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Abstract

Background: The main limitations in the analysis of viral metagenomes are perhaps the high genetic variability
and the lack of information in extant databases. To address these issues, several bioinformatic tools have been
specifically designed or adapted for metagenomics by improving read assembly and creating more sensitive
methods for homology detection. This study compares the performance of different available assemblers and
taxonomic annotation software using simulated viral-metagenomic data.

Results: We simulated two 454 viral metagenomes using genomes from NCBI's RefSeq database based on the list
of actual viruses found in previously published metagenomes. Three different assembly strategies, spanning six
assemblers, were tested for performance: overlap-layout-consensus algorithms Newbler, Celera and Minimo; de
Bruijn graphs algorithms Velvet and MetaVelvet; and read probabilistic model Genovo. The performance of the
assemblies was measured by the length of resulting contigs (using N50), the percentage of reads assembled and
the overall accuracy when comparing against corresponding reference genomes. Additionally, the number of
chimeras per contig and the lowest common ancestor were estimated in order to assess the effect of assembling
on taxonomic and functional annotation. The functional classification of the reads was evaluated by counting the
reads that correctly matched the functional data previously reported for the original genomes and calculating the
number of over-represented functional categories in chimeric contigs. The sensitivity and specificity of tBLASTx,
PhymmBL and the k-mer frequencies were measured by accurate predictions when comparing simulated reads
against the NCBI Virus genomes RefSeq database.

Conclusions: Assembling improves functional annotation by increasing accurate assignations and decreasing
ambiguous hits between viruses and bacteria. However, the success is limited by the chimeric contigs occurring at all
taxonomic levels. The assembler and its parameters should be selected based on the focus of each study. Minimo's non-
chimeric contigs and Genovo's long contigs excelled in taxonomy assignation and functional annotation, respectively.
tBLASTx stood out as the best approach for taxonomic annotation for virus identification. PhymmBL proved
useful in datasets in which no related sequences are present as it uses genomic features that may help identify
distant taxa. The k-frequencies underperformed in all viral datasets.
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Background
Metagenomics has been defined as the thorough analysis
of the genetic material as directly recovered from envir-
onmental samples, including that which is obtained from
unculturable organisms [1]. Following the emergence of
metagenomics, its quick development responded to the
popularization of next-generation platforms. These en-
abled faster and higher throughput approaches to accur-
ately describe the genetic diversity and elucidate the
complex relationships existing between the organisms in
different ecological niches. More recently, metagenomics
has proven useful for the discovery of new enzymatic
functions [2], microorganisms and gene products that
may be used for bioremediation [3] and has contributed
to the understanding of host-pathogens interactions [4].
The human microbiome has been of special interest in

this field, with significant efforts to understand changes
in the microbiota or dysbioses that may have an import-
ant role in human health and disease [5-9]. The gut is
the most densely populated niche in the human body,
housing over 1014 microorganisms. It has been deter-
mined that the core of the intestinal microbiome is con-
stituted by a definite number of nearly ubiquitous
species that show a high variability in terms of abun-
dance [8,10] and that this core of species is not shared
between close relatives [1,7]. Even though this has been
thoroughly explored, as much as 75% of the predicted
open reading frames from metagenomic analyses fail to
be assigned a function [8].
Most of the previous efforts in metagenomics have

been directed towards the survey of prokaryotes and
only a few have had bacteriophages and other viruses as
their main focus of study. Published viral metagenomes
display a low intrapersonal viral diversity and population
stability over time but higher levels of interpersonal viral
variation [11]. Unlike bacteria, gut bacteriophage popu-
lations do not seem to be related between mothers and
their twin descendants [12]. The main limitation of
working with viral metagenomes is that nearly 80% of
the reads yield no significant matches against extant
database entries, whereas the remaining 20% are mainly
identified as of bacterial origin [11,12]. Such limitations
may be explained by the lack of closely related sequences
in databases, a common issue with previously unre-
ported viruses and prophages. Since data availability is
generally biased towards the most studied human vi-
ruses, most databases do not contain enough informa-
tion to successfully assign identity to the great majority
of viral sequence queries from environmental samples.
Read length is an additional limitation as reads that are
too short often fail to yield functional or taxonomic as-
signments. As these issues are not restricted to viral
metagenomes, microbiome-specific programs have been
adapted to address them.
In recent years, several next-generation sequence as-
semblers have been developed to deal with specific fea-
tures such as read length, uneven genome coverage
values within datasets, efficient managing of computa-
tional resources and highly mutational sequence reads.
This study focuses on those assemblers that can operate
with 454 pyrosequencing data, a technology that has been
widely used because of the reads length and sequence
coverage, desirable characteristics for de novo assemblies
and functional annotation [12-21]. Only assemblers previ-
ously used or hinted as possible alternatives for viral meta-
genomic projects have been considered.
Overlap-layout-consensus (OLC) algorithms have proven

more efficient for dealing with 454 outputs [22,23]. For
this analysis, two of the most popular OLC assemblers
were used, Celera and Newbler, which have been exten-
sively used in viral and bacterial shotgun metagenomic
projects [8,12,13,16,18,21,24-26] and in silico experiments
[22-25,27-32]. Additionally, two other OLC assemblers
were tested following the authors’ recommendations for
working with virus: Minimo, designed for the assembly of
small datasets [33] and previously used for virome ana-
lyses [12,34]; and VICUNA, an assembler specialized in de
novo assembly of data from heterogeneous viral popula-
tions [35]. Its authors had only used this assembler with
single viral populations (e.g. single species).
Assemblers that make use of different algorithms have

also been included in this study as alternatives to OLC
assemblers. Velvet is one of the most popular de Bruijin
graph assemblers [36] and has been used on viral meta-
genomes using 454 sequence data [15]. MetaVelvet, de-
signed for metagenomic assemblies, is capable of handling
different genome coverage values within the different spe-
cies in the metagenome [37]. Finally, Genovo, an assem-
bler based on generative probabilistic model of read
generation, was selected because it uses an iterative algo-
rithm able to estimate the number of genomes in the pop-
ulations and denoise 454 sequence data [22].
To compare the assemblers, two metagenome datasets

were simulated, one composed solely of viral genomes
and a second one including prokaryotic and viral ge-
nomes (viral-bacterial). Both were based on actual abun-
dance data obtained by Reyes et al. [12], using the
corresponding organisms' reference genomes, obtained
from the Viral and Bacterial NCBI genome database,
with the same coverage shown in the actual data.
A critical limitation in viral metagenomes assembly is

the lack of a ubiquitous marker, analogous to bacterial
16S rDNA, to identify viral particles and estimate their
diversity within ecological niches. Additionally, viral
phylogeny based on sequences is impaired by extensive
horizontal gene transfer and genome modularity within
taxa, which is further complicated by the large numbers
of viral particles within environmental samples. This
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makes it very difficult to find homologous sequences
in reference databases. To cope with this, different da-
tabases [38,39] and algorithms have been designed
which base or complement their taxonomic assign-
ments with genomic features, outperforming pairwise
alignment-based approaches such as PhyloPythia [40]
and PhymmBL [41]. Other methods that determine
taxonomy based solely on k-mer frequencies [42] to
improve the sensitivity of taxonomic assignations have
not been tested in the context of viral metagenomes.
Information on viral communities is still vague and
feedback is required for the bioinformatic tools cur-
rently in use.
In this work, three approaches for taxonomic assigna-

tion were tested. They were selected on the base of their
high sensitivity and because they had been used on pub-
lished viral metagenomic studies:

(1) tBLASTx [43] was chosen because is part of the
widely used BLAST suite for sequence alignments.
This version enhances the sensitivity to distantly
related sequences and has been used widely in viral
metagenomic projects [12,14,16,19,44-46].

(2) PhymmBL [41] has been used for bacterial and viral
metagenome analyses [18]. It complements sequence
alignment information with Interpolated Markov
Models (IMMs) based on frequencies of
oligonucleotide sequences. This enhances sensitivity
without losing specificity. PhymmBL outperforms
BLAST predictions when query sequences have no
reference in the target database [41].

(3) The distribution of the k-mer frequencies was used
to find potential distant phylogenetic relationships.
Trifonov and Rabadan [42] proposed a method
based on the Kullback–Leibler distance between k-
mer frequencies to apply taxonomic assignations
using the gamma distribution to assess its
significances.

