Gravitational collapse in quantum gravity

Viqar Husain

Valencia - March 2009 (VH, arXiv:0808.0949)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

- 1. Motivation and approach
- 2. Classical collapse: scalar field model
- 3. Quantization and qg corrected equations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 4. Numerical simulation
- 5. Conclusions and outlook

Some basic questions

What is a quantum black hole?

How does it form?

What role is played by fundamental discreteness?

How does Hawking radiation show up in a suitable approximation?

Is there information loss?

What is black hole entropy in a dynamical setting?

.

Spherically symmetric black hole formation

-- a verified diagram: Vaidya, scalar field collapse, etc.

Black hole formation and evaporation

-- not a verified diagram

Some approaches

In classical theory: Metric $g_{\mu\nu}$ and matter fields ϕ . *Non-perturbative: background independent

 $g, \phi
ightarrow (q,\pi) (\phi, P_{\phi}) \qquad H(q,\pi,\phi,P_{\phi})
ightarrow \hat{H}$

- attempt to follow evolution of a matter-geometry initial state

* Perturbative: fix background

 $g = g_0 + h, \qquad \phi = \phi_0 + \chi$ $h \rightarrow \hat{h}, \qquad \chi \rightarrow \hat{\chi}$ - compute $\langle \hat{h}(x)\hat{h}(x').... \rangle, \ \langle \hat{h}(x)\hat{h}(x')\hat{\chi}(x'').... \rangle$ * AdS/CFT: so far no approach to bh formation – a first step is to study gravitational collapse with qg corrections in asymptotically AdS spacetimes.

* Other: g, ϕ are "emergent" collective degrees of freedom and shouldn't be quantized ... so a collective motion ansatz such as cooper pairs, Laughlin wavefunction, BE condensate needed ... for an unknown "fundamental" QG Hamlitonian.

Approach: motivated by LQG – apply polymer quantization to ADM theory.

The model

or

$$G_{ab} = 8\pi T_{ab}$$
$$T_{ab} = \partial_a \phi \partial_b \phi - \frac{1}{2} (\partial \phi)^2 g_{ab}$$
$$ds^2 = -f^2(r, t) dt^2 + g^2(r, t) dr^2 + r^2 d\Omega^2$$

$$ds^2 = -4\alpha(u, v) du dv + r^2(u, v) d\Omega^2$$

We use the latter form for simulations.

In the 2nd. parametrization, with $\alpha(u, v) := g(u, v)r'(u, v)$, where r denotes the derivative with respect to v, the field equations may be written in the compact form

$$\dot{r} = -\frac{\bar{g}}{2} \tag{1}$$

$$\dot{h} = \frac{1}{2r^2}(h-\phi)(gr-4\bar{g})$$
 (2)

where dot denotes partial derivative with respect to u, and we have defined

$$h = \phi + \frac{1}{4} r \phi', \qquad (3)$$

$$g = \exp\left[8\pi \int_{u}^{v} \frac{1}{r} (h-\phi)^2 dv\right], \qquad (4)$$

$$\bar{g} = \frac{1}{2} \int_{u}^{v} g \, dv \tag{5}$$

- * $\phi = \mathbf{0} \rightarrow \mathbf{flat}$ space or Schwarzschild.
- * $\phi(r, t)$ is the source of local degrees of freedom.
- * complicated 2d field theory
- * no known analytic collapse solutions that are asymptotically flat

* solvable collapse models (Oppenheimer-Snyder, Vaidya, CGHS, and variations) have only matter inflows.

scalar field model is much richer

PROBLEM

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Find the quantum theory of this model, or at least some approximation that includes quantum gravity corrections to the equations of motion.

Classical results

* There are two classes of initial data $\phi(r, t = 0)$:

Weak data \rightarrow no black hole formation in the long time limit.

Strong data \rightarrow black holes form above threshold initial data parameters.

