

Química Inorgánica Ingeniería Química

Examen parcial

16 de diciembre de 2005

- Contesta a las siguientes cuestiones. Utiliza para ello el espacio proporcionado.
 Si te hiciera falta más espacio utiliza la cara posterior de la hoja.
- Se conciso en las respuestas procurando contestar a lo que se pregunta.
- Ánimo ...!

Pregunta	1	2	3	4	5	6	7	Total
Puntos	20	15	35	20	20	10	20	140
Puntuación								

	Nombre: _
	nombre

1. Contesta a las siguientes cuestiones.

(10) (a) Completa la siguiente tabla con los nombres de los elementos químicos y sus símbolos:

Símbolo	Nombre	Nombre	Símbolo
Tc		Osmio	
Ga		Wolframio	
Ge		Niobio	
TI		Escandio	
Xe		Radón	

(5) (b) Nombra los siguientes compuestos inorgánicos:

Fórmula	Nombre
SF ₄	
UF ₆	
$Ba(HSO_3)_2$	
CaSO ₄	
AI(OH) ₃	

/ C \	/ \	1 1 1.6.									1
(5)	101	Idontition	ai alamanta	$\alpha \sqcup \alpha$	Allmala	$\alpha \alpha \alpha \alpha$	LIDA A	\sim 1 \sim \sim	α	HANTAG	condiciones:
(1))	((,)	ideiliila i		\cdots	CHILLIONE	Caua	una u	- 105	SIGH	11611162	COHORDINES
(-	ιο,			900	000.0		G G. G.	·~~	0.9		00110101011001

١.	Elemento	químico	sintético	perteneciente	a la	a segunda	serie de	transi-
	ción:							

1.				
	١.			

II. Único elemento metálico líquido en condiciones normales de presión y temperatura:

- 11	
11.	

2. Contesta a las siguientes cuestiones:

(10)	(a) Un elemento químico perteneciente al tercer periodo presenta los siguientes
	valores de las sucesivas energías de ionización (kJ/mol): $I_1 = 765$, $I_2 = 1577$,
	$I_3 = 3232$, $I_4 = 4356$, $I_5 = 16090$. Identifica dicho elemento

10	`			
ſα)			

(5) (b) Indica la especie de cada par que tiene un mayor radio atómico:

a)	K –	Ca:								
b)	B –	AI:			 					
\sim	NIh	Ta								

3. Contesta a las siguientes cuestiones:

(a) Considera la especie N₂⁺.

(5)

- Construye el diagrama de OM.
- (5) II. Escribe su configuración electrónica, determina el orden de enlace e indica si esta especie es paramagnética o diamagnética.

(10) (10)	 (b) Considera la molécula XeF₂. I. Dibuja su estructura electrónica de Lewis. II. Indica el número de pares de electrones solitarios del átomo central. ¿Cuál es la geometría de la mol 	=
(5)	ш. ¿Se trata de una molécula polar o apolar?	II
(10)	 4. Contesta a las siguientes cuestiones: (a) Explica, apoyándote en la estructura de bandas, la conconductor extrínseco de tipo p. 	ductividad de un semi-

(10) (b) ¿En qué difieren los empaquetamientos cúbico y hexagonal de máxima densidad?

5. Contesta a las siguientes cuestiones:

cálculo de la energía reticular.

(10)	(a) Para un sólido iónico indica si las afirmaciones siguientes son verdaderas of falsas:
	 Es un conductor eléctrico en estado sólido.
	l
	II. Es un conductor eléctrico en estado fundido.
	II
	III. Es un conductor eléctrico en estado gaseoso.
	III
	IV. Presenta enlaces de naturaleza electrostática.
	IV
	v. Los enlaces son fuertemente direccionales.
	V
	VI. Se disuelve fácilmente en disolventes polares.
	VI
	VII. Es un material duro.
	VII
	VIII. Es fácilmente maleable.
	VIII
	IX. Presenta un punto de fusión bajo (< 100 °C).
	IX
	 Se forma preferentemente entre elementos de parecida electronegativi dad.
	X
(10)	(b) A la vista de los valores de densidad de carga (en C·mm ⁻³) de los cationes Ag ⁺ (15), Ag ⁺² (60) y Ag ⁺³ (163), ¿cuál crees que tiene más posibilidad de formar compuestos iónicos? Justifica la respuesta.
	(b)
(10)	Construye el ciclo de Born-Haber para la formación del sulfuro de magnesio. No
(10)	hagas ningún cálculo. Indica el significado de cada magnitud involucrada en e

7.	Contesta	a las	siguientes	cuestiones
----	----------	-------	------------	------------

(10)	(a)	¿Por que el fino ₃ es un acido mas luerte que el fino ₂ ?				

(10) (b) Indica el carácter acido/base de los siguientes óxidos:

Óxido	Carácter
BeO	
Al_2O_3	
Na ₂ O	
N_2O_5	