For assessing the functional annotation of viral meta-
genomes, a third simulated dataset was generated from
genomes found in the NCBI Viral genome database to
test algorithms that have been used for taxonomic classi-
fication in previous works and modified PhymmBL
scripts to improve the sensitivity of its taxonomic anno-
tation. The simulations of reads for each of the three
metagenomes were carried out using the error rate of
454-pyrosequencing technology.

Results
Genome mapping and relative abundance
The frequency of each taxon in the simulated metagen-
omes was estimated to assess how many of the main
taxonomic groups of real data were present in the
simulated data. The taxonomic frequencies for viruses in
the metagenome simulations (Figure 1A) were consistent
with those resulting from the taxonomic classification
performed by Reyes and collaborators [12]. This was ex-
pected since the same taxonomic method, based on
tBLASTx [43] with an e-value < 0.001, was used for de-
termining the taxonomic frequencies, and the Viral gen-
ome database from the NCBI, used for mapping the
reads into reference genomes, shares most entries from
the VLP database used by Reyes. In our dataset, the tem-
perate bacteriophages are the most represented type of
viral particles (~90% in viral simulation and 65% in
viral-bacterial simulation) and a low percentage of
eukaryotic viruses (~5%) were found. Our simulations
showed that composition was dominated by double-
stranded DNA bacteriophages (Figure 1B) from the
order Caudovirales (families Podoviridae, Myoviridae
and Siphoviridae) and single-stranded DNA bacterio-
phages from the family Microviridae. The most repre-
sentative eukaryotic viruses were double-stranded DNA
viruses from the order Herpesvirales.
The taxonomic analysis of the viral-bacterial simula-

tion showed that 72.25% of the reads belonged to viral
genomes. The reads that were not assigned as viral ge-
nomes were compared against the bacterial genomes
from the NCBI genome database using SSAHA2 [47].
This fraction displayed the same species distribution
present in the viral simulated metagenome. The bacterial
species from phyla Proteobacteria, Firmicutes and Acti-
nobacteria were the most represented. These bacteria
are the main hosts for the bacteriophages present in the
actual metagenome [12].

Assemblies
Six de novo whole-genome shotgun DNA sequence assem-
blers were tested using the two simulated metagenome
based on those by Reyes and collaborators [12]. Several sta-
tistics for each assembly were calculated in order to evalu-
ate their assembly quality (the N50, the number of contigs,
the largest contig, the number of genomes recovered and
percentage of reads assembled) and their contig taxonomic
precision (percentage of chimeric contigs, percentage of
reads that maps on is original genome, the median value of
mapping reads against its original genome, and the number
of contigs with an equal percentage of identities between
virus and bacterial genomes) in order to estimate the ad-
vantages and disadvantages for each assembly (Tables 1
and 2). The N statistics are weighted median statistics
reporting the length of the contig in the upper limit of a
quantile when all contigs are arranged by size. Thus, 50%
of the contigs would be equal to or larger than the N50
whereas 10% of the contigs would be equal to or larger
than the N90. Additional values of the N30, N90 statistics
are reported in Additional file 1: Table S1.
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Figure 1 Taxonomic composition from simulated data. Taxonomic composition of the simulated metagenomes (A). All families within a
phylum or class are represented in a different color gradient. The unclassified virus category refers to reads with no taxonomic information
available at class or family levels. Only families representing more than 0.1% of the reads are shown. Taxonomic composition based on genome
type and host (B). The upper chart represents the viral simulated metagenomes, while the lower depicts the viral-bacterial metagenomes. For
bacteria, phyla are reported instead of genome types. These are shown in a gray-colored scale.
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OLC algorithms
They are the most commonly used to assemble 454
reads. Three different implementations were tested:
Newbler, Celera and Minimo.
For viral metagenomes, Newbler 60/95 (with parame-

ters of minimum overlap ml = 60 nt and minimum per-
centage of identities mi = 95%) showed closer results to
the optimal assembly. It had the highest percentage of
reads assembled (~90%) and a high percentage of reads
matching their original genome (see Methods) (~93%),
Table 1 Statistics of the viral assemblies

Assembly Largest
contig (bp)

N50
(bp)

# contigs % chimeric
contigs

% reads
assembled

Celera 02 15372 1729 5395 15.31 31.06

Celera 05 15372 2155 4216 18.43 32.4

Celera meta 134824 4816 3165 32.10 52.47

Genovo 138337 2357 12258 18.71 98.51

Minimo 100/98 1532 744 9763 4.94 3.98

Minimo 60/95 2603 471 66769 2.90 37.00

Newbler 100/98 78267 1298 4405 20.69 44.41

Newbler 60/95 137947 2508 7143 20.84 90.08

Velvet 1820 426 10653 4.76 4.96

Meta velvet 1820 426 10640 4.71 4.96

Optimal 185683 3604 10657 0.00 97.99
enabling the recovery of a complete genome. How-
ever, around 20% contigs were chimeric, a similar re-
sult to Newbler 100/98 (with parameters of minimum
overlap ml = 100 nt and minimum percentage of identities
mi = 98%). Newbler was the most accurate in terms of the
identity median against its original genomes, showing the
smallest variation across the alignments against the ori-
ginal genomes (Additional file 2: Figure S1). This charac-
teristic makes Newbler a good alternative for genome
assembly and recovery in viral shotgun sequence data.
% reads assembled
on their original

genomes

% reads within
a viral

bacterial hit

Genomes
recovered

% contig identity
against its

original genome
(median)

96.31 0.35 0 98.32

95.97 0.35 0 99.09

89.80 0.14 1 99.00

78.73 0.25 0 98.00

94.83 8.18 0 97.63

97.41 3.37 0 97.00

94.63 0.38 0 99.55

93.45 0.23 1 99.00

95.79 6.39 0 97.42

95.91 6.41 0 97.00

99.62 0.24 9 100.00



Table 2 Statistics of the viral-bacterial assemblies

Assembly Largest
contig (bp)

N50 (bp) # contigs % chimeric
contigs

% viral-bacterial
chimeric contigs

% reads
assembled

% reads assembled
on their original genomes

% reads within a
viral bacterial hit

Genomes recovered % contig identity
against its original
genome (median)

Celera 02 20633 1646 4932 14.82 0.914 24.95 96.36 0.38 0 98.63

Celera 05 20633 1876 4616 17.20 1.17 26.97 95.88 0.38 0 99.00

Celera meta 134766 2804 4630 30.65 1.99 43.08 88.36 0.17 0 99.00

Genovo 139026 929 33552 29.32 0.55 87.97 84.57 0.21 1 98.00

Minimo 100/98 1636 742 7815 4.84 0.05 3.17 95.03 7.28 0 98.00

Minimo 60/95 3014 518 61092 4.46 0.07 32.10 96.33 3.25 0 97.00

Newbler 100/98 75826 1130 3692 19.97 1.49 30.88 94.69 0.45 0 99.52

Newbler 60/95 137947 1325 10643 20.70 1.15 70.29 93.51 0.27 0 99.10

Velvet 1689 445 18366 9.66 0.19 8.48 91.18 3.68 0 97.56

Meta velvet 1680 445 18663 9.63 0.18 8.47 91.15 3.70 0 97.55

Optimal 153167 1333 27166 0.00 0.00 84.31 99.71 0.32 6 100.00
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Minimo produced the lowest percentage of chimeric
contigs, presenting the strictest assembly (one that limits
the number of formed contigs to discard spurious over-
laps) in both metagenomes. It had the lowest percentage
of reads assembled, the lowest N50 value and the highest
percentage of reads within a viral-bacterial hit (Tables 1
and 2). A less stringent version (60/95) resulted in
higher percentage of reads assembled and reads match-
ing their original genome, and the largest contig values
as well as in lower percentage of reads within a viral-
bacterial hit, the percentage of chimeric contigs and N50
values when compared against the most stringent
version (100/98). Reducing the collapsing parameters
(assemblers’ options that define the threshold for accept-
ing an overlap between two reads) values helps assemble
a higher percentage of reads into the assembly with the
fewest number of chimeric contigs. Minimo stands as
the best candidate to deal with taxonomic annotations.
The Celera assembler had similar results for assem-

blies 60/95 and 100/98. Its metagenomic parameters im-
proved the percentage of reads assembled and the N50
value, therefore increasing the percentage of chimeric
contigs and the reads in their original genome (Tables 1
and 2). Despite the high percentage of chimeric contigs
the Celera meta showed highly accurate results in its
identity median (Tables 1 and 2) obtaining a low num-
ber of large contigs in the viral metagenome simula-
tion. These characteristics are, as well as for Newbler,
advantageous for the recovery of entire genomes
(Table 1). The main drawback of this assembler is that
it reports the highest variation in the percentage of
identity (Additional file 2: Figure S1).
As for viral-bacterial metagenomes assemblies

