Lactococcus garvieae is a serious fish pathogen responsible for lactococcosis, a bacterial disease that produces hyperacute and hemorrhagic septicemia in various cultured fish species the world over (17). First isolated in 1983 as a mastitis agent in bovines (5), this bacterium has also been isolated from a wide variety of dairy environmental and animal samples (1, 6, 11, 12, 15, 18). Additionally, L. garvieae has recently been associated with an increasing number of human infections, such as endocarditis (7–9, 13, 19–23), septicemia (20), liver abscess (14), secondary peritonitis (20), spondylodiscitis (4, 10), and diverticulitis (20). Thus, this ubiquitous bacterium is considered at present as a potential zoonotic agent with an increasing relevance in both veterinary and human medicine. Despite the importance of L. garvieae as a bacterial pathogen, little is known about its precise virulence mechanisms.

In the present study, we report the genome sequence of L. garvieae strain UNIUD074, isolated in Italy from a lactococcosis outbreak in rainbow trout. Total genomic DNA was extracted from a cultured bacterial strain (brain heart infusion broth at 28°C; Difco) according to the user manual of the UltraClean Mega soil DNA kit (MO-BIO Laboratories, Inc.). Genomic DNA was subsequently sequenced through a whole-genome shotgun strategy using Roche 454 GS-FLX Titanium pyrosequencing. As a result, 395,244 single-end reads and 3,9811 paired-end reads (3-kb fragments) were obtained (totaling ~160 Mb; ~70-fold coverage of the genome). Quality-filtered reads were assembled using the 454 Newbler v2.3 (454 Life Sciences) and the Celera v6.1 (SourceForge) software assemblers into 25 large contigs (>1,000 bp). Screening for rRNAs and tRNAs, as well as prediction and annotation of protein-coding sequences (CDSs), were carried out through the RAST (rapid annotation using subsystem technology) server (2). Identification of insertion sequences (IS) and tandem repeat regions was carried out using IS finder (http://www.is.biotoul.fr) (16) and IR finder (3), respectively. The draft genome of L. garvieae UNIUD074 includes 2,171,966 bp and contains 2,101 CDSs, with a G + C content of 38.7%. There are at least nine rRNA operons constituted by single-copy genes predicted for 5S, 16S, and 23S rRNAs, at least six pseudotRNAs, and at least 60 tRNAs covering all amino acids except for serine. In addition, nine IS and 215 tandem repeat regions were identified. An estimated 78.15% of the CDSs were predicted to encode proteins with a known function in other bacterial species. A comparison was made between both Lactococcus lactis IL1403 and L. garvieae UNIUD074 genome sequences, concluding that 18.6% of all the protein-coding genes are specific to the L. garvieae genome. The majority (61.8%) of these specific CDSs were annotated as hypothetical proteins. We hope that the whole-genome sequencing of L. garvieae strain UNIUD074 will allow scientists to gain insights into the molecular basis of the virulence mechanisms of this important bacterial pathogen.

Nucleotide sequence accession numbers. This whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number AFHF0000000. The version described in this paper is the first version, AFHF01000000.

This work was supported by the project AGL2009-07003 from the Ministry of Science and Innovation of Spain (MICINN). P.R. was the recipient of a predoctoral fellowship from the MICINN. We thank L. Gusmani from the University of Udine for donating the L. garvieae UNIUD074 strain and X. S. Puente for his research advice.

P.R. expresses her heartfelt gratitude to all the people at the Department of Health and Genomics, Center for Advanced Research in Public Health, Valencia, Spain, for sharing their knowledge and experience and for making her stay in the city so pleasurable. Additionally, she is heartily grateful to the people at the Microbiology Area, Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain, where she has the pleasure to work with Jessica Méndez, David Pérez-Pascual, Roberto Navais, Esther Gómez, and Desirée Cascales.

*Corresponding author. Mailing address: Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, IUBA, Universidad de Oviedo, 33006 Oviedo, Spain. Phone: 34985104218. Fax: 34985103148. E-mail: reimundomaria@uniovi.es.

1 Published ahead of print on 20 May 2011.
REFERENCES

