Basic Exercises about Mathematica

1. Calculate $\sqrt{5}$ with four decimal places.
```
N [\sqrt{}{5}
\sqrt{5.}{}
```

2.23607
2.23607

- We can evaluate a cell by placing the cursor on it and pressing Shift+Enter (or Enter on the numeric key pad).
- If we want to calculate $\sqrt{5}$ and we type just " $\sqrt{5}$ ", Mathematica gives the exact value of $\sqrt{5}$, which is $\sqrt{5}$.

$\sqrt{5}$

$\sqrt{5}$

- To get a numerical value of $\sqrt{5}$, we type $\mathrm{N}[\sqrt{5}]$. The $\mathrm{N}[\ldots]$ command tells Mathematica to evaluate the quantity in brackets numerically. $\mathrm{N}[\ldots, \mathrm{n}]$ displays n digits.

$$
N[\sqrt{5}, 10]
$$

2.236067977

- Square brackets [...] are used for enclosing arguments in commands or functions. Parenthesis (...) are used for grouping and braces $\{\ldots\}$ are used to enclose components of arrays and elements of sets (in general to make a list).
- Palettes allow you to easily insert mathematical notation. For example, to write the cube root of 34, you could click on $\sqrt[5]{\square}$ and type 34 and 3 inside the squares (clicking on them).
- Whenever you give a number with an explicit decimal point, Mathematica produces an approximate numerical result.

2. Evaluate the following cell and write the expression providing the third component of the array v :

$$
\mathrm{v}=\{2.3478,4.4449,5.7902,7.1126,9.8855\} ;
$$

```
v[[3]]
```


5.7902

- A semi-colon (;) at the end of a line will suppress the output. Mathematica does the computation but does not print it to the screen.

```
v = {2.3478, 4.4449, 5.7902, 7.1126, 9.8855} (*without semi-colon*)
{2.3478,4.4449,5.7902,7.1126, 9.8855}
```

- In order to make reference to a component of an array, use double square brackets.

3. Solve the equation $t \ln (t)-3 t+10=6$.
```
Solve[t Log[t] - 3t+10== 6, t]
Solve[t Log[t] - 3tt+10== 6.,t t]
N[Solve[t Log[t] - 3t + 10== 6,t]]
```

Solve::ifun: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution information. >

$$
\left\{\left\{t \rightarrow-\frac{4}{\operatorname{ProductLog}\left[-\frac{4}{\mathfrak{e}^{3}}\right]}\right\},\left\{t \rightarrow-\frac{4}{\operatorname{ProductLog}\left[-1,-\frac{4}{\mathfrak{e}^{3}}\right]}\right\}\right\}
$$

Solve::ifun : Inverse functions are being used by Solve, so some
solutions may not be found; use Reduce for complete solution information. >>

$$
\{\{t \rightarrow 1.56883\},\{t \rightarrow 15.5229\}\}
$$

Solve::ifun: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution information. >>

$$
\{\{t \rightarrow 15.5229\},\{t \rightarrow 1.56883\}\}
$$

- The command Solve[...] is used to solve equations or systems of equations. The first letter of a command is always a capital letter.
- We enter $\ln (t)$ as $\log [t]$.
- We use $==$ to define equations. The symbol $=$ defines assignations.
- Mathematica gives the solution as a set of rules (we will speak later about rules).
- Remember that when any number in an arithmetic expression is given with an explicit decimal point, you get an approximate numerical result for the whole expression.

4. Plot the function $t \ln (t)-3 t+10$ on the interval $[0,30]$ and verify that it takes the value 6 exactly twice.
```
Plot[t Log[t] - 3t + 10, {t, 0, 30}]
```


$\operatorname{Plot}[\{6, t \log [t]-3 t+10\},\{t, 0,30\}]$

5. Add options to the previous plot to force the range to be $[0,30]$. What is the effect of adding the option AspectRatio->Automatic?

```
Plot[t Log[t] - 3t + 10, {t, 0, 30}, PlotRange }->{0,30}
Plot[t Log[t] - 3t + 10, {t, 0, 30}, PlotRange }->{0,30}, AspectRatio -> Automatic
```


- The operation of many Mathematica commands can be influenced by a variety of options of the form "option name->special option setting".
- AspectRatio is an option for Plot and other graphic functions. If AspectRatio is set to a number it specifies the height to width ratio of the resulting graphic. If the AspectRatio is set to Automatic, Mathematica sets the width and height so that objects will not be distorted (we can use it, for example, if we want to draw a circle which looks like a circle).