(Table 2), there was a decrease in the N50 value, the
number of genomes recovered and the percentage of
reads assembled. The percentage of similarity within its
original genome remained similar, with the exception of
Celera, which decreased its variation across the genome
mapping despite the higher complexity of the metagen-
ome (Additional file 2: Figure S1, Tables 1 and 2). The
percentage of chimeric contigs between viruses and bac-
teria was insignificant, due to the low effect of the
inserted prophages into the bacterial genomes to create
chimeras. Newbler again obtained the longest contigs,
with more reads assembled and genomes recovered per
assembly. Celera with the metagenomic settings pro-
duced an assembly similar to that of Newbler with less
stringent parameters. Both assemblers maximized the per-
centage of reads assembled, but also increased the per-
centage of chimeric contigs (Table 2). Minimo showed
similar statistics as the ones in the viral metagenome.
As in other studies [26,30,48] we showed that the

stringency of the parameters involving overlapping in
both metagenomes influences the quality of the
assembly. A decrease in the stringency in the assembly
results in the increase of the N50 and the percentage of
reads assembled in all assemblers. However, in our ana-
lysis, the number of chimeras and misassembled contigs
seemed to be independent of these parameters as well as
of the percentage of identities. Thus, when overlapping
parameters stringency is increased (see Methods), only
the contig length and the percentage of reads assembled
decrease.
The last OLC assembler that was tested, VICUNA

[35], did not produce useful results. When the diver-
gence variable is set to 2% none of the assemblies were
able to recover a single contig. By setting it to 10%, the
viral assembly yielded six contigs, the maximum number
of contigs for VICUNA. The assemblies were not con-
sidered for subsequent analyses.

de Bruijn algorithms
These algorithms, commonly used for short-reads, im-
prove the length of the resulting contigs, therefore min-
imizing the problem of repetitive sequences [36]. No
significant difference between Velvet and its metage-
nomic version MetaVelvet [37] was found for neither
metagenome.
For the viral metagenomes, de Bruijn algorithm assem-

blers exhibited the strictest assembly (Table 1, Table 2), as-
sembling only a small percentage of the reads with the
fewest number of chimeras (Table 1). The percentage of
reads within a viral-bacterial hit was lower than for assem-
blies with a similar N50 value such as Minimo 100/98.
Unlike the OLC algorithm assemblers, Velvet and

MetaVelvet assembled more reads in complex metagen-
omes. The N50 and the percentage of reads within a
viral-bacterial hit were also increase. The number of chi-
meras increased with complexity but remained lower
than for the OLC strategy (Table 1).
N50 values resulting from de Bruijn assemblers varied

depending on the k-mer length but not on the complexity
of the metagenome. A scaffolding software may be used in
order to increase these low N50 values although it would
increase the percentage of chimeric contigs [31].

Generative probabilistic model of read generation
algorithm
Genovo is based on a Chinese-restaurant-process and it
can use different coverage values for distinct species
within the same metagenomic dataset [22]. Genovo uses
a generative probabilistic model of read generation, con-
trary to single sequence reconstruction. This depends on
a prior to randomly partition the reads, which is ob-
tained using a Chinese-restaurant-process model. The
model is a discrete-time stochastic process generating
clusters that accounts for the undetermined number of
genomes in the sample. It considers the probability of a



Vázquez-Castellanos et al. BMC Genomics 2014, 15:37 Page 7 of 20
http://www.biomedcentral.com/1471-2164/15/37
read to be assigned to an existing or an empty cluster
and continues hill-climbing steps iteratively until conver-
gence is met.
It proved to be the assembler with the best perform-

ance in generating long contigs, maximizing the percent-
age of reads assembled, with a higher value than that
expected for the optimal assembly (Tables 1 and 2).
However, it generated a large number of chimeras and
other misassembled reads (Tables 1 and 2). This may be
avoided by increasing the number of iterations. Further-
more, Genovo was time and resource consuming, re-
quiring approximately 3 days for our viral metagenome
and up to 21 days for the viral-bacterial metagenome,
approximately 80 times more than the second slowest
assembler (Minimo).
This assembler drastically increased the percentage of

chimeric contigs and the percentage of reads matching
their original genome proportionately to the complexity
of the metagenome (Tables 1 and 2). Closely related spe-
cies in the datasets may originate these chimeric contigs.

Clustering and correlation from assembly parameters
The Spearman rank correlation coefficient measures the
statistical dependence between two variables and creates
clusters based on the effect of each assembly statistic on
the others (Tables 1 and 2). The correlation gives infor-
mation about the performance of non-quantifiable vari-
ables in real data (number of chimeric contigs, number
of reads that assembled into its original genome, the per-
centage of mapping reads and the percentage of identity
against its original genome) using variables that can be
measured (number of contigs, N50, percentage of reads
assembled and the largest contig). Our results show that
the correlation values were lower in the viral-bacterial
matrix (Figure 2A), given that its higher complexity re-
duced the number of reads assembled and the possible
observations to create correlations. The hierarchical
clustering obtained by the correlation matrix (see
Methods) associated the statistics into two clusters based
on the contig length and the number of reads assembled
(Figure 2B). Cluster 1 is characterized by its positive cor-
relations between the number of contigs, the percentage
of reads within a viral-bacterial hit, and the percentage
of reads matching their original genome; and by the
negative correlations between the largest contig with the
N50, the number of reads assembled and the number of
chimeric contigs. Conversely, cluster 2 associates the
same statistics in the opposite direction. The number of
genomes recovered was located in a different group in
each metagenome due to its low number of observa-
tions. Longer contigs with higher read counts resulted in
an increased amount of chimeric assemblies whilst small
ones resulted in taxonomic annotations between viruses
and bacteria.
Clustering and correlation from assemblies
The Principal Components Analysis (PCA) was per-
formed using the correlation matrix to understand the
effects of the statistics on the assemblies (Figure 2B). For
this analysis, we introduced an optimal assembly that
maximizes the number of reads assembled into long
non-chimeric contigs (see Methods) to determine which
assembler or set of parameters had a closer distance to
this optimal result.
The PCA from the viral and the viral-bacterial meta-

genomes show that the optimal assembly is separated
from the rest (Figure 2B). Genovo and the OLC Celera
with the recommended parameters for metagenomics
(Celera meta) and Newbler 60/95 are the ones with
more reads assembled, longer contigs and the shortest
Euclidean distances, which cluster them with the opti-
mal assembly (Additional file 3: Figure S2). However,
they are driven away from the latter in the PCA because
of the effects of the percentage of chimeric contigs and
the percentage of reads matching their original genome.
The PCA clusters the assemblies into two main groups

(Figure 2A). These clusters are seen across both meta-
genomes with different structure (Figure 2B). One clus-
ter consists of Minimo 60/95, Minimo 100/98, Velvet
and MetaVelvet (green circle in Figure 2B) characterized
by a large number of short-length contigs, a low percent-
age of reads assembled, lower percentage of chimeric
contigs, and higher percentage of reads within a viral-
bacterial hit values. Minimo 60/95 differs slightly from
the other elements in this cluster, as it has a higher per-
centage of reads assembled and a lower percentage of
reads within a viral-bacterial hit. A second cluster in-
cludes the remaining OLC assemblers and Genovo (pur-
ple circle in Figure 2B), driven by the N50, the largest
contig, identity median, and the percentage of chimeric
contigs. Celera meta and Genovo, in the viral dataset,
show the greatest distance from the optimal assembly
due to their high the percentage of chimeric contigs.

