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1. Introduction

Let G be a finite group, let p be a prime, and let F be an algebraically closed field 
of characteristic p. The (p-)blocks of G are the indecomposable two-sided ideals of the 
group algebra FG. A block B of G uniquely determines a subset Irr(B) of the irreducible 

✩ The research of the authors is partially supported by the Spanish Ministerio de Educación y Ciencia 
proyecto MTM2016-76196-P, Feder, and Prometeo Generalitat Valenciana.

E-mail addresses: gabriel.navarro@uv.es (G. Navarro), carolina.vallejo@icmat.es (C. Vallejo).

http://dx.doi.org/10.1016/j.jalgebra.2017.06.010
0021-8693/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jalgebra.2017.06.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:gabriel.navarro@uv.es
mailto:carolina.vallejo@icmat.es
http://dx.doi.org/10.1016/j.jalgebra.2017.06.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2017.06.010&domain=pdf


G. Navarro, C. Vallejo / Journal of Algebra 488 (2017) 230–243 231

complex characters of G; a p-subgroup D of G, up to G-conjugacy, which is called the 
defect group of B; and a block b of the local subgroup NG(D) with defect group D. To 
study what properties the algebras B and b share is one the main problems in Group 
Representation Theory. One of the first cases to study is the case of blocks with one 
simple module. These are exactly the blocks B for which B/J(B) is isomorphic to a 
matrix algebra over F. In general, the semisimple algebra B/J(B) is a direct sum of 
l(B) matrix algebras, by Wedderburn’s theorem. In spite of the fact that blocks with 
one simple module have the easiest possible structure, many deep questions remain open 
about them. For instance, the following consequence of the Alperin Weight Conjecture 
is still unproven: if B has one simple module, then b has one simple module. However, 
the converse is not true. How does the hypothesis l(b) = 1 affects the character theory 
of B and conversely? Somewhat surprisingly, the Galois version of the Alperin–McKay 
conjecture proposed in [7] helps us to partially understand this problem.

In the main result of [11] the authors have proved that l(b0) = 1 if, and only if, 
the only p-rational character of degree not divisible by p lying in B0 is the principal 
one, whenever B0 is the principal block of G, b0 its local correspondent and p is odd. 
(p-Rational characters are those whose values lie in a cyclotomic extension Qn of Q by a 
root of unity of order n not divisible by p.) For p = 2, this is false, and a totally different 
approach is needed. A single automorphism σ of the group Gal(Qab/Q) holds the key, 
namely, the automorphism that fixes the 2-power order roots of unity, and squares the 
odd order roots of unity. (The values of χ ∈ Irr(G) lie in Q|G| and χσ ∈ Irr(G), where 
χσ(g) = χ(g)σ for every g ∈ G.)

Conjecture A. Let G be a finite group, let P ∈ Syl2(G), let B0 be the principal 2-block 
and let b0 be the principal block of NG(P ). Then l(b0) = 1 if, and only if, all odd-degree 
irreducible characters lying in B0 are fixed by σ.

Recently, the McKay conjecture has been proved for p = 2 by G. Malle and B. Späth 
in the landmark [5] using the reduction proposed in [4]. It is our hope that the many 
current investigations on the characters of finite simple groups of Lie type together with 
our main result below will terminate, sooner than later, in a proof of Conjecture A.

Theorem B. Let G be a finite group, let P ∈ Syl2(G), let B0 be the principal 2-block and 
let b0 be the principal block of NG(P ). Assume that Conjecture A holds for every almost 
simple group H involved in G whose socle S has 2-power index in H. Then Conjecture A
is true for G.

It is important to notice that, unlike the McKay or the Alperin–McKay conjectures, 
where complicated inductive statements have to be checked for all simple groups, in order 
to prove Conjecture A it suffices to verify that Conjecture A holds for certain almost 
simple groups. Conjecture A was introduced as Conjecture 6.3 in [11], and some cases 
were dealt there.
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While proving Theorem B we have to overcome with several difficulties, and these 
have resulted in some theorems of independent interest. For instance, Theorem C below 
is a generalization of the Glauberman correspondence that turns out to be quite useful. 
By a result of R. Brauer, the principal block B0 of G satisfies l(B0) = 1 if, and only if, 
G has a normal p-complement. In particular, the principal block b0 of NG(P ) satisfies 
l(b0) = 1 if, and only if, NG(P ) = P × V .

Theorem C. Let G be a group and let P ∈ Sylp(G). Suppose that NG(P ) = P × V . Let 
χ ∈ Irrp′(G). Then

χV = eχ̂ + p∆,

where p does not divide e and χ̂ ∈ Irr(V ). The map defined by χ #→ χ̂ is a surjection 
from Irrp′(G) onto Irr(V ).

