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Abstract. One of the main problems in representation theory is to understand
the exact relationship between Brauer corresponding blocks of finite groups. The
case where the local correspondent has a unique simple module seems key. We
characterize this situation for the principal p-blocks where p is odd.

1. Introduction

Let G be a finite group, let p be a prime, and let F be an algebraically closed field
of characteristic p. The blocks of G are the indecomposable two-sided ideals of the
group algebra FG. Richard Brauer associated to each block B of G a p-subgroup D
of G, up to conjugation, and a block b of the local subgroup NG(D), which is called
the Brauer first main correspondent of B. What is the exact relationship between
these two algebras, and what invariants they share is one of the main problems in
representation theory of finite groups. Our major interest is in the invariants k(B),
k0(B) and l(B) (which are the number of complex irreducible characters in B, those
of them which have height zero, and the number of simple modules in B over F,
respectively) and their relation with k(b), k0(b) and l(b). For instance, k0(B) = k0(b)
is the Alperin-McKay conjecture, and l(B) ≥ l(b) would be a consequence of the
Alperin weight conjecture.

In this paper, we wish to understand how the local condition l(b) = 1 affects B, and
the other way around. Already the key case where B and b are the principal blocks
(the blocks containing the trivial representation of the group) is hard to handle. This
is our main result.
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Theorem A. Let G be a finite group, let p be an odd prime, and let P ∈ Sylp(G).
Let B be the principal block of G, and let b be the principal block of NG(P ). Then
B contains no non-trivial p-rational height zero irreducible character if and only if
l(b) = 1.

As we will point out in Conjecture 6.4 below, we have an ad hoc statement for the
prime p = 2, but to prove it seems presently out of reach. As it seems also out of
reach to prove the following.

Conjecture B. Let G be a finite group, let p be an odd prime, let B be a p-block of
G and let b be the Brauer first main correspondent of B. If B contains exactly one
p-rational height zero irreducible character, then l(b) = 1.

Outside principal blocks, the converse of Conjecture B is not true, even in blocks
with normal maximal defect. For instance, the SmallGroup(72,22) in [GAP] is a
counterexample for p = 3.

There is a related characterization of when l(b) = 1 for p-solvable groups. If χ is
an ordinary character of G, then χ0 is the Brauer character obtained by restricting
χ to the p-regular elements of G.

Theorem C. Suppose that G is p-solvable, with p odd. Let B be a p-block with defect
group P and let b be its Brauer first main correspondent. Then l(b) = 1 if and only if
there is exactly one p-rational χ ∈ Irr(B) of height zero and such that χ0 ∈ IBr(B).

Unfortunately, the “only if” direction of Theorem C is false outside p-solvable
groups. Let G = A6, p = 3 and B the principal block of G. Then B contains
a unique p-rational p′-degree irreducible character that lifts an irreducible Brauer
character while l(b) = 4. In this case, the defect groups of B are abelian. The same
situation happens in PSL2(p) when p ≥ 5. In this case, l(b) = (p − 1)/2 and the
defect groups of B are cyclic. It is interesting to speculate to what extent the “only
if” direction holds.

For a character theorist it is always pleasant to find new properties of a finite group
which can be read off from its character table. By a result of R. Brauer, the principal
block of a group has a unique irreducible Brauer character if and only if it has a
normal p-complement (see Corollary 6.13 of [N1]). Hence Theorem A is equivalent
to the following.

Theorem D. Let G be a finite group, let p odd, and let P ∈ Sylp(G). Then NG(P )
has a normal p-complement if and only if there are no non-trivial p-rational p′-degree
complex irreducible characters in the principal block of G.
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In general, it is not easy to produce p-rational irreducible characters. Even with
the strong hypotheses that θ ∈ Irr(N) is a p-rational character of p′-degree in the
principal block of N / G, G/N is cyclic of p′-order and θ extends to G, then it is not
necessarily true that θ has a p-rational extension to G. Our way to produce p-rational
characters is indirect, by using some results which we believe are of independent
interest. The first of these is a relative to normal subgroups version of the Glauberman
correspondence.

If P is a group acting by automorphisms on G, then IrrP (G) is the set of P -invariant
irreducible characters of G. In Theorem E below, the Glauberman correspondence is
obtained when N = 1. If χ is a character, then we denote by Q(χ) the smallest field
containing the values of χ.

Theorem E. Suppose that a p-group P acts as automorphisms on a finite group G.
Let N / G be P -invariant such that G/N is a p′-group. Let C/N = CG/N(P ). Then
there exists a natural bijection ∗ : IrrP (G)→ IrrP (C). In fact, if χ ∈ IrrP (G), then

χC = eχ∗ + p∆ + Ξ ,

where ∆ and Ξ are characters of C or zero, p does not divide e, and no irreducible
constituent of Ξ lies over some P -invariant character of N . In fact, e ≡ ±1 mod p.
In particular, Q(χ) = Q(χ∗). Also, if χ has p′-degree, then χ lies in the principal
block of G if and only if χ∗ lies in the principal block of C.

Several particular cases of Theorem E have appeared previously in the literature
(see, for instance, Theorem 5.1 of [IN]).

We will also need a result on extension of characters that generalizes results of
Alperin and Dade (see [A] and [D]).

Theorem F. Suppose that N / G. Let θ ∈ Irr(N) be p-rational, G-invariant of
p′-degree in the principal block of N , where p is odd. Let Q ∈ Sylp(N), and assume
that |G : NCG(Q)| is a p-power. Then θ uniquely determines a character χ ∈ Irr(G)
in the principal block of G such that χ is p-rational and χN = θ.

Under the hypotheses of Theorem F, it is false that θ has a unique p-rational
extension in the principal block of G. For instance, take p = 3, G = C3×S3, N = C3,
and θ the principal character of N . In this case, the character χ determined by
Theorem F is the trivial character of G, but there is another p-rational extension of
θ to G.

2. The Relative Glauberman Correspondence

We follow the notation of [I2] for ordinary characters and the notation of [N1] for
modular characters and blocks. In particular, if p is a prime number, and R is the
ring of algebraic integers in C, we choose M a maximal ideal of R containing pR,
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with respect to which the Brauer characters of any finite group G are constructed.
We also let ∗ : R→ R/M be the canonical ring epimorphism. (Later on, we will also
denote by ∗ several character correspondences, but we believe that there is no risk of
confusion.) If N/G and θ ∈ Irr(N), then Irr(G|θ) is the set of irreducible constituents
of the induced character θG. Also, Gθ is the stabilizer of θ in G. Sometimes, we will
denote by B0(G) the set of the irreducible complex characters of G which lie in
the principal p-block of G, where p is a prime. By a block, we mean a p-block.
Throughout this paper, we will denote by G = Gal(Q̄/Q) the absolute Galois group.
By elementary character theory, we know that G acts on the irreducible complex
characters of every finite group G.

We begin by proving the following.

Lemma 2.1. Suppose that P is a p-group acting as automorphisms on a finite group
G. Suppose that N / G is P -invariant with G/N a p′-group. Let θ ∈ Irr(N) be
P -invariant. If P acts trivially on G/N , then every ψ ∈ Irr(G|θ) is P -invariant.