Taxonomic analysis of chimeras in assemblies
The taxonomy level at which one or more reads have
the same classification is known as the Lowest Common
Ancestor (LCA). This was determined for every set of
reads within chimeric contigs. For all the assemblers, the
LCA tended to be found in lower taxonomic levels
(species, genus, subfamily and family), suggesting that
chimera formation arises from conserved functions or
sequences in closely related species. Neither the com-
plexity of the metagenome nor the collapsing parameters
(mi 100/98 ml 60/100 for Minimo and Newbler and
utgErrorRate 0.02/0.05 for Celera) noticeably influenced
the percentage of chimeric contigs. Instead, it seemed
that the contig length, reflected in the N50 value, and
the percentage of reads assembled increased the number



Figure 2 Correlation analysis from assemblies. Hierarchical clustering given by the Spearman correlation matrix of the viral-bacterial (left) and
the viral (right) assemblies (A). The gradient indicates the strength and direction of the correlations. Blue squares represent significant negative
correlations and red squares positive correlations (P value ≤ 0.05). Green clusters are based on accurate short-length and low-assembled contigs
while purple clusters are based on highly-assembled long-chimeric contigs. Ctgs: number of contigs, ChCtgs: percentage of chimeric contigs,
ChCtgs.V.B: percentage of viral-bacterial chimeric contigs, GR: genomes recovered, IM: median of percentage of contig identity against its original
genome, LC: Largest contig, N50, RA: percentage of reads assembled, ROG: percentage of reads assembled on their original genomes, RVB: per-
centage of reads within a viral-bacterial hit. Principal Component Analysis for the different assemblies in both metagenomes (B): The two principal
components that better explain variation between assemblies are shown for the viral-bacterial (left) and the viral (right) assemblies. The length of
the red vectors represents the effect of each component on the stats. The distance between them indicates their correlation. Circles represent
two clusters formed due to the close correlations in the matrices in panel A. C: Celera, M: Minimo, N: Newbler, Optimal: optimal assembly.
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of chimeric assemblies (Tables 1 and 2 and Figure 2A
and B).
The LCA of the chimeras obtained in our viral-

bacterial metagenome assemblies were mainly detected
at two taxonomic levels: species (Genovo, Newbler,
Minimo 60/95, and the de Bruijn assemblers) and family
(Celera assemblies, Newbler 60/95 and Minimo 100/98)
(Figure 3). We showed that with less stringent parame-
ters for overlapping (mi 95 ml 60 and utgErrorRate
0.05), the LCA of chimeric contigs tend to be placed at
lower taxonomic levels (species, genus, subfamily and
family), as seen in the OLC assemblies. Few chimeras
were detected between viruses and bacteria in all assem-
blies (Figure 3).
Chimeras in the viral metagenome mainly occurred at

the genus and family levels. The assemblies of viruses had
also high percentages of chimeras at the superkingdom
(equivalent to domain in the Galaxy output) and order
levels. The percentage of higher rank LCA chimeras in-
creased as the overlapping parameters became stricter
(mi 98 ml 100 and utgErrorRate 0.02), as seen both for
the viral and the viral-bacterial metagenomes (Figure 3).
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Figure 3 Lowest Common Ancestor in chimeric contigs. The LCA of each chimeric contig is represented as a fraction of the total number of
chimeric contigs on every viral and viral-bacterial metagenome assembly.
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Functional analysis of the contigs
The improvement in functional annotations after assem-
bling was tested by contrasting the number and accuracy
of the assembled reads annotation against the results
from the unassembled reads annotation (Additional
file 4: Figure S3). This was achieved by counting the
number of times that BLASTx annotation for each
read succeeds in assigning the “true annotation” (see
Methods section “Functional analysis of the contigs”)
to each of the assemblies and the two simulated
metagenomes.
Assembling increased the number reads that were

assigned a function. The difference between the assem-
bled and unassembled annotations was magnified as the
overlapping cut off (the alignment of the best hit
against read length) values increased. When the over-
lapping cut off was set to the 30% of the alignment
length, virtually no hits were recovered for the unas-
sembled reads (Additional file 4: Figure S3). This is
mainly due to the fact that the unassembled reads do
not contain enough information to create an accurate
annotation. When the cut off was set below 10%, the
differences between the assembled and unassembled
functional results were smaller, and in some cases the
unassembled recovered more functional hits (Newbler
and Celera meta). If the overlapping percentage cut off
was increased (see Methods, section “Functional ana-
lysis of the contigs”), so was the proportion of correctly
annotated functions for most of the assemblers, except
for Newbler and Celera meta.
Genovo showed outstanding results in the functional

analysis. Unlike the other highly-assembled long-contig
assemblies, those obtained by Genovo correctly assigned
functions to a higher number of reads, regardless of the
overlapping values. Its accuracy was similar to the most
stringent assemblies (Minimo and de Bruijn) (Additional
file 4: Figure S3).

Function that causes chimeric assemblies in virus
metagenome
Horizontal gene transfer within bacteriophages and be-
tween them and their bacterial hosts is a common
phenomenon [49-53]. In order to determine the number
of functions involved in chimeras formation, their taxo-
nomic groups and the assemblies in which they were
occur chimeric collapses, BLASTx was used to assign
annotations of the chimeric region of the contigs. As-
semblies with higher percentage of reads assembled and
N50 values accounted for the majority of the events of
pairwise alignments between different organisms,
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hereafter chimeric collapses (detected at least once in
every chimeric contig), mainly seen in those from Gen-
ovo (Figure 4A).
A total of 1423 different functions were detected to be

involved in chimeric collapses in the viral metagenome
assemblies with chimeras occurring between different
organisms sharing functions. In viral-bacterial assem-
blies, this number adds up 2656 functions that produce
chimeric collapses. The most represented known func-
tions (those with an annotation into the database; see
Methods) were taken from both metagenomes assem-
blies (Figure 4B). The over-represented functions, de-
fined as the outliers from the interquartile range of the
frequency distribution of functions involved in chimeric
collapses, mainly contained conserved proteins across
genomes, such as DNA replication proteins, DNA poly-
merase, SNF2 domain-containing protein (helicase); pro-
teins involved in DNA packaging such as gp3 terminase,
phage-terminase large subunit, Terl, portal proteins gp1
and gp42 [54,55]; hydrolases and lysis proteins such as
phage-associated cell wall hydrolase, XhlB and mem-
brane proteins related to metalloendopeptidases (also
present in bacterial genomes) [56-58]; DNA transfer
proteins such as gp16 [54]; adhesion proteins such as
Escherichia coli

Lactococcus

Myoviridae

Siphoviridae
Caudovirales

Chlamydiamicrovirus

Figure 4 Functional and taxonomic analyses of chimeric overlaps. Fun
collapses for the assemblers is summarized for the viral-bacterial (left) and
each assembly (A). Bar chart for the over-represented functions in chimeric
phiSLT ORF636 − like protein [59]; genome integrase [60];
structural proteins, including characterized measure pro-
tein [61] and finally unclassified functional proteins.
Most of the chimeric collapses occurred at the genus level

(Figure 4C). Chlamydiamicrovirus (family Microviridae)
represents ~50% of all chimeric assemblies for both
metagenomes. Genomes from this genus are character-
ized by their short length. Given this feature and the
huge number of reads simulated, the coverage of the
genomes was very high and consequently, the number
of chimeric collapses tended to increase.
Finally, the low percentage of chimeric collapses ob-

served between bacterial reads may be a consequence of
the low coverage for each of the genomes sampled.

Alternative methods for taxonomic classification
In order to assess the taxonomic classification, their
specificity and sensitivity were calculated to standardize
the results, based on the correct/incorrect assignations
(Figure 5) on a simulated query dataset of 200 reads
taken from 19 genomes that were subtracted from the
subject database. Three databases were constructed
with the remaining genomes, restricting their contents
to species, genera or families not included in the query
Lactococcus

Myoviridae

Caudovirales
Siphoviridae

Chlamydiamicrovirus

ctional and taxonomic representations for the pairwise chimeric
for the viral (right) metagenomes. Percentage of chimeric collapses for
read collapses (B). Taxonomy percentage of resulting LCA hits (C).