6. Solve the system of equations:

$$
\begin{gathered}
x^{2}-3 y^{2}=10 \\
\frac{x}{y}-\frac{3}{y}=1 \\
x+y+\ln (z)=7
\end{gathered}
$$

```
Solve[{x^2 - 3 y^ 2 == 10, x/y-3/y == 1, x + y + Log[z] == 7}, {x, y, z}]
Solve[{x^2-3 y^2 == 10, x/y-3/y == 1, x + y + Log[z] == 7.},{x,y,z}]
```

$$
\begin{aligned}
& \left\{\left\{x \rightarrow \frac{1}{2}(9-\sqrt{7}), y \rightarrow \frac{1}{2}(3-\sqrt{7}), z \rightarrow e^{1+\sqrt{7}}\right\},\right. \\
& \left.\left\{x \rightarrow \frac{1}{2}(9+\sqrt{7}), y \rightarrow \frac{1}{2}(3+\sqrt{7}), z \rightarrow e^{1-\sqrt{7}}\right\}\right\}
\end{aligned}
$$

$$
\{\{x \rightarrow 3.17712, y \rightarrow 0.177124, z \rightarrow 38.3115\},\{x \rightarrow 5.82288, y \rightarrow 2.82288, z \rightarrow 0.192868\}\}
$$

7. Define the functions $f(x)=\frac{x^{3}}{x^{4}+1}, g(x, y)=\sqrt{25-x^{2}-y^{2}}$ and $h(x, y)=(x+2 y$, xy $)$. Calculate $f(5), g(1,2)$ and $h(f(3), 2)$.
```
f=Function[x,}\frac{\mp@subsup{x}{}{3}}{\mp@subsup{x}{}{4}+1}]
g= Function[{x,y}, \sqrt{}{25-\mp@subsup{x}{}{2}-\mp@subsup{y}{}{2}}];
h = Function[{x, y}, {x+2 y, x y } ; 
f[5.]
g[1, 2.]
h[f[3], 2.]
```

0.199681
4.47214
$\{4.32927,0.658537\}$
8. Plot $f(x)$ on the interval $[-5,5]$.

```
Plot[f[x], {x, - 5, 5}]
```


9. Plot in the same graph $f(x)$ and $f^{\prime}(x)$.

```
Plot[{f[x], f'[x]}, {x, -5, 5}]
```


- To obtain $f^{\prime}(x)$ simply type $\mathrm{f}^{\prime}[\mathrm{x}]$.

10. Solve the equation $f^{\prime}(x)=0$. Relate the result with both functions of the previous plot.
```
Solve[f'[x] == 0, x]
Solve[f'[x] == 0., x]
Solve[f'[x] == 0., x, Reals]
```

$\left\{\{x \rightarrow 0\},\{x \rightarrow 0\},\left\{x \rightarrow-3^{1 / 4}\right\},\left\{x \rightarrow-\right.\right.$ i $\left.3^{1 / 4}\right\},\left\{x \rightarrow\right.$ i $\left.\left.3^{1 / 4}\right\},\left\{x \rightarrow 3^{1 / 4}\right\}\right\}$
Solve::ratnz: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding exact system and numericizing the result. >>

$$
\begin{aligned}
& \{\{x \rightarrow-1.31607\},\{x \rightarrow 0 .\},\{x \rightarrow 0 .\}, \\
& \{x \rightarrow 0 .-1.31607 \dot{i}\},\{x \rightarrow 0 .+1.31607 \dot{i}\},\{x \rightarrow 1.31607\}\}
\end{aligned}
$$

Solve::ratnz : Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding exact system and numericizing the result. >>

$$
\{\{x \rightarrow-1.31607\},\{x \rightarrow 0 .\},\{x \rightarrow 1.31607\}\}
$$

11. Plot the function $g(x, y)$ of Exercise 7 for $-5 \leq x \leq 5$ and $-5 \leq y \leq 5$.
```
Plot3D[g[x, y], {x, - 5, 5}, {y, - 5, 5}]
```


12. Generate a list of the squares of the numbers from 1 to 10 .

```
Table[n^2, {n, 1, 10}]
```

$\{1,4,9,16,25,36,49,64,81,100\}$

- The Table command can be used to generate a list of numbers using a predefined mathematical expression. It defines an array of objects satisfying a given condition.
- The loop variable does not have to be an integer. A list of evenly spaced numbers in the interval between 0 and 1 can be generated by:

```
Table[x, {x, 0, 1, 0.1}]
```

```
{0.,0.1, 0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.}
```

Hence the iterator $\{x, 0,1,0.1\}$ indicates that the lower limit on the variable x is 0 , the upper limit is 1 , and the interval between successive values of x is 0.1 .
13. Generate a list of pairs $\{n, \sqrt{n}\}$ for n between 1 and 20. Plot the pairs you have obtained.

```
Table[{n, N[\sqrt{}{n}}]},{n,1,20}
ListPlot[%]
```

```
{1, 1.}, {2, 1.41421}, {3, 1.73205}, {4, 2.}, {5, 2.23607},
    {6,2.44949}, {7, 2.64575}, {8, 2.82843}, {9, 3.}, {10, 3.16228},
    {11, 3.31662}, {12, 3.4641}, {13, 3.60555}, {14, 3.74166}, {15, 3.87298},
    {16,4.},{17,4.12311},{18,4.24264}, {19,4.3589}, {20,4.47214}}
```


- In this example, the expression used to construct the list $(\{n, \sqrt{n}\})$ is itself a list.
- We can plot a graph of these points with the command ListPlot. The modifier Joined -> True tells Mathematica to connect the points with lines.