Proof. By the Clifford correspondence (Theorem 6.11 of [I2]), we may assume that
θ is G-invariant. Let g ∈ G, x ∈ P and ψ ∈ Irr(G|θ). We want to show that
ψx(g) = ψ(g). Write H = N〈g〉, a P -invariant subgroup of G. By considering the
irreducible constituents of χH , all of which lie over θ, we may assume that H = G.
That is to say, we assume that G/N is cyclic. Hence θ extends to G, by Corollary
11.22 of [I2]. By coprime action (Theorem 13.31 of [I2]), there is χ ∈ Irr(G|θ) which
is P -invariant. By Gallagher’s theorem (Corollary 6.17 of [I2]), every ψ ∈ Irr(G|θ)
is of the form βχ for β ∈ Irr(G/N). Since P acts trivially on G/N , then every
β ∈ Irr(G/N) is P -invariant, and the statement follows. �

Lemma 2.2. Suppose that P is a p-group acting as automorphisms on a finite group
G. Suppose that N/ G is P -invariant with G/N a p′-group, and let C/N = CG/N(P ).
Suppose that χ ∈ Irr(G) is P -invariant. Then χN has a P -invariant constituent
θ ∈ Irr(N), and any two such constituents are C-conjugate.

Proof. The first part is Theorem 13.27 of [I2]. The second part follows from Corollary
13.9 of [I2]. �

We can now prove Theorem E.

Theorem 2.3 (Relative Glauberman Correspondence). Suppose that P is a p-group
acting as automorphisms on a finite group G. Let N / G be P -invariant such that
G/N is a p′-group. Let C/N = CG/N(P ). Then there exists a natural bijection

∗ : IrrP (G)→ IrrP (C).

In fact,
χC = eχ∗ + p∆ + Ξ ,
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where ∆ and Ξ are characters of C or zero, e ≡ ±1 mod p, and no irreducible
constituent of Ξ lies over some P -invariant character of N . In particular,

Q(χ) = Q(χ∗).

Also, if χ has p′-degree, then χ lies in the principal block of G if and only if χ∗ lies
in the principal block of C.

Proof. We first prove the part of the statement concerning the existence of a bijection.
Notice that C acts on IrrP (N). Indeed, if θ ∈ IrrP (N), x ∈ P and c ∈ C, then

cx = nc for some n ∈ N . Hence (θc)x = θx
−1cx = θc, and θc is P -invariant. Let Λ be

a complete set of representatives of the C-orbits on IrrP (N). We claim that

IrrP (G) =
⋃
θ∈Λ

IrrP (G|θ)

is a disjoint union. Let χ ∈ IrrP (G). By Lemma 2.2 we have that χN has a P -
invariant irreducible constituent θ, and that all of them are C-conjugate. This proves
the claim. By the same argument, we have that

IrrP (C) =
⋃
θ∈Λ

IrrP (C|θ)

is a disjoint union. Then it suffices to prove that there are bijections
∗ : IrrP (G|θ)→ IrrP (C|θ)

satisfying the conditions in the statement of the theorem. We prove this by induction
on |G : N |.

Let χ ∈ IrrP (G), let θ ∈ Λ be under χ, let T be the stabilizer of θ in G, and let
ψ ∈ Irr(T |θ) be the Clifford correspondent of χ. Let T be a set of representatives of
the double cosets of T and C in G with 1 ∈ T. By the Mackey formula, we have that

χC = (ψT∩C)C + δ ,

where δ =
∑

16=t∈T(ψtT t∩C)C . We claim that no irreducible constituent of δ lies over θ.

Otherwise, let η be an irreducible constituent of (ψtT t∩C)C for some 1 6= t ∈ T lying
over θ. Then η lies over θ and over θt. By Clifford’s theorem (Theorem 6.2 of [I2]),
we have that θ = θtc for some c ∈ C, but this is a contradiction since 1 6= t ∈ T. This
proves the claim.

Notice that, in fact, no irreducible constituent of δ lies over any P -invariant ir-
reducible character τ ∈ Irr(N). Otherwise, τ and θ are P -invariant characters of
N lying under χ. By Lemma 2.2 τ is C-conjugate to θ, and thus θ lies under δ, a
contradiction.

Suppose now that T < G. By induction, there is a bijection
∗ : IrrP (T |θ)→ IrrP (T ∩ C|θ)
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such that ψT∩C = eψ∗ + p∆, where ∆ is a character or zero, and e ≡ ±1(mod p).
Then

χC = (ψT∩C)C + δ = e(ψ∗)C + p∆C + δ .

By the Clifford correspondence (Theorem 6.11 of [I2]), we know that induction defines
bijections IrrP (T |θ)→ IrrP (G|θ) and IrrP (T ∩ C|θ)→ IrrP (C|θ). Since

χ∗ = (ψ∗)C ∈ Irr(C|θ),
we conclude that we may assume that θ is G-invariant.

We have to show that for χ ∈ IrrP (G|θ), we have that that χC = eχ∗ + p∆,
where χ∗ ∈ Irr(C), p does not divide e, and that the map χ 7→ χ∗ is a bijection
IrrP (G|θ) → IrrP (C|θ). We consider the semidirect product Γ = GP of G by P .
Since θ is Γ-invariant, we have that (Γ, N, θ) is a character triple. By Theorem 11.28
of [I2] there is an isomorphism (τ, σ) : (Γ, N, θ) → (Γτ , N τ , θτ ) of character triples,
where N τ is central in Γτ . Recall that τ : Γ/N → Γτ/N τ is a group isomorphism.
We are going to write τ(H/N) = Hτ/N τ for every subgroup N ≤ H ≤ Γ. Since
(NP )τ/N τ is a p-subgroup of Γτ/N τ , and N τ is central, then (NP )τ has a unique
Sylow p-subgroup which we denote by P τ . Now P τ acts on Gτ/N τ the same way
as (PN)τ acts on Gτ/N τ . Hence, by the properties of character triple isomorphisms
in Definition 11.23 of [I2], it is no loss to assume that N ≤ Z(Γ). Hence we may
assume that [N,P ] = 1 and that N ≤ Z(G). In particular, G has a central Sylow
p-subgroup Np, a normal p-complement K, and in particular C = CK(P )×Np. Write
θ = θp′ × θp, where θp′ = θK∩N and θp = θNp . We have that

IrrP (G|θ) = {µ× θp |µ ∈ IrrP (K|θp′)}
and

IrrP (C|θ) = Irr(C|θ) = {ε× θp | ε ∈ Irr(C ∩K|θp′)}.
By Theorem 13.29 of [I2], we have that the Glauberman correspondence

∗ : IrrP (K)→ Irr(C ∩K)

sends IrrP (K|θp′) bijectively onto Irr(C ∩ K|θp′). Since µC∩K = eµ∗ + p∆, where
e ≡ ±1(mod p), the first part of the proof of the statement is now complete.

The action of the absolute Galois group G on characters commutes with the action
of P and with restriction of characters. Hence our map ∗ : IrrP (G) → IrrP (C) is
G-equivariant. This implies that

Q(χ) = Q(χ∗)

for χ ∈ IrrP (G).

We finally prove the statement about blocks. Let χ ∈ Irr(G) be P -invariant of
p′-degree. We have that χC = eχ∗ + p∆ + Ξ, where p does not divide e and no
irreducible constituent of Ξ lies over a P -invariant character of N . We prove that χ
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lies in the principal block of G if and only if χ∗ lies in the principal block of C. We
proceed by induction on |G : N |.

Let θ ∈ Irr(N) be P -invariant under χ. Let T be the stabilizer of θ in G, and let
ψ ∈ Irr(T |θ) be the Clifford correspondent of χ. We have that ψ(1) is a p′-number
and ψ is P -invariant. By the first part of the proof ψT∩C = fψ∗ + p∆′, where p does
not divide f , and we know that ψ∗ ∈ Irr(T ∩ C) is the Clifford correspondent of χ∗.
By induction, if T < G, then ψ ∈ B0(T ) if and only if ψ∗ ∈ B0(T ∩C). Thus, in this
case the statement follows from Corollaries 6.2 and 6.7 of [N1].