Figure 5 Sensitivity and specificity of the taxonomic classification programs using custom databases. The sensitivity and the specificity
were calculated based on the results of taxonomic classification trials using three custom databases in which genomes with taxonomic labels
matching those in the query dataset were respectively removed: Species-excluded (A), Genera-excluded (B) and Families-excluded (C). The query
dataset, comprised of the 200 simulated reads, was analysed with three taxonomic classification approaches with each database: K-mer frequencies,
tBLASTx, and PhymmBL. These methods were assessed at the taxonomic levels of genus (blue), family (red) and order (green) whenever available for
each iteration.
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dataset (Species-excluded, Genera-excluded and Families-
excluded, respectively). The objective was to assess the
performance of different taxonomic classification software
when sequences belonging to the same species, genus or
family were not found in the database.
The removal of related species, genus or family is

reflected by a decrease in the sensitivity for all methods
on all taxonomic levels whereas the specificity remains
virtually unaltered (Figure 5). The overall proportion of
accurate results (the sum of true positives/negatives;
mean 77.69 ± 7.27%) is higher than that of incorrect ones
(sum of false positives/ negatives; mean 22.31 ± 7.27%),
mainly influenced by the number of true negatives and
false positives respectively (Additional file 5: Table S2).
Within each database analysis, classification at the
higher taxonomic levels produces smaller sensitivity
values. This is constant with all custom databases.
The frequency of k-mers was the least sensitive of all

three methods, with a low number of true positives and
a high proportion of true negatives (Additional file 5:
Table S2). tBLASTx was the most specific for all taxo-
nomic levels with the three databases and the most sen-
sitive in the Species-excluded and Genera-excluded
databases. It yields the highest number of true positives,
reporting up to >50% in the order level with the
Species-excluded database. The number of false positives
it produces is lower than those of the other methods.
As for PhymmBL, we tested for changes in sensitivity
and specificity by modifying the options for model struc-
ture (separated or combined for each organism) and for
alignment method (tBLASTx and BLASTn). From the
four different permutations, we selected the one with
the confidence score that maximized specificity and sen-
sitivity to compare it with the other taxonomic classifi-
cation methods (Additional file 6: Figure S4A). The
scores that maximized this value at the genus, family and
order levels were 0.6, 0.7 and 0.7, respectively. The specifi-
city did not vary significantly between the permutations.
The sensitivity of PhymmBL using tBLASTx was higher
than with BLASTn. The former was selected as the align-
ment method along with single models for the rest of the
analysis with this program.
PhymmBL produces similar results to those of

tBLASTx, but gets a lower proportion of true positives
and a higher number of false positives resulting in a de-
crease in sensitivity and specificity in all taxonomic
levels, except for the Family-excluded database, in which
PhymmBL obtains higher sensibility values.

Discussion
The performance of several read assembly and gene anno-
tation tools has been tested to study simulated viral and
viral-bacterial metagenomes. Taking into account the lack
of information in the current databases we tested the



Vázquez-Castellanos et al. BMC Genomics 2014, 15:37 Page 12 of 20
http://www.biomedcentral.com/1471-2164/15/37
impact of the assembly process on the accuracy of the
taxonomic and functional annotations [62-64].
Even though simulated metagenomic datasets are an

oversimplified emulation of actual metagenomic data,
the conclusions drawn from these analyses are still valid
as the focus of this study was to assess the performance
of different assemblers rather than recovering the exact
underlying taxonomic distribution of the data.
Viral metagenomic assemblies have been classified into

two groups. The first one is characterized by their low
percentage of chimeric contigs, high prevalence of the
reads within a viral-bacterial hit and short contigs while
the second is defined by their high percentage of reads
assembled, as well as long and chimeric contigs. For
both types of assemblies the percentage of reads match-
ing their original genome was high, with similar identity
median.
The OLC-algorithm assemblers show a wider spectrum

of results, requiring less time and computational re-
sources, making them more suitable when dealing with
highly heterogeneous metagenomes. This allows the user
to choose between two types of assemblies: those with
many accurate micro-contigs, at the expense of the cap-
acity of taxonomic/functional prediction, and those with
longer contigs, enabling the recovery of whole genomes or
more taxonomic functions.
Newbler and Celera, the less strict assemblers, produce

the largest OLC-assemblies, with the highest percentage
of reads assembled, and increase the probability of
reconstructing whole genomes. In contrast, Minimo, the
most conservative algorithm, shows a better accuracy
but the percentage of reads assembled and N50 values
are reduced, while increasing the percentage of reads
within a viral-bacterial hit. Interestingly, the perform-
ance of Minimo 60/95 is positioned between that of
Newbler/Celera meta and Minimo 100/98. It assembles
significantly higher proportions of reads than its most
stringent version, with the same accuracy whilst redu-
cing the number of reads within a viral-bacterial hit. For
all of these assemblies the identity median and, except
for Celera meta, the percentage of reads matching their
original genome values are similar.
The stringency of the parameters for length of overlap

and minimum percentage of identity does not signifi-
cantly increase the quality of the contigs or the accuracy
in functional annotation (except for Celera meta). Strin-
gent parameters were expected to reduce the number of
chimeras, but correlation analysis of the assembly statis-
tics show that they result in a reduction of the percent-
age of reads assembled and N50 values, whereas the
percentage of chimeric contigs remained virtually un-
altered. Assemblies with restrictive parameters have
more LCA hits resolved at phylum, superkingdom and
root taxonomic levels. This may be explained by the fact
that only conserved sequences across genomes have a
percentage of identity that leads to the formation of
chimeric assemblies. Some of these proteins are ubiqui-
tous in the microbiome such as housekeeping genes
and genes involved in phage structure or replication
(Figure 4B). Higher complexity is associated with lower
N50 and the percentage of reads assembled values, as
would be expected in lower species-level coverage
scenarios.
An increased N50 value results in a higher number of

predicted functions but the percentage of correct assig-
nations decreases. This effect is drastically observed in
Newbler and Celera meta, which obtain around 40-50%
of correctly annotated functions. For the recovery of
long contigs, including whole genomes, Newbler pro-
vides the best results, with higher accuracy than Celera
meta.
Minimo 60/95 generates roughly the same number of

correctly annotated reads but with much higher accur-
acy. Although the N50 value in Minimo is 10 times
lower than that of the optimal assembly, the results sug-
gest that it could be the assembler of choice for diversity
analysis of viral metagenomes obtained with 454 tech-
nology provided that less stringent parameters are se-
lected (60/95 in this study).
VICUNA [35], failed to achieve an acceptable assem-

bly for comparison. This outcome was not unexpected
as it had been used for a single viral population per run
(e.g.: an HIV population) and had just been suggested,
but not tested, for metagenomics.
Previously filtering the reads to separate specific ge-

nomes using a mapper such as SMALT [65] (Ssaha2’s
virtual successor), would enable the usage of VICUNA.
The mapper could be used as a first approach along with
the viral database to allocate the reads into possible ge-
nomes, classifying each set and assembling them separ-
ately. Still, this would not be equivalent to other of the
assemblies and was consequently discarded from the rest
of the analysis.
Velvet and MetaVelvet, de Bruijn graphs assemblers,

are conservative, ensuring good quality contigs and
highly reliable functional annotations. However, the
resulting contigs, which have short N50 and low per-
centage of reads assembled, may be used for successive
rounds of assembly or scaffolding. Unlike the percentage
of reads assembled, the N50 seems to be independent of
the assembler and the complexity of the metagenome.
Our results showed that de Bruijn assemblers cannot han-
dle 454 sequences optimally, as they generate short con-
tigs and show a low percentage of reads assembled. These
results are further supported by other studies [22,23].
The generative probabilistic model of read generation

algorithm assembler, Genovo [22] can deal with high
levels of taxonomic heterogeneity, because it can input a
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different coverage for different contigs rendering it more
sensitive to underrepresented species. Genovo shows the
highest N50 with the largest contig, assembling most of
the dataset into the viral metagenome. Horizontal gene
transfer, the low number of different functions across
bacteriophages, and the effects of multiple coverage esti-
mations lead Genovo into successfully merging chimeric
contigs that share common functions, rather than
reflecting their actual taxonomy. This feature makes
Genovo the assembler of choice for functional annota-
tion due to its high number of functional assignations
and their accuracy.
The high percentage of chimeric contigs may be

caused by the clustering of related functions from
different organisms. This is consistent with the fact
that there are so many chimeras at order, class and
phylum taxonomic levels. For most of the assem-
blies, the number of reads with a correct functional an-
notation is higher in the contigs than in the original
unassembled dataset. If the overlapping percentage value
is increased (see Methods), this effect is magnified. The
number of predicted functions from unassembled reads
decreases abruptly at higher overlapping percentages,
virtually disappearing beyond 50% (Additional file 6:
Figure S4A).
Bacteriophage integration into genomes (prophages)

appears to have just a limited influence in the formation
of chimeras, most likely because those occurring be-
tween viruses and bacteria are mainly determined by the
contig length, just like the rest of the chimeric events,
and are practically non-existent in the assemblies.
As the percentage of reads assembled decreases, so

does the contig length, the number of chimeras and the
percentage of reads matching their original genome,
whereas the percentage of reads within a viral-bacterial
hit increases. Thus, shorter reads are also less useful for
taxonomic and functional profiling. This happens both
in the viral and the viral-bacterial metagenomes, mean-
ing that the effect of prophages may arise from a taxo-
nomic assignation bias rather than from an aberrant
assembly. Increasing the contig length can improve the
accuracy when dealing with viral-bacterial metagenomes,
despite the chimeric contigs between both. Furthermore,
the results may be improved by effectively selecting the
viral hits rather than the bacterial ones when e-values
are identical.
Most LCAs in chimeric contigs are detected in the

class, order and phylum taxonomic levels. This could be
explained by the inconsistent levels in viral taxonomy
and the high number of functions that are shared be-
tween viral genomes.
Determining the LCA of the assembled contigs can

support the taxonomic level assignation at which anno-
tations should be given.
Most functions are detected in chimeric alignments.
The most over-represented functions are basic for viral
replication and are conserved across all viruses (Figure 4).
This may be attributed to different causes such as hori-
zontal gene transfer according to the modular theory of
bacteriophage evolution in which bacteriophages are con-
sidered a group of interchangeable genetic elements
[66-68]. Furthermore, the combination of closely related
species with small genomes and a high prevalence in a
niche often leads to the occurrence of chimeric collapses in
the assemblies as seen in the genus Chlamydiamicrovirus.
Assembling provides a useful platform for taxonomic

and functional analyses of viral metagenomic datasets
but this is also extended to diversity analyses which can
be measured using programs such as PHACCS [69] and
CatchAll [34], which take into account the contig
spectrum to measure the overall diversity within samples.
With respect to the comparison between different

taxonomic assignment approaches, we suggest they may
be combined to obtain a better result, although this ap-
proach was not fully tested for this study. Because of the
intrinsic differences of the algorithms, each one provides
an advantage in different applications and may be used
complementarily.
As for the second part of the analysis, the methods for

taxonomic classification are mostly conservative as they
show a high proportion of true negatives, low numbers
of true positives and high specificity scores for all the
analyses. Values are consistent with previous studies
[16,18,42] and support all three programs as reliable al-
ternatives for viral taxonomic assignation in different
specific scenarios, even though the total true positives
are limited. This number is further affected by the re-
moval of the sequences from the databases.
The frequencies of k-mers within the genomes were

not very sensitive with any of the databases and taxo-
nomic levels. However, this method presents the high-
est numbers of true negatives in most analyses.
Although it is not the aim of this study, the k-mer ap-
proach may potentially be used to differentiate bacter-
ial from viral sequences so that the set of reads may
be cleansed. This method stands out because it does
not depend on alignments between the databases and
can thus detect sequence homology in relatively dis-
tant genomes.
tBLASTx is a good taxonomic assignation approach

for viral metagenomes, displaying higher sensibility and
the specificity scores of PhymmBL and k-mer frequen-
cies in most cases. It is highly specific because it pro-
duces a high number of true positives and few false
positives. Because of the low number of available viral
genomes this program may be limited to extant se-
quences in the databases and does not retrieve informa-
tion from other genomic features unlike the other two
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methods. This limitation is reflected by the loss of sens-
ibility with the Families-excluded database.
PhymmBL yields results that fairly resemble those of

tBLASTx. However, it stands out as the most sensitive pro-
gram for viral taxonomic assignation when no genera or
families match those in the query dataset (Families-excluded
database). The algorithm can be enhanced by selecting
tBLASTx instead of the default BLASTn. Even if no signifi-
cant alignment is possible, the program can resolve the tax-
onomy of any query using IMMs. Nevertheless, PhymmBL
is computationally demanding and its code was developed
for usage with bacterial datasets, as input database structure
is expected to contain all taxonomic levels used in bacteria.
When the query dataset is analysed using all three differ-

ent programs with the Species-excluded and Genera-
excluded databases, it is shown that lower sensitivity
scores are obtained in higher order taxonomic levels,
namely in the order and family levels. These may seem
counterintuitive, since the exact opposite is seen in bac-
teria, and may be due to the broad genetic heterogeneity
in viruses [70]. MAP (Metagenomic Assembly Program)
[28] and Ray Meta [71] (a short read de Bruijn assembler)
came out around the time when this work was being
carried out. MAP (a metagenomic OLC assembler) is
expected to improve OLC single genome assembly by
taking into account mate-pair information for the lay-
out stage [28]. Our datasets were modelled after 454-
pyrosequencing data and included no mate-pair infor-
mation. A new customized dataset especially designed
for MAP would have been required. This would render
direct comparison impossible. Ray-meta may be one of
the best NGS assemblers for short-read sequence data.
However, as stated above, the results from this and
other studies suggest that de Bruijn assemblers are not
an optimal approach. Furthermore, we tried to limit the
study to those assemblers that had at least been tried
for viral genomics. Therefore, we decided not to in-
clude them in the analysis.

Conclusions
In this work, we measured the effect that assembling
simulated viral gut metagenomes with different assem-
blers had on the quality of taxonomic and functional an-
notations. None of the assemblers managed to generate
results that truthfully resemble the optimally assembled
metagenomes.
The success of most assemblies is greatly hindered by

the formation of chimeric contigs. As supported by our
data, chimeras are ubiquitous in all assemblies. They are
formed at virtually any taxonomic level or function, re-
gardless of the stringency of the parameters and the ex-
istence of reads of bacterial origin in the dataset.
Depending on the objective of each project, we propose

two ways to assemble 454 sequence data from viral
metagenomic data. Diversity and taxonomic analysis may
benefit from using Minimo with ml60 and mi95 parame-
ters as it minimizes the number of chimeric contigs with
an acceptable percentage of reads assembled. On the other
hand, Genovo stands out in functional annotation analyses,
as it forms the longest contigs and has the highest percent-
age of reads assembled. Since Genovo is time and resource
consuming, Newbler can be considered as a cost-efficient
alternative.
Additionally, different taxonomic assignment programs

were tested to evaluate specificity and sensitivity of taxo-
nomic assignations as well as the effect of removing se-
quences that were close to the query dataset in different
taxonomic levels. Methods vary in terms of assignation suc-
cess, with tBLASTx as the most successful and accurate in
most cases. The frequency of k-mers was the method that
yielded the lower overall scores for virus analysis. Because of
the intrinsic differences of the algorithms, each one provides
an advantage in different applications and may be used
complementarily, although this approach was not fully
tested for this study. To make the most out of them the k-
mers frequency method could be used to separate bacterial
or specific subtypes of viral particles, tBLASTx, due to its
specificity and sensitivity, would be a good option as the
main taxonomic classification program and, PhymmBL due
to its sensitivity could be a good choice to obtain informa-
tion where others cannot, especially if the available reference
database lacks closely related species.

Methods
Collection and processing of viral metagenome
sequences
Virus-like particles sequences deposited with the accession
number [SRA:SRA020605] by Reyes, et al., [12] were down-
loaded from GenBank/EMBL/DDBJ Short Read Archive.
The fastq-dump.2.1.18 program from SRA toolkit was run
to generate the FASTQ sequences from all the SRA files.
PRINSEQ (lite 0.14.4) [72] (−derep 1 -min_qual_mean
20 -ns_max_n 1), was used to remove redundant reads
and trim low-quality reads. Tagcleaner (−predict -mm3 1)
[73] was used to remove tags.

Genome mapping and coverage calculation
In order to find their taxonomic identity, all cleansed
reads from the original virus-like particles metagenomes
were mapped against all bacterial and viral reference ge-
nomes from the NCBI genome database (May 2012).
Reads were assigned to genomes if their alignment
against the reference genome comprised at least the 60%
of their length. Given its high variability and the low
number of viral genomes, viral mappings were carried
out with tBLASTx (e-value < 0.001) [12,16] against the
viral reference genome database. This compares the pro-
tein translation of the six reading frames of a query
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DNA sequence against the translated sequence of the six
frames of a target, thus enhancing the sensitivity to dis-
tant relationships in DNA sequences. All reads assigned
to viral genomes were excluded from the bacterial map-
ping. The remaining reads were aligned using SSAHA2
software [47] against the bacterial reference genome
database, as this is a best approach for genome mapping.
The best hit (that with the highest percentage of align-
ment) from each read was used for a particular genome
coverage calculation.
The coverage for each genome was calculated using

the following formula:

CoverageGi ¼ ∑Lri=GiL

Where Lri is the length of every read that matches the
ith genome (Gi) and GiL is the length of the ith genome.
The final coverage of every genome was estimated as the
mean of all values obtained from each metagenome.

