Exercise 3 (unit 2):

3. Calculate the fixed points of the functions $f(x)=(1+a) x-b x^{2}$ and $g(x)=\frac{(1+a) x}{1+b x}$ and apply the convergence criterion. Relate your conclusions to the results obtained in Exercise 7 of Unit 1 (for simplicity, consider only the case $a, b>0$).
```
Remove["Global`*"]
```

```
f = Function [x, (1 + a) x - b x^ \ 2];
Solve [f[x] == x, x]
f'[x]
```

$\left\{\{x \rightarrow 0\},\left\{x \rightarrow \frac{a}{b}\right\}\right\}$

```
1+a-2bx
```

We see that there are two fixed points, $x^{*}=0$ and $x^{\star}=\frac{a}{b}$.

```
f'[0]
1+a
```

The first one is always a repellor, since $f^{\prime}(0)=1+a>1$.

```
f'[a/b]
1-a
```

Moreover, $\frac{a}{b}$ is an attractor for the function f when $0<a<2$ (and the convergence is monotone when $0<a<1$). That is easily checked by hand, but we can also use Mathematica:

```
Reduce[Abs[1-a]< 1, a, Reals]
Reduce[0<1-a<1, a, Reals]
0<a<2
```

```
0<a<1
```

Now let' s study the case $a=2$.

```
a = 2;
b = 4;
Plot[{Nest[f, x, 10], Nest[f, x, 11], Nest[f, x, 12], Nest[f, x, 13]},
    {x, 0, 1}, PlotRange }->{-1,1}
```



```
a = 2;
b = 3;
Plot[{Nest[f, x, 10], Nest[f, x, 11], Nest[f, x, 12], Nest[f, x, 13]},
    {x, 0, 1}, PlotRange }->{-1,1}
```


It is an attractor and the convergence is oscillating. Now let' s study the case $a=1$:

```
a = 1;
b = 4;
Plot[{Nest[f, x, 2], Nest[f, x, 3], Nest[f, x, 4], Nest[f, x, 5]},
    {x, 0, 1}, PlotRange }->{-0.5,0.5}
```


The convergence is monotone.
Let's study the function g.

```
Remove["Global`*"]
```

```
g= Function [x,}\frac{(1+a)x}{1+bx}]
Solve[g[x]== x, x]
Simplify[g'[x]]
```

$\left\{\{x \rightarrow 0\},\left\{x \rightarrow \frac{\mathrm{a}}{\mathrm{b}}\right\}\right\}$

$$
\frac{1+a}{(1+b x)^{2}}
$$

The function g has the same two fixed points, $x^{*}=0$ and $x^{*}=\frac{a}{b}$.

```
g '[0]
1+a
```


Simplify[g'[a/b]]

$$
\frac{1}{1+a}
$$

So $x^{*}=0$ is always a repellor (since $g^{\prime}(0)=1+a>1$) and $x^{*}=\frac{a}{b}$ is always an attractor with monotone convergence (since $0<g^{\prime}\left(\frac{a}{b}\right)=\frac{1}{1+a}<1$).

