab = 8πTab

Tab = ∂aφ∂bφ−
1

2
(∂φ)2gab

ds2 = −f 2(r , t)dt2 + g2(r , t)dr2 + r2dΩ2

or
ds2 = −4α(u, v)dudv + r2(u, v)dΩ2

We use the latter form for simulations.



In the 2nd. parametrization, with α(u, v) := g(u, v)r ′(u, v), where
′ denotes the derivative with respect to v , the field equations may
be written in the compact form

ṙ = − ḡ

2
(1)

ḣ =
1

2r2
(h − φ) (gr − 4ḡ) (2)

where dot denotes partial derivative with respect to u, and we have
defined

h = φ+
1

4
rφ′, (3)

g = exp

[
8π

∫ v

u

1

r
(h − φ)2 dv

]
, (4)

ḡ =
1

2

∫ v

u
g dv (5)



* φ = 0→ flat space or Schwarzschild.

* φ(r , t) is the source of local degrees of freedom.

* complicated 2d field theory

* no known analytic collapse solutions that are asymptotically flat

* solvable collapse models (Oppenheimer-Snyder, Vaidya, CGHS,
and variations) have only matter inflows.

scalar field model is much richer



PROBLEM

Find the quantum theory of this model, or at least some
approximation that includes quantum gravity corrections to the
equations of motion.



Classical results

* There are two classes of initial data φ(r , t = 0):

Weak data → no black hole formation in the long time limit.

Strong data → black holes form above threshold initial data
parameters.

– Result of hard analysis (Christdoulou 1976)

* Details of transition weak → strong done by numerical
simulation. (Choptuik 1993)

– with ±Λ (VH, M. Olivier, G. Kunstatter ... (2001))



Simulation procedure
* Specify φ(r , t = 0) = ar2e−(r−r0)2/σ2

, Pφ(r , t = 0) = 0.

* Geometry data (qab, π
ab) determined by constraints.

* Evolve data and check for trapped surface formation at each
time step: compute light expansions θ± = Dal

a
± on spheres S2

embedded in time slice Σt .

θ±(data on slice) = θ±(r , t)

Normal: θ+ > 0, θ− < 0

Marginally trapped: θ+ > 0, θ− < 0

Trapped: θ± < 0

* Look for roots θ+(r , t) = 0 as simulation proceeds. Search for
outermost root: this gives location of evolving horizon

rH(t)



Results

MBH = 2rH(a, σ, r0)

a > a∗ : MBH ∼ (a− a∗)
γ

a = a∗: critical solution – naked singularity

a < a∗ : no horizon forms.

Classically black holes form without a mass gap
In QG we expect fundamental discreteness, and singularity

avoidance:
How are these results modified by quantum effects?
Are there potential experimental signatures?
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Quantization

Use an ADM variables: phase space variables (qab, π
ab) for

geometry and (φ,Pφ) for matter.

S =

∫
d3xdt

(
πabq̇ab + Pφφ̇− NH − NaCa

)
* Realize constraints as self-adjoint operators.

H is Hamiltonian constraint → Ĥ

Ca diffeomorphism constraint → Ĉa

* Ideal: Compute 〈ψ|Ĥ|ψ〉, 〈ψ|Ĉa|ψ〉 for states |ψ〉 such that

Hqg ≡ 〈ψ|Ĥ|ψ〉 = Hclassical(q, π, φ,Pφ)+

(
lP
L

)k

f (q, π, φ,Pφ)+· · ·

* State |ψ〉 is peaked on the phase space point q, π, φ,Pφ, and L
is a scale in the state – its width.



Quantum corrected collapse:

Evolve initial data using Hqg and Cqg
a

Two types of corrections are present in Hqg , Cqg
a .

* No momentum operators – these must be written using
translation operators Tλ = e ipλ

p → p̂λ =
1

iλ
(T̂λ − T̂ †λ)

* Inverse configuration operators written using Thiemann idea

(
1̂

q

)
λ

=

(
1

iλ

[√̂
|q|,Tλ

]
T †λ

)2
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* In spherical symmetry the 3-metric is

ds2 = Λ(r , t)dr2 + R2(r , t)dΩ2

so the geometry phase space variables are the pairs (R,PR) and
(Λ,PΛ), and the matter variables are (φ,Pφ).

* Basic operators

R̂(rk , t)|a1, a2, · · · an〉 = ak |a1 · · · aN〉

̂e iλPR(rk ,t)|a1, a2, · · · an〉 = |a1, · · · ak + λ, · · · an〉

Similar definitions of the other fields – LQG-like representation
(VH, O. Winkler, gr-qc/0410125,CQG.22:L127 )



The kinematical Hilbert space is the tensor product of geometry
and matter Hilbert spaces with basis

| a1, . . . , aN︸ ︷︷ ︸
gravity

; b1, . . . , bN︸ ︷︷ ︸
matter

〉 (6)



Numerical simulation

* A code to evolve equations implemented with quantum corrected
equations in double null coordinates.

* Only one type of qg correction – inverse triad: 1/R(r , t) factors
in classical equations replaced by expectation values of the
corresponding operator.〈

1̂

R

〉
→ 1

R

(
1− e−(R/L)2

)
(7)

This is a smoothened version of basis state result – to avoid
numerical problem.

* Horizon detection using same procedure: compute θ± at each
time step of simulation.

* Initial data is scalar field profile φ(r , t = 0) = ar2e−(r−r0)2/σ2
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L = 0: this is the known classical result MBH = k(a− a∗)0.37
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* L 6= 0: mass gaps evident at threshold of bh formation

* points converge to classical case for large amplitude data

* mass gaps increase with increasing L



Mass formula

The graph can be summarized in the black hole mass formula

MBH = m0(L, a) + k [a− a∗(L)]γ(L,a) (8)

in the supercritical region a > a∗, where m0 is the mass gap and k
and γ are numerically determined constants.



Summary

I A procedure for computing quantum gravity corrections to
gravitational collapse.

I Mass gap at the onset of black hole formation – quantum gravity
corrections to Choptuik result.

(Mass gap known in the homogeneous case of Oppenheimer-Snyder
model (Bojowald, Maartens, Singh), but no critical behaviour. This
requires both inflow and outflow and interaction between flows.)

I Long to do list: put in momentum corrections, continue evolution
beyond horizon formation (do horizons begin to shrink?), black hole
entropy, Hawking radiation, · · · .

Recent: J. Ziprick, G. Kunstatter (arXiv:0902.3224) repeated this

calculation in flat slice coord. – verified mass gap; were able to see

formation and evolution of trapping horizons.



What happens to the Choptuik’s critical solution?
Conjecture from playing around with simulation: an unstable
boson star for which ”singularity avoidance repulsion” delicately
balances attraction. Under study ...

Momentum corrections? (Like holonomy corrections in lqg) Will
change details of mass formula and scaling graphs.