We may assume that θ is G-invariant, and therefore we have that

χC = eχ∗ + p∆

and so χ∗ has p′-degree. Again, let Γ = GP be the semidirect product of G and P .
Since NP has p′-index in Γ, we can choose P ≤ R a Sylow p-subgroup of Γ contained
in NP , so that NP = NR. Also NΓ/N(NP/N) = NΓ/N(NR/N), and we see that
CG/N(P ) = CG/N(R) and that IrrP (G) = IrrR(G). Write

M/N = NΓ/N(NR/N) = NNΓ(R)/N,

so that M ∩G = C. By Corollary 9.6 of [N1], let B be the unique block of Γ covering
the block of χ and let b be the unique block of M covering the block of χ∗. Since
χ has p′-degree, it enters with p′-multiplicity in (11)G = ((1P )Γ)G. If ψ ∈ Irr(Γ)
lies over χ, then [ψG, χ] is a p-power, by Corollary 11.29 of [I2] and and using that
χ is Γ-invariant. Therefore χ extends to some χ̃ ∈ Irr(Γ). By the same argument
χ∗ extends to χ̃∗ ∈ Irr(M). Of course, B = B0(Γ) if and only if χ belongs to the
principal block of G and b = B0(M) if and only if χ∗ belongs to the principal block
of C (using Corollary 9.6 of [N1]).

Since χ̃ and χ̃∗ have p′-degree, then we know that B and b have defect group R, by
Theorem 4.6 of [N1]. By Problem 4.5 of [N1], we have that B = B0(Γ) if and only if(

|clΓ(x)|χ̃(x)

χ̃(1)

)∗
= |clΓ(x)|∗

for every p-regular x ∈ Γ such that R ∈ Sylp(CΓ(x)). Similarly, b = B0(M) if and
only if (

|clM(y)|χ̃∗(y)

χ̃∗(1)

)∗
= |clM(y)|∗

for every p-regular y ∈M such that R ∈ Sylp(CM(y))

Suppose that K = clΓ(x), where x is p-regular and R ∈ Sylp(CΓ(x)). Notice that
x ∈ G, since Γ/G is a p-group. Now

CG(R)N/N ≤ CG/N(R) = CG/N(P ) = C/N,
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and therefore x ∈ CG(R) ≤ C. Let L = clM(x). By Lemma 4.16 of [N1] we have
that K ∩CΓ(R) is the conjugacy class of x in NΓ(R). Also,

|K| ≡ |K ∩CΓ(R)|(mod p)

by counting. By the same argument, L∩CΓ(R) is the conjugacy class of x in NΓ(R)
and also

|L| ≡ |L ∩CΓ(R)|(mod p).

Since K ∩CΓ(R) = L ∩CΓ(R), we see that |K| ≡ |L|(mod p). Also, since

χC = eχ∗ + p∆,

we have that χ(x) ≡ eχ∗(x)(mod p) and χ(1) ≡ eχ∗(1)(mod p), where p does not
divide e. Thus χ∗(1)χ(x) ≡ χ(1)χ∗(x)(mod p) and χ̃∗(1)χ̃(x) ≡ χ̃(1)χ̃∗(x)(mod p).
Since |K| = |L|(mod p), we deduce that

|K|χ̃∗(1)χ̃(x) ≡ |L|χ̃(1)χ̃∗(x) mod p .

Using the fact that the degrees of χ and χ∗ are p′-numbers, we deduce that(
|K|χ̃(x)

χ̃(1)

)∗
=

(
|L|χ̃∗(x)

χ̃∗(1)

)∗
.

The result follows from the discussion in the preceding paragraph using, as we have
proved, that |clΓ(x)|∗ = |clM(x)|∗ for every p-regular x ∈ CΓ(R). �

3. An extension theorem

The aim of this section is to prove Theorem F. We first need some lemmas.

Lemma 3.1. Suppose that N / G and that ψ ∈ Irr(G) has p′-degree and is such that
ψN = θ ∈ Irr(N). Assume that ψH belongs to the principal block of H whenever H/N
is a cyclic p′-group. Then ψ belongs to the principal block of G.

Proof. Since ψ lies in a block of maximal defect, by Problem 4.5 of [N1], we want to
show that (

|K|ψ(x)

ψ(1)

)∗
= |K|∗,

where K = clG(x) is the conjugacy class of a p-regular x ∈ G with |G : CG(x)| a
p′-number. Since ψ(1) is not divisible by p, it suffices to show that ψ(x)∗ = ψ(1)∗.
Let H = N〈x〉. We know that there is P ∈ Sylp(G) such that P ≤ CG(x). Let
Q = P ∩N ∈ Sylp(N), so that Q ≤ CN(x) ≤ CH(x). Since H/N is a p′-number, it
follows that Q ∈ Sylp(H). In particular, p does not divide |L|, where L = clH(x). By
hypothesis ψH belongs to the principal block of H, and we conclude that

|L|∗ψ(x)∗ = |L|∗ψ(1)∗.

Then ψ(x)∗ = ψ(1)∗, as desired. �
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We remind the reader that, in general, if ψ ∈ Irr(G) lies in the principal block of G
and ψH ∈ Irr(H), then ψH needs not to be in the principal block of H. For instance,
take G = A4, p = 2, and H is a Sylow 3-subgroup of G. However, the following
statement holds.

Lemma 3.2. Suppose that ψ ∈ Irr(G) lies in the principal block of G, and assume
that H / /G. If ψH ∈ Irr(H), then ψH lies in the principal block of H.

Proof. Arguing by induction on |G : H|, we may assume that H / G. Then the result
follows by Theorem 9.2 of [N1]. �

Lemma 3.3. Let K / G with G/K being a p-group and p > 2. If γ ∈ Irr(K) is p-
rational and G-invariant, then γG contains a unique p-rational irreducible constituent
γ̂ ∈ Irr(G). Furthermore, γ lies in the principal block of K if and only if γ̂ lies in
the principal block of G.

Proof. This is Theorem 6.30 of [I2] together with Corollary 9.6 of [N1]. �

We can now prove Theorem F, which is a variation of Theorem 3.2 of [NT3].

Theorem 3.4. Suppose that N / G. Let θ ∈ Irr(N) be p-rational, G-invariant of p′-
degree in the principal block of N , where p is odd. Let Q ∈ Sylp(N), and assume that
|G : NCG(Q)| is a power of p. Then θ uniquely determines a character χ ∈ Irr(G)
in the principal block of G such that χ is p-rational and χN = θ.

Proof. Let M = NCG(Q). By the Frattini argument, we have that M / G.
We next show that if N ≤ U ≤ M and U/N has a normal p-complement, then

there exists a unique p-rational extension η(U) ∈ Irr(U) of θ in the principal block of
U . Let V/N be the normal p-complement of U/N . We have that V = NCV (Q) and
V/N is a p′-group. Since V/N is a p′-group, then CV (Q)/CN(Q) is a p′-group. By
elementary group theory, Z(Q) is a central Sylow p-subgroup of CV (Q), and therefore
there exists Y ≤ CV (Q) of p′-order such that CV (Q) = Y × Z(Q). By Theorem 3.2

of [NT3], there exists a unique θ̂ ∈ Irr(V ) in the principal block of V lying over θ.

In fact θ̂N = θ. By uniqueness, θ̂ is p-rational and U -invariant. (This is a standard

argument. For instance, if σ ∈ G fixes Q(θ), then θ̂σ is a p-rational extension of θ in

the principal block, so by uniqueness θ̂σ = θ̂. Thus Q(θ) = Q(θ̂) and θ̂ is p-rational.)