- Result of hard analysis (Christdoulou 1976)

* Details of transition weak \rightarrow strong done by numerical simulation. (Choptuik 1993)

– with $\pm \Lambda$ (VH, M. Olivier, G. Kunstatter ... (2001))

Simulation procedure

* Specify $\phi(r, t = 0) = ar^2 e^{-(r-r_0)^2/\sigma^2}$, $P_{\phi}(r, t = 0) = 0$.

* Geometry data (q_{ab}, π^{ab}) determined by constraints.

* Evolve data and check for trapped surface formation at each time step: compute light expansions $\theta_{\pm} = D_a I_{\pm}^a$ on spheres S^2 embedded in time slice Σ_t .

 $\theta_{\pm}(\text{data on slice}) = \theta_{\pm}(r, t)$

Normal: $\theta_+ > 0$, $\theta_- < 0$ Marginally trapped: $\theta_+ > 0$, $\theta_- < 0$ Trapped: $\theta_+ < 0$

* Look for roots $\theta_+(r, t) = 0$ as simulation proceeds. Search for outermost root: this gives location of evolving horizon

 $r_H(t)$

Results

 $M_{BH} = 2r_H(a, \sigma, r_0)$

 $\mathsf{a} > \mathsf{a}_*: \mathsf{M}_{\mathsf{BH}} \sim (\mathsf{a} - \mathsf{a}_*)^\gamma$

 $a = a_*$: critical solution – naked singularity

a < a*: no horizon forms.

Results

 $M_{BH} = 2r_H(a, \sigma, r_0)$

 $a>a_*:M_{BH}\sim(a-a_*)^\gamma$

 $a = a_*$: critical solution – naked singularity

a < a*: no horizon forms.

Classically black holes form without a mass gap

Results

 $M_{BH} = 2r_H(a, \sigma, r_0)$

 $a>a_*:M_{BH}\sim(a-a_*)^\gamma$

 $a = a_*$: critical solution – naked singularity

a < a*: no horizon forms.

Classically black holes form without a mass gap In QG we expect fundamental discreteness, and singularity avoidance: How are these results modified by quantum effects?

Are there potential experimental signatures?

Quantization

Use an ADM variables: phase space variables (q_{ab}, π^{ab}) for geometry and (ϕ, P_{ϕ}) for matter.

$$S = \int d^3x dt \left(\pi^{ab} \dot{q}_{ab} + P_{\phi} \dot{\phi} - NH - N^a C_a
ight)$$

* Realize constraints as self-adjoint operators. *H* is Hamiltonian constraint $\rightarrow \hat{H}$ *C_a* diffeomorphism constraint $\rightarrow \hat{C}_a$ * Ideal: Compute $\langle \psi | \hat{H} | \psi \rangle$, $\langle \psi | \hat{C}_a | \psi \rangle$ for states $| \psi \rangle$ such that

$$H^{qg} \equiv \langle \psi | \hat{H} | \psi \rangle = H_{\text{classical}}(q, \pi, \phi, P_{\phi}) + \left(\frac{l_P}{L}\right)^k f(q, \pi, \phi, P_{\phi}) + \cdots$$

* State $|\psi\rangle$ is peaked on the phase space point q, π, ϕ, P_{ϕ} , and L is a scale in the state – its width.

Quantum corrected collapse:

Evolve initial data using H^{qg} and C^{qg}_a

Quantum corrected collapse:

Evolve initial data using H^{qg} and C_a^{qg}

Two types of corrections are present in H^{qg} , C_a^{qg} .

* No momentum operators – these must be written using translation operators $T_\lambda = e^{ip\lambda}$

$$p
ightarrow \hat{p}_{\lambda} = rac{1}{i\lambda}(\hat{T}_{\lambda}-\hat{T}^{\dagger}_{\lambda})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Quantum corrected collapse:

Evolve initial data using H^{qg} and C^{qg}_{a}

Two types of corrections are present in H^{qg} , C_a^{qg} .

