Let us consider a model of demand and supply with stocks. Let Q_{t} be the level of stocks at the end of period t , so

$$
Q_{t}-Q_{t-1}=q_{t}^{s}-q_{t}^{d}
$$

Interpret the above equation.
Q_{t} donotes the level of stocks at the end of period t and Q_{t-1} is the level of stocks at the end of period $t-1$, so $Q_{t}-Q_{t-1}$ represents the change in stocks over period t, which is equal to the differece between supply and demand over period t. In other words, $Q_{t}=Q_{t-1}+\left(q_{t}^{s}-q_{t}^{d}\right)$, that is, the level of stoks at the end of period t will be equal to the level of stocks at the end of period $t-1$ plus the excess supply over period t (if $q_{t}^{S}>q_{t}^{d}$) or minus the excess demand over period t (if $q_{t}^{d}>q_{t}^{s}$).

We consider lineal functions of demand and supply:

$$
\begin{gathered}
q_{t}^{s}=u+a p_{t-1} \\
q_{t}^{d}=v-b p_{t}
\end{gathered}
$$

Notice that the supply provided by producers for the year t is that corresponding to the price of the previous year.
We assume that suppliers alter prices in response to stock changes according to the equation:

$$
p_{t+1}=p_{t}-\lambda\left(Q_{t}-Q_{t-1}\right), \quad \lambda>0
$$

Discuss the economic meaning of this equation.
This equation explains how suppliers alter prices in response to stock changes. They will raise the prise in period $t+1$ if the level of stocks at the end of period t is lower than the level of stocks at the end of period $t-1$ and they will lower the price if the level of stocks at the end of period t is greater than the level of stocks at the end of period $t-1$. The rise or fall in price is set proportional to the change in the level of stocks.

Check that these assumptions lead to the following second-order difference equation:

$$
p_{t+1}=(1-\lambda b) p_{t}-\lambda a p_{t-1}+\lambda(v-u)
$$

$$
p_{t+1}=p_{t}-\lambda\left(Q_{t}-Q_{t-1}\right)=p_{t}-\lambda\left(q_{t}^{s}-q_{t}^{d}\right)=p_{t}-\lambda\left(u+a p_{t-1}-v+b p_{t}\right)=(1-\lambda b) p_{t}-\lambda a p_{t-1}+\lambda(v-u)
$$

Calculate the equilibrium price and check that it is the limit of the convergent orbits.

$$
u+a p=v-b p \longleftrightarrow a p+b p=v-u \longleftrightarrow p(a+b)=v-u \longleftrightarrow p=\frac{v-u}{a+b}
$$

On the other hand, for a general linear second-order difference equation of the form $x_{t+1}=A x_{t}+B x_{t-1}+C$, we know that the limit of the convergent orbits is $\frac{-C}{A+B-1}$. In this case:
$A=1-\lambda b \quad B=-\lambda a \quad C=\lambda(v-u)$ so the limit is

$$
\frac{-\lambda(v-u)}{1-\lambda b-\lambda a-1}=\frac{-\lambda(v-u)}{1-\lambda(b+a)-1}=\frac{-\lambda(v-u)}{-\lambda(b+a)}=\frac{v-u}{b+a}
$$

From now on consider the following specific functions:

$$
\begin{gathered}
q_{t}^{s}=2+4 p_{t} \\
q_{t}^{d}=20-2.5 p_{t}
\end{gathered}
$$

Determine for which values of λ the price policy leads to the equilibrium price.
We apply the stability conditions $(A+B<1 \quad B-A<1 \quad B>-1)$ taking into account that now $a=4$ and $b=2.5$.

$$
1-2.5 \lambda-4 \lambda=1-\lambda(6.5)<1 \text { This condition is always satisfied since } \lambda>0 \text {. }
$$

$$
-4 \lambda-1+2.5 \lambda=\lambda(-1.5)-1<1 \longleftrightarrow \lambda(-1.5)<2 \quad \text { This conditions is always satisfied }
$$

$$
-4 \lambda>-1 \longleftrightarrow 4 \lambda<1 \longleftrightarrow \lambda<\frac{1}{4}
$$