By Lemma 3.3, θ̂ has a unique p-rational extension η to U , which lies in the principal
block of U . If η′ is another p-rational extension of θ in the principal block of U , then
η′V = ρ ∈ Irr(V ) lies in the principal block of V (by Lemma 3.2), and extends θ. By

Theorem 3.2 of [NT3], ρ = θ̂. So η′ is a p-rational extension of θ̂, and then η′ = η by
Lemma 3.3.

We now define a class function η of M , which is uniquely determined by θ, as
follows: for m ∈ M , let H = N〈m〉 ≤ M , and, by the previous paragraph, let
η(H) ∈ Irr(H) be the unique p-rational extension of θ in the principal block of H. Set
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η(m) = η(H)(m). It is straightforward to check that η is a G-invariant class function
of M by using that θ is G-invariant and that η(Hz) = (η(H))

z for z ∈ G. Notice that
η(n) = θ(n) for n ∈ N .

Next we prove that η is a generalized character. Suppose that E/N is nilpotent,
where N ≤ E ≤ M . By the second paragraph of this proof, there exists a unique
p-rational ψ ∈ Irr(E) in the principal block extending θ. We prove that ηE = ψ. Let
g ∈ E and write H = N〈g〉. Then ψH is p-rational. Since H / /E, we have that ψH
lies in the principal block of H by Lemma 3.2. Since ψH extends θ, then ψH = η(H).
Consequently ψ(g) = η(g), and ψE = ηE, as wanted. By Theorem 8.4(a) of [I2], we
have that η is a generalized character of M . By using Lemma 8.14(c) of [I2] it is easy
to prove that [η, η] = 1, so that η ∈ Irr(M) by Theorem 8.12 of [I2]. Also, ηN = θ.
By Lemma 3.1, we have that η lies in the principal block of M (because we have
shown that if E/N is nilpotent and N ≤ E ≤ M , then ηE is the unique p-rational
extension of θ in the principal block of E). Also η is p-rational by definition. We
already know that η is G-invariant. By Lemma 3.3, we know that there is a unique
p-rational χ ∈ Irr(G) extending η, which lies in the principal block of G. �

The following result is a suitable extension of Theorem 6.1 of [NTT].

Corollary 3.5. Let N / G. Let p be an odd prime and let P ∈ Sylp(G). Suppose
that PN/N is self-normalizing in G/N . Suppose that ν ∈ Irr(N) is P -invariant,
p-rational, has p′-degree, and lies in the principal block of N . Then there exists a
p-rational χ ∈ Irr(G|ν) of p′-degree lying in the principal block of G.

Proof. We proceed by induction on |G : N |.
We may assume that ν is G-invariant. Indeed, let T = Gν be the stabilizer of

ν in G. If T < G then, by the inductive hypothesis, there is a p′-degree p-rational
ψ ∈ Irr(T ) lying over ν, in the principal block of T . Then, χ = ψG ∈ Irr(G|ν) is
p-rational and has p′-degree (for PN ≤ T ). Also, by Corollary 6.2 and Theorem 6.7
of [N1] χ lies in the principal block, as wanted.

Let M/N be a chief factor of G. We claim that we may assume that G = MP .
Notice that PM/N has a self-normalizing Sylow p-subgroup. If MP < G, then by
the inductive hypothesis there is η ∈ Irr(MP ) of p′-degree, p-rational lying over ν,
in the principal block of MP . Let τ = ηM ∈ Irr(M), which is p-rational of p′-degree,
P -invariant, in the principal block of M . Since PM/M is self-normalizing in G/M ,
again by the inductive hypothesis, there is a p-rational χ ∈ Irr(G) of p′-degree lying
over τ and in the principal block of G. Hence the claim follows.

Let Q be a Sylow p-subgroup of N . By the Frattini argument G = NNG(Q). Then
NCM(Q) is normal in G and so, either M = NCM(Q) or CM(Q) ≤ N . In the first
case, the result follows from Theorem 3.4 since G/M is a p-group.

Assume finally that CM(Q) ≤ N . In this case, by Lemma 3.1 of [NT3], the only
block of M covering the principal block of N is the principal block of M , and the
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only block of G covering the principal block of M is the principal block of G because
G/M is a p-group (by Corollary 9.6 of [N1]). Hence the principal block of G is the
only block of G covering the principal block of N . By Theorem 6.1 of [NTT], there
exists χ ∈ Irr(G) of p′-degree, p-rational lying over ν. Since ν lies in the principal
block of N , necessarily χ lies in the principal block of G by Theorem 9.2 of [N1], and
the proof of the statement is complete. �

As we have said before, there are examples where G/N is a cyclic p′-group, θ ∈
Irr(N) is p-rational of p′-degree and lies in the principal block of N , the principal
block of G is the only block of G, and yet no irreducible constituent of θG is p-rational.
The smallest counterexample we have found is the SmallGroup(216,158) for p = 3
(see [GAP]).

4. Proof of the main results

In this section we prove the main results in this paper, assuming Theorem 4.1
below on simple groups, which we will prove in the next section.

Theorem 4.1. Let p be an odd prime. Let S / G, where CG(S) = 1 and S is a
non-abelian simple group of order divisible by p. Suppose that G/S is a p-group.
Then G has a self-normalizing Sylow p-subgroup if and only if there is no nontrivial
p-rational character of p′-degree in the principal block of G.

In several parts of this paper, we will use the fact that Irr(B0(G/N)) ⊆ Irr(B0(G))
if N / G. (See, for instance, the discussion before Theorem 7.6 of [N1].)

Corollary 4.2. Let p be an odd prime. Suppose that G is a finite group such that G =
NP , where P ∈ Sylp(G) and N / G is a direct product of non-abelian simple groups
of order divisible by p. If there are no non-trivial p-rational irreducible characters of
p′-degree in the principal block of G, then P = NG(P ).

Proof. We proceed by induction on |G|. Suppose that L 6= M are proper normal
subgroups of G contained in N such that L ∩M = 1 (i.e. P is not transitive on
the simple normal factors of N). By induction, we have that NG(P )L = PL and
NG(P )M = PM . Then

NG(P ) ≤ NG(P )L ∩NG(P )M = PL ∩ PM = P (L ∩M) = P.

Hence we may assume that N is a minimal normal subgroup of G. Write

N = S1 × · · · × St,
where Si = Sui1 for some ui ∈ P . Write H = NG(S1), P1 = P ∩H, Q = P ∩N and
Q1 = Q ∩ S1. By Lemma 4.1 and Lemma 2.1(ii) of [NTT] we have that: P is self-
normalizing in G if, and only if, CNN (Q)/Q(P ) = 1 if, and only if, CNS1

(Q1)/Q1(P1) = 1
if, and only if, P1 is self-normalizing in S1P1. Hence it suffices to show that P1 is
self-normalizing in S1P1. Assume the contrary. Let H = H/C, where C = CG(S1).



12 GABRIEL NAVARRO, PHAM HUU TIEP, AND CAROLINA VALLEJO

We have that S1
∼= S1C/C = S1 / H, H/S1 is a p-group and CH(S1) = 1. We

have that P1 = P1C/C ∈ Sylp(H), and H = S1 P1. We can check that P1 is not

self-normalizing in H. By Theorem 4.1, H has a non-trivial p-rational character γ of
p′-degree in the principal block. Let γ1 = γS1 . Then γ1 ∈ Irr(S1) is P1-invariant and
lies in the principal block of S1. By Lemma 4.1 of [NTT], we have that

θ = γu11 × · · · × γut1 ∈ Irr(N)

is P -invariant. Of course θ is p-rational of p′-degree and lies in the principal block of
N . By Lemma 3.3, we get a contradiction. �

The following easy observation is stated as a lemma for the reader’s convenience.