Metagenome simulations
The genome coverage values were standardized by
adjusting them to the lowest value. These were used to
generate the frequencies in a .mprf file, used by the pro-
gram MetaSim [74] to obtain the relative abundances
and simulated its proportional number of reads. Two
different sequence datasets were simulated: the first one
contained 579 viral genomes and the second one a mix-
ture of 1152 viral and bacterial genomes (Figure 1). Ex-
cept for the genome frequencies and composition, the
same simulation settings were used for both metagen-
ome simulations, taking into account the 454 error
model [75]. A total of 500000 reads with an average
length of ~400 bp were simulated (Table 3). Each read
was assigned the taxonomic information of its source
genome as well as its position in the chromosome. The
header for each simulated read contained the taxonomic
id, the position of the errors added, the genome from
which it was simulated and the position of the read into
the genome; this information was required to reas-
sembled the original genomes form the simulated data
and to assess the accuracy of the assemblers.
The metagenome simulations mprf files that contain

the relative abundance for the simulated metagenomes
are available into the Additional file 7: Dataset S1. The
genomes names and the number of read calculated for
each of them are available into the Additional file 8:
Table 3 Characteristics of the simulated data

Genomes # Reads Average
read size

# Base pairs

Viruses 579 500000 434.26 pb 217130409

Viruses-Bacteria 1152 500000 431.11 pb 215556023
Table S3 for the Viral-Bacterial metagenome and the
Additional file 9: Table S4 for the viral metagenome.

Assembly
Contigs longer than 350 bp were taken into account to
perform the data analysis.
The following assemblers were used:

1) Newbler is the default recommendation for
assembling 454 reads (Roche) and has been used
for viral analyses [12,14,16,18,21]. The parameters
were set to minimum length of overlap (ml) = 60/100
and the minimum percentage of identical base pairs
(mi) = 95/98 as used in published works [12,14,16,30].
Additionally, the option –ace was used to obtain a
map that would allow read tracking within the
assemblies and parameter -a 350 to avoid reads below
such contig length. Several other parameters have
been tested in other works, (ml = 40 and mi =85/90)
but they do not seem to affect the assembling of 454
reads [30].

2) Celera [76] has been extensively used for
metagenomics. Contig error rate (utgErrorRate) was
set to 0.02/0.05 in order to make the results
equivalent to the other OLC assemblers (Newbler
and Minimo). Just as Newbler, Celera assembler has
been used in viral metagenomic analysis [18] and
several metagenomic projects [26,48,63,77]. An
additional iteration with utgErrorRate = 0.12, as
recommended for metagenomics by Rusch et al.
(2007) [48] and genome size (utgGenomeSize) = 1/50
of the total number of bases, an artificially small value
to avoid a high penalty to the assembly caused by the
variable coverage between species [26].

3) Minimo [33] was designed to assemble small
datasets and has been used for virome analyses
[12,34]. In order to make the results equivalent to
those from other OLC assemblers, the parameters
were set to a minimum contig overlap length
MIN_LEN = (60/100) and a minimum contig overlap
identity percentage MIN_IDENT = (95/98). The
program was also executed with options
FASTA_EXP = 1 to input fasta format files and -D
ACE_EXP = 1 to obtain a map to locate the reads
within the assemblies.

4) Velvet [36] has a good performance with short-read
datasets and has been used in viral 454 sequence
metagenomic projects [15]. It yields highly reliable
contigs and it is not so affected by repeated areas
between contigs. Velveth and velvetg modules were
run with different k-mer lengths (15–49 bp).
Assemblies with the highest N50 values and the
maximum percentage of reads assembled were con-
sidered the best ones. For the final assembly, velveth



Vázquez-Castellanos et al. BMC Genomics 2014, 15:37 Page 16 of 20
http://www.biomedcentral.com/1471-2164/15/37
was run with a k-mer size of 49 and the -fasta –short
options; velvetg was run with options -read trkg yes
-amos_file yes in order to create a traceable map of
the graph of each contig and a min read length of
350 bp -min_contig_lgth 350.

5) MetaVelvet [37] is the metagenomic version of
Velvet. It can be given multiple coverage values in
the form of an array using the option
exp_cov_multi; the spectrum of genome coverage
values is given after each run of meta-velveth and
meta-velvetg; each assembly must be run twice, first
to obtain the list of coverages and second to use this
list within the assembly. The remaining settings were
the same as the ones used for Velvet.

6) Genovo [22] uses a probabilistic model that
calculates different coverage values to assemble
metagenomes. It improves gene recovery and
gathers more reads than single-genome assemblers.
A hundred iterations were run to improve the as-
sembly. The program BLAT [78] was used to assign
each single read to a contig and create an ACE-like
output format. It was assumed that a read must be-
long just to a single contig, its alignment must be
over 60% of its length and should present at least
95% of sequence identity. Customized Perl scripts
were developed to parse the output and create a
minimum contig length of 350 bp.

7) Vicuna [35]: VICUNA is an assembler designed for
genetically heterogeneous populations such as viral
ones. The assembler was run using de novo whole
genome sequences [35]. The native input for the
assembler are paired-end sequences, so we used the
script fakePairedReads.pl, available into the VICUNA
package, to create an artificially paired-end reads input
dataset. All assemblies were run with default options
with the exception of the -min_output_contig_len 350
to obtain contigs longer than 350 bp and three differ-
ent values for the Divergence variable (2, 5 and 10).
The variable MSAFileName was not defined so no
fasta files storing Multiple Sequence Alignment were
used to assembled reads into contigs.

All assemblies were run with options that allowed for
read tracking.

Assembly evaluation
Perl scripts were developed to extract the information
contained in the selected output file format, ACE, to cal-
culate the longest contig, the percentage of reads for
each assembly and the N statistics values, defined as the
contig length in which the summation of the total bases
in the contigs arranged by size accounts for 90%, 50%
and 30% of the nucleotides of the whole assembly. The
percentage of chimeric contigs was determined by
checking the taxonomic information of every read that
composed each contig. Whenever a contig included
reads from different organisms, the contig would be
considered a chimeric contig. The NCBI’s “Gi” sequence
identifier of each of our simulated reads was used to ob-
tain its complete taxonomy with the Fetch taxonomic
representation tool (version 1.1.0) in the Galaxy server
[79]. For each of the chimeric contigs, the level of the
LCA was determined as the taxonomic level in which all
the reads possess the same taxonomic annotation.

Taxonomic classification
The taxonomy of each contig was assigned after that
from the organism with more reads within the contig. In
order to measure the accuracy of the contigs, Megablast
[80] was used with default parameters to map them
against the viral and bacterial reference genomes from
the NCBI database. It was preferred over SSAHA2 be-
cause the latter is limited to similar sequence searches,
potentially ignoring true annotations in a highly hetero-
geneous database (virus and bacteria). Additionally,
megablast can deal better with divergence mappings and
parallelization, and it is less computationally demanding.
The high-scoring segment pairs (HSP) were obtained for
each contig and the percentage of identity against its ori-
ginal genome was calculated as the ‘contig score’ [31].
This score is calculated by adjusting the percentage of
the contig in the HSP to the percentage of the identities
in the alignment. The percentage of correctly annotated
reads was calculated as the number of reads that
matched the taxonomy of their genome HSP.
Within contigs with correctly assigned taxonomy, the

number of reads that have a matching taxonomy with
that organism was counted. The resulting sum was di-
vided by the total number of reads assembled to obtain
the percentage of reads matching their original genome.
Percentage of reads in the assembly that are correctly

assigned to the organism.
If a contig yielded at least one viral and one bacterial

hit, both with the same contig score, this contig was
counted as a viral-bacterial hit. The sum of all these
reads within the contigs was divided by the total number
of reads in the assembly in order to calculate the per-
centage of reads within a viral-bacterial hit.
Whenever an alignment was formed between the con-

tig and a reference genome and it spanned 100% of its
length whilst identity remained above 95%, that contig
was considered as a whole genome assembly.

Optimal assembly
An optimal assembly, defined as the assembly that best
resembles the original genomes, was obtained for the
viral and viral-bacterial simulated metagenomes. These
were generated based on real genomic data coordinates
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obtained for each read from the output of the MetaSim
software. A Perl script was created to use this informa-
tion, along with the original reference genomes, to gen-
erate a map of coordinates containing the numbers of
the first and last bases of each read with respect to its
original genome. This map was then used by the script
to assemble contigs that fitted the original genomic se-
quences without any artefacts that may have been intro-
duced by the assemblers. All contigs were analysed
following the same pipeline that was used to measure
the quality of the assemblies.