ListPlot $[$ Table $[\{n, \sqrt{n}\},\{n, 1,20\}]$, Joined \rightarrow True $]$

- The symbol \% is used to refer to the last output given by Mathematica.
- ListPlot $\left[\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}\right]$ plots points corresponding to a list of values, assumed to correspond to x coordinates $1,2, \ldots$. That is, it is equivalent to $\operatorname{ListPlot}\left[\left\{\left\{1, y_{1}\right\},\left\{2, y_{2}\right\}, \ldots,\left\{\mathrm{n}, y_{n}\right\}\right\}\right]$. We can set the range of the variable x by using DataRange- $>\{a, b\}$.

ListPlot [\{2, 2.5, 3, 3.5, 3, 2.5, 2\}]
ListPlot $[\{2,2.5,3,3.5,3,2.5,2\}, \operatorname{DataRange~->~}\{0,6\}]$

14. Plot the list of pairs $(\sin (n), \sin (2 n))$ for n between 0 and 100. Compare with the curve $(\sin (t), \sin (2 t))$ for t varying in the interval $[0,7]$.

```
ListPlot[Table[{Sin[i], Sin[2 i]}, {i, 0, 100}], AspectRatio }->\mathrm{ Automatic]
ParametricPlot[{Sin[i], Sin[2 i]}, {i, 0, 7}, AspectRatio -> Automatic]
```


- Notice that if a command consists of several words, the first letter of each word comprising the command is a capital letter (ListPlot[...], ParametricPlot[...], AspectRatio->, DataRange->, etc.)

15. Solve the differential equation:

$$
\frac{d S}{d t}=0.03148 S, \quad(\text { satisfying } S(0)=46612)
$$

DSolve $\left[\left\{S^{\prime}[t]==0.03148 \mathrm{~S}[t], S[0]==46612\right\}, S, t\right]$
$\left\{\left\{S \rightarrow\right.\right.$ Function $\left.\left.\left[\{t\}, 46612 \cdot \mathbb{e}^{0.03148 t}\right]\right\}\right\}$

$$
\mathbf{F}=\mathbf{S} / . \%[[1]]
$$

```
Function[{t},46612. e}\mp@subsup{e}{}{0.03148t}
```

- In order to solve differential equations, we use the command DSolve.
- Remember that you need to use $==$ to define equations. If you type $=$ instead, Mathematica will produce an error warning message and even if you type $==$ to fix the mistake, Mathematica will show another error message. You can sort it out by evaluating Remove[S]. In general, when you get funny error messages, you can try with Clear["Global*"] or Remove["Global*"] to clear all variables. Sometimes it is also useful to close Mathematica and open it again.
- $S \rightarrow$ Function $\left[\{t\}, 46612 . e^{0.03148 t}\right]$ is a "rule" that can be applied to S by using the command /. and its effect is the replacement of S (the left hand side) by Function $\left[\{t\}, 46612 \cdot e^{0.03148 t}\right]$ (the right hand side).
- The solution is given as an array of solutions. In this case, we have a single solution, which in turn is an array comprising a single function expressed as a rule. We refer to this solution by using \%[[1]].
- Now F is the solution function and we can evaluate it, plot it, etc:

F[2]

49641 .

```
Plot[F[t], {t, 0, 4}]
```


- Once you get the solution, you can also use the option "get solution" that Mathematica gives you in the suggestion bar:

```
DSolve [\{S'[t] = = 0.03148 S[t], \(S[0]==46612\}, S, t]\)
\(\left\{\left\{\mathrm{S} \rightarrow\right.\right.\) Function \(\left.\left.\left[\{\mathrm{t}\}, 46612 \cdot \mathbb{e}^{0.03148 \mathrm{t}}\right]\right\}\right\}\)
\(\left\{\left\{S \rightarrow\right.\right.\) Function \(\left.\left.\left[\{t\}, 46612 \cdot e^{0.03148 t}\right]\right\}\right\} \llbracket 1,1,2 \rrbracket\)
(*This is written by Mathematica when you click on "get solution"*)
```

```
Function[{t},46612. e 0.03148t]
```

```
F=%;
F
```

Function $\left[\{t\}, 46612 \cdot e^{0.03148 t}\right]$
16. Solve the logistic differential equation for an initial value x_{0} and plot the solution for $r=1.2$ and $x_{0}=0.3$.

$$
\frac{d x}{d t}=r x(1-x)
$$

```
DSolve[{x'[t] == r x[t] (1-x[t]), x[0] == x0}, x,t]
x = x / . %[[1]];
x [t]
x0 = 0.3; r = 1.2;
Plot[x[t], {t, 0, 10}]
```

Solve::ifun: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution information. >>

$$
\left\{\left\{x \rightarrow \text { Function }\left[\{t\}, \frac{e^{r t} x 0}{1-x 0+e^{r t} x 0}\right]\right\}\right\}
$$

$$
\frac{e^{r t} x 0}{1-x 0+e^{r t} x 0}
$$