Lemma 4.3. Let N and M be distinct normal subgroups of a group G. Let P be
a Sylow p-subgroup of G. Suppose that NG/N(PN/N) and NG/M(PM/M) have a
normal p-complement. If N ∩M = 1, then NG(P ) has a normal p-complement.

Proof. By elementary group theory, NG/N(PN/N) = NG(P )N/N . Hence we have
that

NG(P )/NN(P ) ∼= NG(P )N/N

has a normal p-complement. Similarly, NG(P )/NM(P ) has a normal p-complement.
Hence also

NG(P ) = NG(P )/(NN(P ) ∩NM(P ))

has a normal p-complement. �

We are now ready to prove the main result of this paper, which is Theorem D of
the introduction (recall that this is equivalent to Theorem A by using Corollary 6.13
of [N1]).

Theorem 4.4. Let p be an odd prime. Let G be a finite group and let P ∈ Sylp(G).
Then NG(P ) has a normal p-complement if and only if the only p-rational irreducible
character of p′-degree lying in the principal block of G is the principal character of G.

Proof. Suppose that NG(P ) has a normal p-complement. By Theorem A of [NTV],
we have that there is a canonical bijection

∗ : Irrp′(B0(G))→ Irrp′(B0(NG(P ))).

In fact, if χ ∈ Irrp′(B0(G)), then χNG(P ) = χ∗+∆, where χ∗ ∈ Irr(NG(P )) is linear in
the principal block of NG(P ), and ∆ is zero or a character such that all its irreducible
constituents have degree divisible by p. In particular, we see that ∗ commutes with
the action of the absolute Galois group G, and therefore Q(χ) = Q(χ∗). Since NG(P )
has a normal p-complement X, we have that χ∗ ∈ Irr(NG(P )/X) is the character
of an odd-order p-group P . Hence χ∗ is never p-rational, unless χ∗ = 1. Therefore,
unless χ = 1. This proves one direction.
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We assume now that the only p-rational irreducible character of p′-degree lying in
the principal block of G is the principal character of G, and we prove that NG(P )
has a normal p-complement, by induction on |G|.

Step 1. We may assume that G has a unique minimal normal subgroup N . Also
NG(P )N/N has a normal p-complement V/N ≤ K/N = Op′(G/N), and G/K has
self-normalizing Sylow p-subgroups.

Let N and M be distinct minimal normal subgroups of G. Since

Irr(B0(G/N)) ⊆ Irr(B0(G)), Irr(B0(G/M)) ⊆ Irr(B0(G)),

by the inductive hypothesis, we have that G/N and G/M have Sylow normalizers
with a normal p-complement. By Lemma 4.3, NG(P ) has a normal p-complement
too.

Write NG(P )N/N = PN/N × V/N . By Theorem 3.2 of [NTV], we have that
V/N ≤ Op′(G/N) = K/N . Also, NG(P )K = PK, and G/K has self-normalizing
Sylow p-subgroups.

Step 2. We may assume that N is not a p′-group. In particular Op′(G) = 1.

We know that NG/N(PN/N) = PN/N × V/N . If N is a p′-group, then V is a
normal p-complement of NG(P )N . Hence V ∩NG(P ) / NG(P ) is a p-complement of
NG(P ) and we are done.

Step 3. We may assume N is not a p-group. In particular, N is a direct product
of isomorphic non-abelian simple groups of order divisible by p.

Suppose that N is a p-group. We know that

NG(P )/N = NG/N(P/N) = P/N × V/N,
so that K is a p-solvable group and Op(K) = N . Recall that Op′(K) = 1, by Step 2.
By Hall-Higman Lemma 1.2.3 CK(N) ≤ N . We have that

Op′(NG(P )) ≤ CK(N) ≤ N.

Hence Op′(NG(P )) = 1. By Problem (4.8) of [N1], we have that G has a unique
p-block of maximal defect, namely the principal one. Consequently every irreducible
character of G of p′-degree lies in B0(G). We have that V/K = CK/N(P/N). By the
Glauberman correspondence

|IrrP (K/N)| = |Irr(V/N)|.
If V/N = 1, then NG(P ) = P and we would be done. Hence we may assume that
there is some non-trivial γ ∈ IrrP (K/N). In particular, γ is p-rational and has p′-
degree. Since G/K has a self-normalizing Sylow p-subgroup, we have that Theorem
6.1 of [NTT] produces a p′-degree p-rational character χ ∈ Irr(G) lying over γ. Since
1 6= χ lies in the principal block of G we get a contradiction.

Step 4. We may assume that PN / G. Hence G/N = K/N × PN/N .
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Recall that by induction

NG/N(PN/N) = PN/N × V/N,
where V/N ≤ Op′(G/N) = K/N . Notice that V/N = CK/N(PN/N). Let γ ∈
Irr(PV ) be p-rational of p′-degree lying in B0(PV ). Hence, γV ∈ Irr(V ) lies in
B0(V ). By the relative Glauberman correspondence, Theorem 2.3, there is a unique
τ ∈ IrrP (K) such that τ ∗ = γV . Also τ lies in B0(K). By Corollary 3.5, there exists
χ ∈ Irr(G) over τ which is p-rational of p′-degree and lies in the principal block. By
assumption, χ is the trivial character and hence τ = 1. We conclude τ ∗ = γV = 1.
Now, γ ∈ Irr(PV/V ) is linear and rational. Since p is odd, it must be γ = 1PV .
We have shown that PV = NG(P )N has a unique p-rational irreducible character
of p′-degree in its principal block. If PV < G, then by induction NPV (P ) = NG(P )
is p-decomposable. Hence, we may assume PV = G. In particular, PN / G and
V = K.

Step 5. Let Q = P ∩N ∈ Sylp(G). We may assume NCK(Q) = K.

By the Frattini argument G = NNG(Q). Then NCK(Q) / K. Assume that
NCK(Q) < K. By Lemma 3.1 of [NT3], we have that B0(K) is the unique block of
K that covers the principal block of NCK(Q). Let 1 6= γ ∈ Irr(K/NCK(Q)). Then γ
lies in B0(K) and is p-rational of p′-degree. Since G/N = K/N ×PN/N , by Lemma
3.3, we have that γ extends to a p-rational character of p′-degree in B0(G). This is a
contradiction because 1 6= γ.

Step 6. We may assume that p = 3 and that N is a direct product of groups
isomorphic to PSL2(33a), for some a ≥ 1. In particular, Q is abelian. Also NP < G.

Let η ∈ Irr(PN) be p-rational of p′-degree lying in B0(PN). Then ν = ηN ∈ Irr(N)
is P -invariant, p-rational of p′-degree and lies in B0(N). By Theorem 3.2 of [NT3],
ν extends to a unique ν̂ ∈ Irr(Kν) in B0(Kν), where Kν is the stabilizer of ν in K.
In particular, by uniqueness, we have that ν̂ is p-rational and P -invariant. Write
ρ = (ν̂)K ∈ Irr(K). Then ρ is p-rational, P -invariant and of p′-degree. By Lemma
3.3 we conclude that ρ has an extension to a p′-degree p-rational character in the
principal block of G. We conclude that ρ = 1K . This implies ν̂ = 1K . Hence ν = 1N .
Thus η ∈ Irr(PN/N) is linear and rational. Since p is odd, this implies η = 1.
We have proved that PN has a unique p′-degree p-rational irreducible character in
B0(PN). If G = NP , then the theorem follows from Corollary 4.2. Hence, we may
assume that PN < G. Then, by the inductive hypothesis, NPN(P ) = P × Y . By
Theorem 3.2 of [NTV], we have that Y ≤ Op′(PN) ≤ N . Hence Y = 1 (by Step 3).
By the main result of [GMN], we have that the non-abelian composition factors of
PN are of type PSL2(33a) with a ≥ 1.