Conjecture A is the principal block version of Theorem 5.2 of [7], which asserts that 
G has a self-normalizing Sylow 2-subgroup if, and only if, every odd-degree irreducible 
character of G is σ-invariant. This conjecture was reduced to almost simple groups in [12]
(one of the implications was independently reduced in [10]). There are exciting new 
results in [13], where the condition given in [12] has been checked for certain families 
of simple groups. Using Theorem C, it is easy to see that Theorem B implies the main 
result of [12] (see Theorem 6.7). Our approach in these notes is independent of the one 
in [12]. The use of blocks makes things more complicated and we shall need, among other 
things, results on isomorphic blocks due to J.L. Alperin.

2. A Glauberman correspondence

We follow the notation of [2] for ordinary characters and the notation of [6] for modular 
characters and blocks. In particular, if p is a prime number, and R is the ring of algebraic 
integers in C, we choose M a maximal ideal of R containing pR, with respect to which 
the Brauer characters of any finite group G are constructed. We also let ∗ : R → R/M

be the canonical ring epimorphism. If N ▹ G and θ ∈ Irr(N), then Irr(G|θ) is the set 
of irreducible constituents of the induced character θG. Also, Gθ is the stabilizer of θ
in G. By a block, we shall mean a p-block. Also, if B is a block of G, we will denote 
by Irr(B) the set of irreducible complex characters lying in the block B. Two characters 
α, β ∈ Irr(G) lie in the same block if, and only if,

(
|K|α(x)
α(1)

)∗
=

(
|K|β(x)
β(1)

)∗

for all x ∈ G, where K is the conjugacy class of x. Recall R. Brauer associated to each 
block B of G a p-subgroup D of G, up to conjugation, which is called a defect group 
of B, and a block b of the local subgroup NG(D), which is called the Brauer first main 
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correspondent of B. In Brauer’s notation, bG = B. Sometimes, we will denote by B0 the 
principal p-block of G and by b0 the principal p-block of NG(P ), where P ∈ Sylp(G), 
and, in general, we will write B0(H) to denote the principal block of the group H.

Let χ ∈ Irr(B), where B has defect group D. Then χ(1)p = |G : D|pph, where the 
non-negative integer h = h(χ) is called the height of χ. Height zero characters in B are 
those whose degree has minimal p-part among the characters in Irr(B). We write Irr0(B)
to denote the set of height zero characters of Irr(B). Note that if B has defect group a 
Sylow p-subgroup, then Irr0(B) = Irrp′(G) ∩ Irr(B), where in this paper Irrp′(G) is the 
set of irreducible characters of G of degree not divisible by p.

We recall that whenever PCG(P ) ⊆ H ⊆ NG(P ) and b is a block of H, then the 
induced block bG is defined, and every defect group of b is contained in a defect group 
of bG (Theorem 4.14 and Lemma 4.13 of [6]).

We start with a version of the Glauberman correspondence, which is essentially what 
is called the Alperin argument. This, in particular, proves Theorem C.

Theorem 2.1. Let G be a group and let P ∈ Sylp(G). Suppose that NG(P ) = P × V . Let 
χ ∈ Irrp′(G).

(a) We have that

χV = eχ̂ + p∆,

where p does not divide e, for some χ̂ ∈ Irr(V ), and ∆ is a character of V or zero.
(b) We have that χ̂ is the only γ ∈ Irr(V ) such that χ belongs to the induced block (bγ)G, 

where bγ is the unique block of NG(P ) lying over γ.
(c) The map defined by χ #→ χ̂ is a surjection from Irrp′(G) onto Irr(V ).
(d) We have that χ̂ is the unique character γ of V such that χ(1)∗γ(v)∗ = γ(1)∗χ(v)∗

for all v ∈ V .

Proof. Write H = NG(P ) and C = CG(P ). We have that H = P × V by hypothesis. 
If γ ∈ Irr(V ), let bγ the unique block of H lying over γ, so that Irr(bγ) = Irr(H|γ). 
Notice that γ̃ = 1P × γ ∈ Irr(Bγ). Let Bγ = (bγ)G be the induced block. By the Brauer 
first main theorem and Theorem 10.20 of [6], we have that {Bγ | γ ∈ Irr(V )} are all the 
different blocks with defect group P of G.

