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A remarkable feature of general relativity (GR) is that it admits a
connection formulation with a (unconstrained) phase space isomor-
phic to that of SU(2) Yang Mills theory [Ashtekar, Barbero].
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Are there more general connection variables than the ones obtained
above? Yes, take
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Another way: given a background independent functional W2[A]
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There is a more geometric way to get the previous variables



Large SU(2) gauge transformations[Ashtekar-Balachandran]
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i.e., gauge invariance under G0 ⊂ G (G0 gauge transformations connected to
the identity). As G /G0 ≈ Z. Elements [g(x)] ∈ G /G0 are characterized by
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Therefore, physical (Go-invariant) are in H = ⊕θHθ with θ ∈ [0, 2π] such
that

Ψ[A] ∈ Hθ, and α ∈ G ⇒ α ⊲Ψ[A] = eiθw[α]Ψ[A].

Since local physical observables are G invariant ⇒ Hθ = super selected sectors.
The non-trivial transformation rule for states in Hθ can be shifted to operators
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Effects on quantum geometry
The flux operators γθP (r, S) =
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r · (ǫγθP ) for r ∈ su(2) have discrete spectrum

j

j

j
2

j
1

3

4

m mm 2

3
1

γθP (r, S) ⊲|n; {ji,mi}n
i=1〉 =

=
∑

n

i=1
mi |n; {ji,mi}n

i=1〉

Area and volume are ill-defined (IR divergent) for θ 6= 0
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Isolated horizons boundary condition
There are non-trivial degrees of freedom at the horizon encoded in the pull

back of the bulk connection on the horizon H = ∆ ∩ Σ; a U(1)-connection
A = Airi and
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The simplectic structure [Ashtekar-Corichi-Krasnov]
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Effect of θ on the simplectic structure: introducing a new potential
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So in addition to the transformation γP → γθP , θ shifts the CS level:
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The quantum boundary conditions [Ashtekar-Corichi-Krasnov-Baez]
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As the boundary condition and the spectrum of F̂ab depend on the θ only
through the CS level the quantum boundary condition imposes the θ-independent
matching

jh h(A) ⊲ ψn = eiFnψn

with Fn = 2πn
k

Quantum boundary condition n = −2m

One can implement the constraints at the horizon as for θ = 0.



The black hole horizon area spectrum. Using the quantum boundary
condition
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Therefore, here the quantum isolated horizon constraint implies that the quan-
tum operator associated to the (Dirac) physical observable AH is well defined.
The counting techniques of [Meissner, Domagala-Lewandowski] one finds that
the θ-dependence does not change the leading term in the entropy: explicitly
SH := log[N (aH)] ≈ (4ℓpγ)

−1γMaH , where N (aH) is the number of horizon
states compatible with a macroscopic horizon area aH and γM = 0.23...



Conclusions:

• As in QCD the effects of large SU(2) gauge transformations are encoded
in a real parameter θ ∈ [0, 2π]. Effects are expected in parity violating
systems, e.g. Black Holes.

• From dimensional reasons we expect the former effects to be important
in the deep Planckian regime. However, we discover drastic implications
for certain kinematical geometric operators (Area and volume are ill
defined).

• But what about quantum horizon area? Quantum horizon area remains
well defined thanks to the IH boundary condition BH entropy remains
finite and agrees with standard results in the semiclassical regime (poly-
nomial corrections in ǫ = θℓ2p/aH).

• Some aspects of the result are reminiscent of the BH entropy calculation
in the presence of nonminimaly coupled scalar fields [Ashtekar-Corichi-
Sudarsky]



Additional questions:

• Dirac vs. Kinematical observables [Thiemann-Dittrich]

• Can one study analytically the BH entropy behaviour for small black
holes for which the θ effects will be important?

• It seems that for physical area and volume to be well defined for arbi-
trary θ we need the curvature to be distributional. Link with simplicial
like geometry? Strings and branes of the kind studied in [Baez-AP,
Montesinos-AP, Fairbairn-AP]