* No momentum operators – these must be written using translation operators $T_\lambda = e^{ip\lambda}$

$$p
ightarrow \hat{p}_{\lambda} = rac{1}{i\lambda}(\hat{T}_{\lambda}-\hat{T}^{\dagger}_{\lambda})$$

* Inverse configuration operators written using Thiemann idea

$$\left(\frac{\widehat{1}}{q}\right)_{\lambda} = \left(\frac{1}{i\lambda} \left[\widehat{\sqrt{|q|}}, T_{\lambda}\right] T_{\lambda}^{\dagger}\right)^{2}$$

* In spherical symmetry the 3-metric is

 $ds^2 = \Lambda(r, t)dr^2 + R^2(r, t)d\Omega^2$

so the geometry phase space variables are the pairs (R, P_R) and (Λ, P_Λ) , and the matter variables are (ϕ, P_{ϕ}) .

* Basic operators

$$\widehat{R}(r_k, t)|a_1, a_2, \cdots a_n\rangle = a_k|a_1 \cdots a_N\rangle$$
$$e^{i\widehat{\lambda P_R(r_k, t)}}|a_1, a_2, \cdots a_n\rangle = |a_1, \cdots a_k + \lambda, \cdots a_n\rangle$$

Similar definitions of the other fields – LQG-like representation (VH, O. Winkler, gr-qc/0410125, CQG.22:L127)

The kinematical Hilbert space is the tensor product of geometry and matter Hilbert spaces with basis

 $|\underbrace{a_1,\ldots,a_N};\underbrace{b_1,\ldots,b_N}\rangle$ (6)gravity matter

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Numerical simulation

* A code to evolve equations implemented with quantum corrected equations in double null coordinates.

* Only one type of qg correction – inverse triad: 1/R(r, t) factors in classical equations replaced by expectation values of the corresponding operator.

$$\left\langle \frac{\widehat{1}}{R} \right\rangle \to \frac{1}{R} \left(1 - e^{-(R/L)^2} \right)$$
 (7)

This is a smoothened version of basis state result – to avoid numerical problem.

Numerical simulation

* A code to evolve equations implemented with quantum corrected equations in double null coordinates.

* Only one type of qg correction – inverse triad: 1/R(r, t) factors in classical equations replaced by expectation values of the corresponding operator.

$$\left\langle \frac{\widehat{1}}{R} \right\rangle \to \frac{1}{R} \left(1 - e^{-(R/L)^2} \right)$$
 (7)

This is a smoothened version of basis state result – to avoid numerical problem.

* Horizon detection using same procedure: compute θ_\pm at each time step of simulation.

* Initial data is scalar field profile $\phi(r, t = 0) = ar^2 e^{-(r-r_0)^2/\sigma^2}$

L=0: this is the known classical result $M_{BH}=k(a-a*)^{0.37}$

* $L \neq 0$: mass gaps evident at threshold of bh formation * points converge to classical case for large amplitude data * mass gaps increase with increasing L The graph can be summarized in the black hole mass formula

$$M_{BH} = m_0(L, a) + k \left[a - a^*(L)\right]^{\gamma(L, a)}$$
(8)

in the supercritical region $a > a^*$, where m_0 is the mass gap and k and γ are numerically determined constants.

Summary

- A procedure for computing quantum gravity corrections to gravitational collapse.
- Mass gap at the onset of black hole formation quantum gravity corrections to Choptuik result.

(Mass gap known in the homogeneous case of Oppenheimer-Snyder model (Bojowald, Maartens, Singh), but no critical behaviour. This requires both inflow and outflow and interaction between flows.)

Long to do list: put in momentum corrections, continue evolution beyond horizon formation (do horizons begin to shrink?), black hole entropy, Hawking radiation, ···.

Recent: J. Ziprick, G. Kunstatter (arXiv:0902.3224) repeated this calculation in flat slice coord. – verified mass gap; were able to see formation and evolution of trapping horizons.

What happens to the Choptuik's critical solution? Conjecture from playing around with simulation: an unstable boson star for which "singularity avoidance repulsion" delicately balances attraction. Under study ...

Momentum corrections? (Like holonomy corrections in lqg) Will change details of mass formula and scaling graphs.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <