Black hole state counting

VALENCIA, 2009

Jerzy Lewandowski, Warsaw

The ABCK quantum horizon

- fixed value a of the classical area, prequantized:
$a=4 \pi \gamma \ell_{\mathrm{P}} k, \quad k \in \mathbb{N}$
- The horizon Hilbert space $\mathcal{H}_{\text {Hor }}^{k}$ states:
- $|0\rangle_{\text {Hor }}, \ldots,\left|\left(b_{1}, \ldots, b_{n}\right)\right\rangle_{\text {Hor }}, \ldots$
- $0 \neq b_{i} \in \mathbb{Z}_{k}, \quad i=1, \ldots, n, \quad n \in \mathbb{N}, \quad \sum_{i=1}^{n} b_{i}=0 \in \mathbb{Z}_{k}$.
- The bulk Hilbert space $\mathcal{H}_{\text {Bul }}$ states:
- $|(0), \ldots\rangle_{\text {Bul }}, \ldots,\left|\left(m_{1}, j_{1}, \ldots, m_{n}, j_{n}\right), \ldots\right\rangle_{\text {Bul }}$
- $j_{i} \in \frac{1}{2} \mathbb{N}, i=1, \ldots, n, \quad m_{i} \in\left\{-j_{i},-j_{i}+1, \ldots, j_{i}\right\}$
- m_{i} and j_{i} represent the bulk geometry at the horizon,
- "..." stand for the other bulk degrees of freedom
- The Hilbert space $\mathcal{H}_{\text {tot }}$ of the horizon coupled with the bulk
- the vectors $\left|\left(b_{1}, \ldots, b_{n}\right)\right\rangle_{\text {Hor }} \otimes\left|\left(m_{1}, j_{1}, \ldots, m_{n}, j_{n}\right), \ldots\right\rangle_{\text {Bul }}, \quad n \in \mathbb{N}$
- the constraint $b_{i}=-2 m_{i} \bmod k$, for $i=1, \ldots, n$.

The meaning of $j s$ and $m s$

- j s: the LQG bulk quantum area operator
- defined for any 2-surface contained in the bulk, in particular for the horizon 2-slice
- $\hat{a}^{\mathrm{LQG}}\left|\left(m_{1}, j_{1}, \ldots, m_{n}, j_{n}\right), \ldots\right\rangle_{\mathrm{Bul}}=$ $8 \pi \gamma \ell_{P} \sum_{i=1}^{n} \sqrt{j_{i}\left(j_{i}+1\right)}\left|\left(m_{1}, j_{1}, \ldots, m_{n}, j_{n}\right), \ldots\right\rangle_{\text {Bul }}$
- the spectrum is an interesting application of the number theory (Barbero's talk)
- $m \mathrm{~s}$: the flux across the horizon 2-slice of the normal vector field
- defined only at the horizon by a function r : horizon \rightarrow su(2) given by the ABCK model
- $a^{\text {fux }}(\tilde{E}, r)=\frac{1}{2} \int_{S}\left|\tilde{E}_{i}^{a} r^{i} \epsilon_{a b c} d x^{b} \wedge d x^{c}\right|$
- $\hat{a}^{\text {flux }}\left|\left(m_{1}, j_{1}, \ldots, m_{n}, j_{n}\right), \ldots\right\rangle_{\text {Bul }}=$ $8 \pi \gamma \ell_{\mathrm{Pl}}^{2} \sum_{i=1}^{n}\left|m_{i}\right|\left|\left(m_{1}, j_{1}, \ldots, m_{n}, j_{n}\right), \ldots\right\rangle_{\mathrm{Bul}}$
- the spectrum is $8 \pi \gamma \ell_{P} \mathbb{N}$
- Classically $a^{\text {LQG }}=a^{\text {flux }}$.

Entropy: what we want to count

According to the direct definition, the isolated horizon entropy is the logarithm of the number of states $\left|\left(b_{1}, \ldots, b_{n}\right)\right\rangle_{\text {Hor }}$ such that there are states

$$
\begin{equation*}
\left|\left(b_{1}, \ldots, b_{n}\right)\right\rangle_{\text {Hor }} \otimes\left|\left(m_{1}, j_{1}, \ldots, m_{n}, j_{n}\right), \ldots\right\rangle_{\text {Bul }} \in \mathcal{H}_{\text {Tot }} \tag{1}
\end{equation*}
$$

which satisfy the condition

$$
\begin{equation*}
a\left(m_{1}, j_{1}, \ldots, m_{n}, j_{n}\right) \leq a=4 \pi \gamma \ell_{P}^{2} k, \tag{2}
\end{equation*}
$$

where $a\left(m_{1}, \ldots, j_{n}\right)$ is the eigenvalue of the quantum area operator.

The $\operatorname{map}\left(m_{1}, \ldots, m_{n}\right) \rightarrow\left(b_{1}, \ldots, b_{n}\right)$

The counting of the suitable sequences $\left(b_{1}, \ldots, b_{n}\right)$ can be translated into a counting of the sequences $\left(m_{1}, \ldots, m_{n}\right)$.

$$
\begin{align*}
& \sum_{i=1}^{n} b_{i}=0 \bmod k \Rightarrow \sum_{i=1}^{n} m_{i}=0 \bmod k / 2 \tag{3}\\
& \quad a\left(m_{1}, \ldots, j_{n}\right) \leq a \Rightarrow \sum_{i=1}^{n} \sqrt{j_{i}\left(j_{i}+1\right)} \leq \frac{k}{2} \Rightarrow \sum_{i=1}^{n} \sqrt{\left|m_{i}\right|\left(\left|m_{i}\right|+1\right)} \leq \frac{k}{2} \tag{4}
\end{align*}
$$

$\Rightarrow \sum_{i=1}^{n}\left|m_{i}\right|<\frac{k}{2}, \quad \sum_{i=1}^{n} m_{i}=0, \quad\left|m_{i}\right|<\frac{k}{4}$.
Now,
$\left(m_{1}, m_{2}, \ldots, m_{n}\right),\left(m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{n}^{\prime}\right) \mapsto\left(b_{1}, b_{2}, \ldots, b_{n}\right) \Leftrightarrow m_{i}-m_{i}^{\prime}=N_{i} k / 2$
The last enaquality implies, that $\left(m_{1}, \ldots m_{n}\right) \mapsto\left(b_{1}, \ldots, b_{n}\right)$ is 1 to 1 .

The counting problem in terms of ms only

How to get rid of the j s? Given $\left(m_{1}, \ldots, m_{n}\right)$ such that

$$
\sum_{i=1}^{n} \sqrt{\left|m_{i}\right|\left(\left|m_{i}\right|+1\right)} \leq \frac{k}{2}
$$

there is $\left|\left(m_{1}, j_{1}, \ldots, m_{n}, j_{n}\right)\right\rangle_{\text {Bul }}$ such that

$$
\sum_{i=1}^{n} \sqrt{j_{i}\left(j_{i}+1\right)} \leq \frac{k}{2}
$$

Therefore, it is necessary and sufficient to use the former condition, and forget the j s.

The set of $\left(m_{1}, \ldots, m_{n}\right)$ s acounting to the entropy

In summary (Domagala, L 2004):
The entropy $S(a)$ of a quantum ABCK horizon of the classical area $a=4 \pi \gamma \ell_{P}^{2} k, k \in \mathbb{N}$, is

$$
S(a)=\log (1+N(k))
$$

where $N(k)$ denotes the number of all the finite, arbitrarily long, sequences $\vec{m}=\left(m_{1}, \ldots, m_{n}\right)$ of elements of $\mathbb{Z}_{*} / 2$ (i.e. non-zero elements of $\mathbb{Z} / 2$), such that the following equality and inequality are satisfied:

$$
\sum_{i=1}^{n} m_{i}=0, \quad \sum_{i=1}^{n} \sqrt{\left|m_{i}\right|\left(\left|m_{1}\right|+1\right)} \leq \frac{k}{2}
$$