All in all, the price orbits will be convergent when $\lambda<\frac{1}{4}$.
Set $\lambda=0.2$. Write the characteristic equation for this particular case and find its roots.

```
a=4;b=2.5;u=2;v=20; \lambda=0.2;
x^2-(1-\lambdab) x + \lambdaa
Solve[x^2 - (1-\lambdab) x + \lambdaa== 0, x]
```

$0.8-0.5 x+x^{2}$

```
{{x->0.25-0.858778 í },{x}->0.25+0.858778 í } 
```

So the characteristic equation in this case is $x^{2}-0.5 x+0.8=0$ and its roots are
$0.25-0.858778$ i and $0.25+0.858778$ i (complex conjugate numbers). We plot the orbit of the price for initial prices $p_{0}=2$ and $p_{1}=2.8$.

```
RSolve[{p[t+1] == (1-\lambdab) p[t] - \lambdaap[t-1] + \lambda(v - u), p[0] == 2,p[1] == 2. 8}, p,t];
pp = p /. %[[1]];
FullSimplify[pp[t]]
ListPlot[Table[Re[pp[i]], {i, 0, 30}],
    DataRange }->{0,30},\mathrm{ Joined }->\mathrm{ True, PlotRange }->{2,4}
(v-u) / (a + b)
```

```
(2.76923+1.23924\times10-16 i})-(0.384615-0.12988 í) (0.25-0.858778 í )t -
    (0.384615 + 0.12988 i) (0.25+0.858778 i) (t
```


2.76923

Since $\lambda=0.2<1 / 4$, we knew that the orbit would converge to the equilibrium price, which is equal to 2.769 in this case.

Now plot the orbit of the price for $\lambda=3.32$ and the same initial values. Would this price policy be possible in practice in the long run?

```
a=4;b=2.5;u=2;v=20; \lambda=3.32;
(v-u)/(a+b)
RSolve[{p[t+1] == (1-\lambdab) p[t] - \lambdaap[t-1] + \lambda(v-u),p[0] == 2,p[1] == 2.8},p,t];
pp = p/.%[[1]];
FullSimplify[pp[t]]
x^2-(1-\lambdab) x + \lambdaa
Solve[x^2 - (1-\lambdab) x + \lambdaa== 0, x]
ListPlot[Table[Re[pp[i]], {i, 0, 8}], DataRange }->{0,8}, Joined -> True]
```

2.76923
$2.76923+6.35041(-3.85616)^{t}-7.11964(-3.44384)^{t}$
$13.28+7.3 x+x^{2}$
$\{\{x \rightarrow-3.85616\},\{x \rightarrow-3.44384\}\}$

This price policy would not be possible, since we see in the figure that prices would become negative.
Determine for which values of λ the roots of the characteristic equation are real and the orbits of the price are convergent. Choose a specific value for λ among them and plot the orbit of the price for the initial values given in 2.7.

We know that the orbits are convergent when $\lambda<1 / 4=0.25$. Moreover, the roots of the characteristic equation will be real when the discriminant of the characteristic equation $\left(A^{2}+4 B\right)$ is positive or 0 .

Reduce $\left[(1-x b)^{\wedge} 2-4 \times a>=0, x\right]$
Reduce::ratnz:
Reduce was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding exact system and numericizing the result. >>
$\mathrm{x} \leq 0.0483138| | x \geq 3.31169$

So λ should be less than (or equal to) 0.048 . We choose, for example, $\lambda=0.04$.

```
a=4;b=2.5;u=2;v=20; \lambda=0.04;
(v-u)/(a+b)
RSolve[{p[t+1] == (1-\lambdab) p[t] - \lambdaap[t-1] + \lambda(v-u), p[0] == 2,p[1] == 2.8},p,t];
pp = p /. %[[1]];
FullSimplify[pp[t]]
x^2-(1-\lambdab) x + \lambdaa
Solve[x^2 - (1-\lambdab) x + \lambdaa== 0, x]
ListPlot[Table[Re[pp[i]], {i, 0, 10}],
    DataRange }->{0,10}\mathrm{ , Joined }->\mathrm{ True, PlotRange }->{1,4}
```

2.76923
$2.76923-1.29879 \times 0.243845^{t}+0.529557 \times 0.656155^{t}$
$0.16-0.9 x+x^{2}$
$\{\{x \rightarrow 0.243845\},\{x \rightarrow 0.656155\}\}$

We see that the orbit is convergent and the roots of the characteristic equation are real.