Step 7. The final contradiction.

We have that CK(Q) = Y0 ×Q, where Y0 is a p′-group. If

N = S1 × · · · × St,
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where each Si is isomorphic to PSL2(33a), then write Qi = Q ∩ Si ∈ Sylp(Si). Since
Y0 centralizes 1 6= Qi, it follows that Y0 normalizes Si. We have that

Yi = Y0CG(Si)/CG(Si) ≤ Aut(Si)

centralizes Qi. By Lemma 3.1(i) of [NTV], it follows that Yi = 1. Thus Y0 ≤ CG(Si)
for every i, and so Y0 ≤ CG(N). By Step 1, G has a unique minimal normal subgroup,
so CG(N) = 1. Hence Y0 = 1 and K = N . This implies that G = NP , but this is
impossible by Step 6. �

5. Simple Groups

The aim of this section is to prove Theorem 4.1. We begin with some observations.

Lemma 5.1. Let p be a prime and let S be a normal subgroup of G of p-power index.

(a) The principal block B0(G) is the only block of G that covers the principal block
B0(S) of S.

(b) Suppose that p > 2 and that Irr(S) ∩ B0(S) contains a rational G-invariant
character α. Then α extends to a rational character β ∈ B0(G).

(c) Theorem 4.1 holds if G has a self-normalizing Sylow p-subgroup P .

Proof. (a) By Green’s Theorem 8.11 of [N1], 1G is the unique irreducible p-Brauer
character of G that lies above 1S. Hence the statement follows.

(b) By [NT1, Lemma 2.1], α has a unique real extension β to G, whence β is also
rational. Since α ∈ B0(S), β ∈ B0(G) by (a).

(c) By [NTT, Theorem A], 1G is the unique p-rational irreducible character of
p′-degree of G, whence the claim follows. �

By virtue of Lemma 5.1(c), it remains to prove the “if” direction of Theorem 4.1.

Lemma 5.2. Theorem 4.1 holds if S is either 2F4(2)′ or one of the 26 sporadic simple
groups.

Proof. Direct computation using [GAP]; note that in this case G = S. �

Lemma 5.3. Theorem 4.1 holds if S = An, n ≥ 5, is an alternating group.

Proof. As mentioned above, it suffices to prove the “if” direction of Theorem 4.1, that
is, B0(G) contains a nontrivial p-rational irreducible character of p′-degree, where
G = S = An. Let H := Sn.

Suppose that p|(n−1). Then the character χ of H labelled by the partition (n−2, 2)
has degree n(n − 3)/2 ≥ 5 that is coprime to p, and p-core (1), whence χ ∈ B0(H).
Since χS is irreducible, it has the desired properties.

Assume now that p - (n−1). Write n−1 =
∑k

i=1 aip
i with ai ∈ Z, 0 ≤ ai < p, and

ak > 0. Then the character χ of H labelled by the partition (n− pk, 1pk) has degree(
n−1
pk

)
> 1 that is coprime to p, and the same p-core as of 1H , whence χ ∈ B0(H).
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Since n 6= 2pk + 1, the partition (n − pk, 1p
k
) is not self-associate, and so χS is

irreducible and has the desired properties. �

In the case of Theorem 4.1 where S is a simple group of Lie type, we will actually
prove more than what is needed for the “if” direction; we believe the established
results will be useful in other applications as well. We refer the reader to [C] and
[DM] for basics on complex representations of finite groups of Lie type.

Theorem 5.4. Let S 6∼= 2F4(2)′ be a finite simple group of Lie type in characteristic r
and p 6= r an odd prime. Then there exists a non-trivial, rational-valued, Aut(S)-
invariant, unipotent character of p′-degree that belongs to the principal p-block of S.

Proof. (i) We work in the following setting. Let G be a simple, simply connected
linear algebraic group over an algebraic closure of Fr with a Steinberg map F : G→
G such that S = G/Z(G) where G = GF . (This is possible since S 6∼= 2F4(2)′.) The
unipotent characters of S are then (by definition) precisely the unipotent characters
of G (which all have Z(G) in their kernel).

(ii) We first assume that F is a Frobenius endomorphism defining an Fq-rational
structure on G (i.e., G is not a Suzuki or Ree group). We let d denote the order
of q modulo p. By results mainly of Broué, Malle, and Michel, and of Cabanes and
Enguehard, summarised in [KM, Theorem A], the unipotent characters in a block
of G are unions of d-Harish-Chandra series. Moreover, individual d-Harish-Chandra
series are in bijection with irreducible characters of the corresponding relative Weyl
groups (see [KM, Theorem B]). Thus by the degree formula for Lusztig induction,
the blocks of maximal defect are those parametrized by cuspidal pairs (L, λ) with
d-cuspidal λ ∈ Irr(L) of degree coprime to p, hence with the d-split Levi subgroup
L having a d-torus in its centre, so with L being the centralizer CG(T) of a Sylow
d-torus T of G. In particular if CG(T) is a maximal torus of G, that is, if d is a
regular number (in the sense of Springer) for the Weyl group W of G, then there is
just one such block, which must be the principal block. In this case, the Steinberg
character lies in the principal block, is rational and Aut(G)-invariant (see e.g. [M2,
Theorem 2.5]), and its degree is a power of r, hence coprime to p, so we are done.

Consider the case G is of exceptional type. Then all relevant numbers are regular
for W unless G is of type E7 (see the tables given in [BMM]). Hence we only have
to consider the latter type. The non-regular numbers are d = 4, 5, 8, 10, 12. Here,
eight unipotent characters are irrational (those lying in the Harish-Chandra series
above the two cuspidal unipotent characters of E6, those two in the principal series
belonging to the non-rational characters of the Hecke algebra, and the two cuspidal
unipotent characters). It is immediate from the explicit list of d-Harish-Chandra
series in [BMM, Tab. 2] that in each case there exists a unipotent character of p′-
degree in the principal block that is Aut(S)-invariant. (This concerns the lines 24,
30, 34, 37 in loc. cit.)
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Now assume that S, and hence G, is of classical type. Then the unipotent charac-
ters are uniquely determined by their multiplicities in the Deligne–Lusztig characters
and hence in particular they are rational. Moreover, all unipotent characters are in-
variant under all outer automorphisms of S unless either G is of type Dn with n ≥ 4,
or G is of type B2 in characteristic r = 2, see [M2, Theorem 2.5]. Since the relative
Weyl group of any non-trivial d-torus is a non-trivial complex reflection group, it
has a non-trivial linear character ψ. The unipotent character in the principal block
parametrized by ψ then has degree congruent to 1 modulo p by [M1, Theorem 4.2]
and is not the trivial character, and hence we are done except for types Dn and B2.
In the cases of types D4 and B2, again all relevant d are regular for W , and thus
the Steinberg character does the job. So now assume that G is of type Dn with
n ≥ 5. According to [M2, Theorem 2.5] the unipotent characters not stable by outer
automorphisms are those labelled by degenerate symbols. On the other hand, the
unipotent characters in the principal block are those labelled by symbols with d-core
(respectively e-cocore if d = 2e is even) being the symbol of the trivial character (see
[BMM, §3A]). Clearly the d-core (respectively e-cocore) of a degenerate symbol is
again degenerate, and the symbol for the trivial character is only degenerate when
n = 0. But in this case, n is divisible by d (respectively by e) and then d is a regular
number for W , whence we conclude as before.

(iii) Finally we deal with the case of Suzuki and Ree groups. The theory of d-
Harish-Chandra series and p-blocks holds with minor modifications in this case as
well, see [BMM] and [M1]. And again all numbers d are regular for the corresponding
Weyl groups, whence the Steinberg character has the desired properties. �

Theorem 5.5. Let S be a finite simple group of Lie type defined over a field of
characteristic p > 2. If p = 3, assume in addition that S 6∼= PSL2(32a+1) for any a ∈
N. Then S has a non-trivial, rational-valued, Aut(S)-invariant, irreducible character
of p′-degree that belongs to the principal block of S.

Proof. We keep the notation (G, F,G) as in Step (i) of the proof of Theorem 5.4.
According to [Hum, Theorem, p.69], B0(S) = Irr(S)\{St}, if St denotes the Steinberg
character of G (and S). In particular, any irreducible character of p′-degree of S
belongs to B0(S).

First we note that the result in the case S is an exceptional group of Lie type,
respectively S = PSLn(q) or PSUn(q) with n ≥ 3, has already been established in
Example 5.3(a), (c), Proposition 5.5, and Proposition 5.10 of [NT2], respectively.

In the remaining cases (and viewing SL2(q) as Sp2(q)), we have that G = Sp(V )
or Spin(V ) for a suitable vector space V over Fq. Let the pair (G∗, F ∗) be dual to
(G, F ), and set G∗ := (G∗)F

∗
, so that G∗ = SO(W ), PCSp(W ), or PCO(W )0, where

W = Fnq for a suitable n ∈ N. If p 6= 3, it is easy to see that G∗ has a unique conjugacy
class of rational elements s ∈ [G∗, G∗] of order 3 such that an inverse image in GL(W )
of order 3 of s has a fixed point subspace of dimension n−2 on W . Likewise, if p = 3



18 GABRIEL NAVARRO, PHAM HUU TIEP, AND CAROLINA VALLEJO

and n ≥ 4, then G∗ has a unique conjugacy class of rational elements s ∈ [G∗, G∗]
of order 5 such that an inverse image in GL(W ) of order 5 of s has a fixed point
subspace of dimension n − 4 on W . Finally, if S = PSp2(32a) (and so G∗ = SO3(q)
with q = 32a ≡ 1(mod8)), we can choose γ ∈ F×q of order 8, t = diag(1, γ, γ−1) ∈ G∗,
and s = t2 ∈ [G∗, G∗]. In all cases, s has connected centralizer in G∗. It follows
that the corresponding semisimple character χs of G is irreducible, trivial at Z(G),
rational-valued, of degree |G∗ : CG∗(s)|p′ > 1, and Aut(S)-invariant. �

Proof of Theorem 4.1. By Lemma 5.1(c), it remains to prove the “if” direction of the
theorem. By Lemmas 5.2 and 5.3 we may assume that S 6∼= 2F4(2)′ is a simple group of
Lie type. If (S, p) 6= (PSL2(32a+1), 3), then Theorems 5.4 and 5.5 yield a non-trivial
Aut(S)-invariant rational irreducible character of p′-degree in B0(S), whence the
same holds for B0(G) by Lemma 5.1(b). Assume now that (S, p) = (PSL2(32a+1), 3)
and that P ∈ Sylp(G) is not self-normalizing. By direct computation (or by using
[NTT, Theorem A]), one sees that Irr(G) contains a non-trivial p-rational irreducible
character of p′-degree χ. Since |G/S| is a p-power, χS is irreducible and belongs
to B0(S) as we noted in the proof of Theorem 5.5, whence χ ∈ B0(G) by Lemma
5.1(a). �

6. Theorem C and final remarks

We start this section by proving Theorem C of the introduction, which is implied
by the deepest parts of the block theory of p-solvable groups. We assume that the
reader is familiar with the theory of blocks and normal subgroups (see, for instance,
Chapter 9 of [N1]).

Recall that if B is a block of G with defect group P , then B uniquely determines,
up to NG(P )-conjugacy, a p-defect zero character θ ∈ Irr(PCG(P )/P ) lying in a
block b of PCG(P ) that induces B (see discussion after Theorem 9.12 in [N1]). This
character θ is called a canonical character of B. We first need to prove the following
lemma.

Lemma 6.1. Suppose that B is a block of G with normal defect group P . Let θ ∈
Irr(PCG(P )/P ) be a canonical character of B. Then:

(a) All irreducible Brauer characters in B have height zero.
(b) l(B) = 1 if and only if θ is fully ramified in Gθ/PCG(P ).
(c) Suppose that p is odd. Then l(B) = 1 if and only if there is a unique p-rational

χ ∈ Irr(B) such that χ0 ∈ IBr(G).

Proof. Let C = CG(P ) / G and L = PC / G. Let b be a block of L covered by B.
We know that B = bG by Corollary 9.21 of [N1], and that b has defect group P (for
instance, by Lemma 4.13 and Theorem 4.18 of [N1]). By Theorem 9.12 of [N1], we
may assume that IBr(b) = {θ0}. By using Theorem 9.2 of [N1], we conclude that
IBr(B) = IBr(G|θ0). Let T be the stabilizer of the Brauer character θ0 in G. Since
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θ vanishes off p-regular elements, we also have that T = Gθ. We even have that T is
the stabilizer of b in B, by using Theorem 9.12 of [N1]. Recall that T/L is a p′-group,
by Theorem 9.22 of [N1]. By the Fong-Reynolds correspondence (Theorem 9.14 of
[N1]) it is enough to prove that the irreducible Brauer characters of T lying over θ0

have height zero. This is clear, using that T/L is a p′-group. This proves part (a).
Also, we see that |IBr(B)| = 1 if and only if |IBr(G|θ0)| = 1. By the Clifford

correspondence for Brauer characters (Theorem 8.9 of [N1]), this happens if and
only if |IBr(T |θ0)| = 1. Since T/L is a p′-group, then every ψ ∈ Irr(T |θ) has p-
defect zero, and it follows that restriction to p-regular elements defines a bijection
Irr(T |θ)→ Irr(T |θ0). We deduce that θ is fully ramified in T , hence proving (b).

In order to prove (c), we claim first that Irr(G|θ) is exactly the set of p-rational
characters in B that lift irreducible Brauer characters. We already know that B = bG

is the only block of G covering b, so Irr(G|θ) ⊆ Irr(B). Let χ ∈ Irr(G|θ) and let
ψ ∈ Irr(T |θ) be its Clifford correspondent. Since T/L is a p′-group, then ψ has defect
zero. In particular ψ0 ∈ IBr(T ) and ψ is p-rational. Hence χ = ψG is also p-rational.
By the Clifford correspondence for Brauer characters (Theorem 8.9 of [N1]), we have
that χ0 = (ψ0)G ∈ IBr(G). Conversely, suppose that χ ∈ Irr(B) is a p-rational
character that lifts an irreducible Brauer character. By Lemma X.2.4 of [F], we have
that P ≤ kerχ. By Theorem 9.12 of [N1], it follows that χ lies over θ. This proves
the claim.

We have that

|Irr(G|θ)| = |Irr(T |θ)| = |Irr(T |θ0)| = |IBr(G|θ0)| = |IBr(B|θ0)|
and the proof of the lemma follows. �

Next is Theorem C of the introduction.

Theorem 6.2. Suppose that G is p-solvable, with p odd. Let B be a block with defect
group P and let b be its Brauer first main correspondent. Then l(b) = 1 if and only if
there is exactly one p-rational χ ∈ Irr(B) of height zero and such that χ0 ∈ IBr(B).

Proof. Let IBr0(B) be the set of irreducible Brauer characters of B with height zero.
By Theorem 23.9 of [MW], we know that |IBr0(B)| = |IBr0(b)|. By Lemma 6.1(b),
we have that |IBr0(B)| = |IBr(b)|. Hence |IBr(b)| = 1 if and only if |IBr0(B)| = 1.

By Theorem 10.6 of [N1], for each φ ∈ IBr(B) there exists a unique p-rational
character χ ∈ Irr(G) such that χ0 = φ. Hence |IBr0(B)| is the number of p-rational
characters in B of height zero. This concludes the proof of the statement. �

It is interesting to speculate up to what level the local condition l(b) = 1 affects the
representation theory of its global Brauer correspondent B. As we have proved in this
section, this condition implies that B has a unique height zero p-rational character
χ lifting an irreducible Brauer character for p-solvable groups, and for blocks with
a normal defect groups. It seems that this might be also the case for blocks with
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abelian defect groups. This would follow from the Alperin weight conjecture together
with a conjecture by G. R. Robinson on the uniqueness of p-rational liftings in blocks
with a unique simple module (see [MNS]).

Remark 6.3. Let p > 2 be a prime and let O be the (unique up to isomorphism)
absolutely unramified complete discrete valuation ring with Fp as its residue field. Let
G be any finite group and B a p-block of OG. Suppose that B is Morita equivalent
to a p-block B′ of OH, where H is a finite p-solvable group, and suppose that the
Brauer correspondent b′ of B′ satisfies l(b′) = 1. Applying Theorem C to B′ and
the main result of [K], see also [KL, Corollary 1.7], we see that there is exactly one
p-rational χ ∈ Irr(B) of height zero and such that χ0 ∈ IBr(B).

We have mentioned in the introduction that we believe that there might be a
version of Theorem A for the prime p = 2. We finish this paper with the following
conjecture and some remarks on it.

Conjecture 6.4. Let G be a finite group. Let P ∈ Syl2(G). Then NG(P ) has
a normal 2-complement if and only if all odd-degree irreducible characters in the
principal 2-block of G are σ-invariant, where σ is the Galois automorphism that fixes
2-power roots of unity and squares 2′-roots of unity.

Remark 6.5. We offer some evidence in support of Conjecture 6.4, which includes all
finite solvable, symmetric, and general linear or unitary groups.

(i) Suppose that G is solvable. Let L = O2′(G). Then it is well-known that

Irr(B0(G)) = Irr(G/L).

Since NG(P ) has a normal 2-complement if and only if NG/L(PL/L) has a
normal 2-complement, we may assume that L = 1. We know by the main result
in [I1] that there is a natural bijection Irr2′(G)→ Irr2′(NG(P )) that commutes
with Galois action. Hence it is no loss to assume that P / G. Assume now
that G has a normal 2-complement. Then G is a 2-group, and we are done in
this case. Conversely, if all the odd-degree irreducible characters of G are σ-
invariant, then all characters of G/P are σ-invariant. Then G = P by Lemma
5.1 of [N2].

(ii) Suppose G = Sn. Then P ∈ Syl2(G) is self-normalizing, and certainly all
χ ∈ Irr(G) are rational-valued, hence σ-invariant.

(iii) More generally, suppose that G is any finite group with self-normalizing Sylow
2-subgroups. Then a consequence of the Galois refinement of the McKay conjec-
ture [N2] implies that all odd-degree irreducible characters of G are σ-invariant.
(A reduction of this statement to quasisimple groups has been given in [NT5,
Theorem 5.1] and [Sch, Theorem 3.7].)
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(iv) Let G = GLn(q) with 2|q and P ∈ Syl2(G), chosen to be the subgroup of upper
unitriangular matrices in G. Then NG(P ) = P o T , where T is the subgroup
of diagonal matrices in G. In particular, NG(P ) has a normal 2-complement
precisely when q = 2. The degree formula for unipotent characters [C, §13.8]
shows that the only unipotent character of GLk(q

l) of odd degree is the principal
character. Hence Lusztig’s parametrization of irreducible characters of G [C],
[DM] implies that χ ∈ Irr(G) has odd degree precisely when it is the semisimple
character χs labeled by a semisimple element s ∈ G (if we identify the dual
group G∗ with G). Arguing as in the proof of [NT1, Lemma 9.1], one can show
that χs is σ-invariant exactly when χs = χs2 , i.e. when s2 and s are G-conjugate.
Furthermore, [Hum, Theorem, p. 69] implies that χs belongs to the principal
block of G precisely when χs is trivial at Z(G), which, by [NT4, Proposition
4.5], is equivalent to that s ∈ [G,G] = SLn(q). Now it is straightforward to
check that s2 and s are G-conjugate for all semisimple elements s ∈ SLn(q) if
and only if q = 2. Thus Conjecture 6.4 holds in this case.

A similar argument, applied to GUn(q) with 2|q, shows that Conjecture 6.4
holds in this case as well.

(v) Let G = GLn(q) with q odd and n ≥ 2. By [GKNT, Theorem 2.5], if χ ∈ Irr(G)
has odd degree, then

χ = S(s1, λ1) ◦ S(s2, λ2) ◦ . . . ◦ S(sm, λm)

in James’ notation [J], where si ∈ F×q are pairwise distinct, λi ` ki,
∑m

i=1 ki = n,
and

[n]2 = [k1]2 < [k2]2 < . . . < [km]2,

if [a]2 denotes the 2-part of any a ∈ N. Furthermore, results of Fong and
Srinivasan [FS] imply that such a character belongs to the principal 2-block of
G only when all si are 2-elements. Note that in this case S(si, λi) is a product
of the rational-valued (unipotent) character S(1, λi) of GLki(q) with a linear
character of 2-power order of GLki(q), whence it is σ-invariant. Since χ is
obtained from the character

S(s1, λ1)⊗ S(s2, λ2)⊗ . . .⊗ S(sm, λm)

of the Levi subgroup

GLk1(q)×GLk2(q)× . . .×GLkm(q)

by Harish-Chandra induction, it follows that χ is σ-invariant. On the other
hand, NG(P ) has a normal 2-complement if P ∈ Syl2(G), see e.g. [GKNT,
(5.3), (5.5)]).

In fact, we note that [GKNT, Theorem E] implies that Conjecture 6.4 also
holds for GUn(q) whenever q is odd.
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(vi) Let G = Sp2n(q) with q ≡ ±3(mod 8). As shown in the proof of [Ko, Theorem
1], the normalizer of P ∈ Syl2(G) contains SL2(3) as a subgroup, and so NG(P )
does not have a normal 2-complement. It is well known, see eg. [TZ, §2], that G
has a pair of the so-called Weil characters ξn, ηn ∈ Irr(G) of degree (qn ± 1)/2,
such that the restriction of ξn to 2′-elements of G equals to the restriction of
1G + ηn to 2′-elements of G. In particular, they belong to the principal 2-block
of G, and one of them has odd degree. Inspecting the values of ξn and ηn at
a transvection t ∈ G [TZ, Lemma 2.6], one can check that neither ξn nor ηn is
σ-invariant.

Certainly, the arguments given in (iv)–(vi) also apply to many other finite groups
of Lie type. We also note that Conjecture 6.4 has now been reduced to almost simple
groups, see [NV].
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