Cluster and correlation analyses of the assembly statistics
The R (2.12.0) package [81] was employed to perform the
correlation analysis of the assembly statistics from the
simulated datasets (Tables 1 and 2). PCA were performed
with the princomp function (scores = TRUE, cor = TRUE).
The correlation matrix was calculated based on the Spear-
man's rho statistic, cor function (method = spearman). The
assembly stats were hierarchically clustered, based on the
euclidean distance from their results, using the hclust
function (method = complete) (Figure 2A). The same
methodology was applied to the analysis of the correla-
tions between statistics and assemblies (Additional file 3:
Figure S2).

Functional analysis of the contigs
In order to standardize functional annotations from the
viral-bacterial metagenome database, protein sequence
files (FAA) located into the NCBI whole genome data-
base (May 2012) were downloaded. All proteins were
compared with a custom concatenated database com-
posed of eggNOG [82], ACLAME [83] and POG [38]
(May 2012). BLASTP [84] was used (e-value < 0.000001;
alignment > 70%) to determine the identity of each pro-
tein sequence, based on the best match against the data-
base (lower e-value and highest percentage of identity).
The coordinates of each open reading frame were re-
trieved from the PTT files (May 2012). The position of
every read in the reference genome was used to deter-
mine its NOG, POG or ACLAME functional classifica-
tion, considering it to be its “real annotation”, provided
that at least a 60% of the read was aligned.
The contigs from the different assemblies were com-

pared with the same custom database using BLASTx
[85]. Due to their augmented length, sequences within
contigs may span several open reading frames, resulting
in several non-overlapping functional assignations taking
the best hit in each region (e-value < 0.000001; align-
ment > 70%) as its function. For each contig, all reads
within the annotated regions inherited the same func-
tional classification determined for that region. Likewise,
the two unassembled metagenomes were analysed using
the same methodology.
In order to compare whether read assembling affects
functional annotation, the functions assigned to assem-
bled reads were compared against the ones reported for
the same set of unassembled reads using different cut off
levels in the overlapping percentage, calculated as the
length of the alignment with the best hit divided by the
total read length (Additional file 4: Figure S3).

Functional analysis in chimeric contigs
The taxonomic information was used to compare the
LCA for each pair of reads that overlap within contigs.
The number of times that each LCA was reported above
the species level was counted, as well as its functional
annotation and the assembler from which the contig
originated.
Because of the high number of chimeric functions, the

boxplot function (plot = FALSE) from the R package was
used to recover all the outlier functions. Only the outlier
functions with abundance > 1% were plotted into the bar
charts (Figure 4B).

Analysis of taxonomic classification methods
A total of 19 genomes were randomly picked from the
viral reference genomes from the NCBI genome data-
base (May 2012) to simulate 200 reads, a query dataset,
with the same parameters used for both metagenome
simulations. The remaining genomes were used to con-
struct three different custom databases for measuring
the performance of the taxonomic assignment methods
when dealing with unknown viral-like particles at spe-
cific taxonomic levels: i) Species-excluded database, in
which all the genomes bearing the same species as the
query dataset were removed. ii) Genera-excluded data-
base, in which sequences with the same genus as query
dataset were removed. iii) Families-excluded level, in
which all genomes with families matching those in the
query dataset were removed. This was carried out in
order to simulate different databases in which no closely
related species, genera or families were present.
Each of the results was compared at the different taxo-

nomic levels that were available in every case (order,
family and genus levels for the Species-excluded data-
base, order and family using the Genera-excluded data-
base, and order with the Families-excluded database).
The taxonomic assignation was carried out using the

following programs:

1) PhymmBL [41] was optimized using the Combine
files boolean option in two separated iterations to
create both joint and separate IMMs. Two different
Blast algorithms (BLASTn and tBLASTx [43]) were
tested to determine the settings that maximized
sensitivity and specificity (Additional file 6: Figure S4).
The IMM models and BLAST database required
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by PhymmBL were constructed using the
"customGenomicData.pl" script provided in the
PhymmBL package using the taxonomic information
obtained from the Galaxy genome server. Cut off
values for confidence scores were set to 0.6, 0.7 and
0.7 for the genus, family and order levels respectively
in order to maximize sensitivity and specificity.

2) K-mers frequency. These frequencies were analysed
according to Trifonov and Rabadan (2010) [42]. The
Oligonucleotide Frequency function, contained in the
Biostrings library [86] of the R package, was used to
obtain the k-mers frequencies for all sequences and
genomes. The resulting frequency matrix was ana-
lysed with the Kldiv function to calculate the differ-
ence between frequencies based on their Kullback–
Leibler distance. Reads were annotated to a genome
if the distance between them was maximized and
its Z value, taken from a gamma distribution [42],
was > 0.05.

3) tBLASTx. The 200 reads were compared with the
control database, taking the best hit as the read
annotation (e-value < 0.001) as seen in [12,16,17].

Specificity and sensitivity
We calculated the number of true positives (TP), true
negatives (TN), false positives (FP) and false negatives
(FN) for each of the classification methods at two taxo-
nomic levels: genus and family. The specificity and sensi-
tivity were determined using the following formulas:

sensivity ¼ TP
TP þ FN

specificity ¼ TN
TN þ FP

Additional files

Additional file 1: Table S1. N Statistics. Table including the N30, N50
and N90 statistics for each assembly using the virus and virus-bacteria
datasets.

Additional file 2: Figure S1. Graphical representation of the
percentage of identity variation. Boxplots contrasting percentages of
contig identities against their original genomes as seen in viral (A) and
viral-bacterial metagenome simulations (B). Outliers are not shown.

Additional file 3: Figure S2. Hierarchical clustering from Spearman
correlation coefficient. Heatmaps representing the parameter correlations
in viral (A) and viral-bacterial assemblies (B). Two main clusters (green/
purple) are shown between assemblies associated with their assembly
statistics. Black squares indicate positive correlations and white squares
negative ones. Ctgs: number of contigs, ChCtgs: percentage of chimeric
contigs, GR: genomes recovered, IM: median of percentage of contig
identity against its original genome, LC: Largest contig, N50, RA: percent-
age of reads assembled, ROG: percentage of reads assembled on their
original genomes, RVB: percentage of reads within a viral-bacterial hit.

Additional file 4: Figure S3. Contig Functional Annotation. Functional
annotation of the assembled reads in the viral-bacterial (A) and viral (B)
metagenomes. Bar charts summarize the number of reads with correct
(blue) and incorrect (red) assignations at different levels of overlapping
cut off values (>10%, >30%, >50% and 100%). Dark colors are used for
unassembled reads and light colors for assembled ones. Boxplots show
the percentage of correct annotations (right side of A and B), considering
all assemblies at four different cut offs for overlapping percentages.
Boxplots per assembly (down) indicate the percentage of the correctly
assembled reads for each assembly at 10 different cut off intervals
(10% to 100%).

Additional file 5: Table S2. Sensitivity and Specificity Statistics. True
positives, false positives, true negatives and false negatives were
calculated based on the results of taxonomic classification trials using the
three custom databases Species-excluded, Genera-excluded and Families-
excluded at the available taxonomic levels. The % Correct Annotation col-
umn was calculated as the sum of the true positives and true negatives.
The % Incorrect Annotations is calculated as the sum of the false posi-
tives and false negatives.

Additional file 6: Figure S4. PhymmBL model and alignment method
comparison. Sensitivity and specificity were compared at the genus (A),
family (B) and order (C) taxonomic levels. Different iterations selected all
available permutations using single models (Sm) or mixed models (Mm)
and alignment using BLASTn (Bn) or tBLASTx (tBx) for the Species-
excluded database.

Additional file 7: Dataset S1. Simulated dataset files. Files with mprf
extension contain the relative abundance data used for simulated
metagenomes. They are the input for the MetaSim program. Files with
msim extension summarize the data after simulations. They are the
output from MetaSim.

Additional file 8: Table S3. Viral-Bacterial genomes frequencies. Table
including the NCBI Accession, Gi, the species and the number of reads
for each of the genomes selected for the viral-bacterial metagenome
simulation.

Additional file 9: Table S4. Viral genomes frequencies. Table including
the NCBI Accession, Gi, the species and the number of reads for each of
the genomes selected for the viral metagenome simulation.
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