Let χ ∈ Irrp′(G). Then χ lies in a unique Bγ . Let x ∈ V and let K = ClG(x). Since 
P ⊆ CG(x), we have that p does not divide |K|. By Lemma 4.16 of [6], we have that 
K ∩C = ClC(x). Moreover |K| ≡ |K ∩C| mod p, by using that P acts on K with fixed 
points K ∩ C. We have that

(
|K|χ(x)
χ(1)

)∗
= λBγ (K̂) = λbγ (K̂ ∩ C) = λγ̃(K̂ ∩ C) =

(
|K ∩ C|γ(x)

γ(1)

)∗
.
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Since p does not divide χ(1)γ(1), we deduce that

χ(x)∗γ(1)∗ = γ(x)∗χ(1)∗,

for every x ∈ V . This reasoning, together with Problem 4.5 of [6], also proves that 
χ ∈ Irrp′(G) lies in Bγ if, and only if, χ(x)∗γ(1)∗ = γ(x)∗χ(1)∗ for every x ∈ V .

Let δ ∈ Irr(V ). Then we have that

γ(1)∗|V |∗[χV , δ]∗ =
∑

x∈V

γ(1)∗χ(x)∗δ(x−1)∗

= χ(1)∗
∑

x∈V

γ(x)∗δ(x−1)∗

= χ(1)∗|V |∗[γ, δ]∗.

Since γ(1)∗|V |∗ and χ(1)∗|V |∗ are nonzero, we have that [χV , δ] ≡ 0 mod p if δ ̸= γ, 
and [χV , γ] ̸= 0 mod p. Notice that Irrp′(Bγ) is exactly the set of χ ∈ Irrp′(G) such that 
χ̂ = γ. Since Irrp′(Bγ) is not empty by elementary block theory, this also proves that 
the map is surjective. ✷

Notice that χ #→ χ̂ is injective if, and only if, |Irrp′(Bγ)| = 1 for all γ ∈ Irr(V ). By 
Problem 3.11 of [6], this happens if, and only if, G is a p′-group.

Later, we shall need the following useful consequence.

Corollary 2.2. Let G be a group and let P ∈ Sylp(G). Suppose that NG(P ) = P × V . 
Then β ∈ Irrp′(G) belongs to the principal block of G if, and only if, β(x)∗ = β(1)∗ for 
every x ∈ V . In particular, if β lies in the principal block and N ▹ G is contained in 
kerβ, then β lies in the principal block of G/N .

Proof. The first part follows from Theorem 2.1(d). The second statement follows from 
the first since V/N is a normal p-complement for NG/N (PN/N). ✷

In general, Corollary 2.2 is false without the hypothesis on Sylow normalizers.

3. Extending characters

Suppose that N ▹ G and θ ∈ Irr2′(N) extends to G. It is known that if θ lies in the 
principal 2-block of G, then there is not necessarily an extension of θ in the principal 
2-block of G. However, if θ is σ-invariant, then we can show this, and more than this. 
Throughout this section p = 2.

The next lemma appears as Lemma 3.4 in [12]. We give a proof of it to help the 
reader to get acquainted with our methods in this section. Recall that σ is the only 
Galois automorphism that fixes 2-roots of unity and squares odd roots of unity. By 
elementary character theory, notice that
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det(χτ ) = det(χ)τ

for every character χ of G and τ ∈ Gal(Qab/Q).

Lemma 3.1. Let G be a group and let p = 2. Suppose that N ▹ G and θ ∈ Irrp′(N)
extends to G. If θ is σ-invariant and |G : N | is a power of p, then some extension of θ
is σ-invariant. In particular, every extension of θ is σ-invariant.

Proof. Suppose first that θ is linear. Let χ ∈ Irr(G) be any extension of θ. Write χ =
χ2χ2′ and θ = θ2θ2′ , where the order of χ2′ is odd and the order of χ2 is a power of 2. 
Then (χ2)N = θ2 and χ2 is σ-invariant. It suffices to see that θ2′ has a σ-invariant 
extension. By the uniqueness of the decomposition of θ as its 2-2′-parts notice that θ2′ is 
σ-invariant, so we may assume the order of θ is odd. Hence θ = θσ = θ2 implies θ = 1N
and we are done in this case because G/N is a 2-group.

In the general case, let λ = det θ. Then λ is σ-invariant. By the first part of this 
proof, let µ ∈ Irr(G) be a σ-invariant extension of λ. By Lemma 6.24 of [2], there is a 
unique extension χ ∈ Irr(G) of θ such that detχ = µ. By uniqueness, χ is σ-invariant, 
as desired.

The last claim follows from Gallagher’s theorem Corollary 6.18 of [2] since every linear 
character of G/N has 2-power order. ✷

The odd-degree hypothesis in the above lemma is necessary as shown by D24. In the 
next result, the case where G/N has odd order is studied.

Theorem 3.2. Suppose that N ▹ G, let p = 2 and let θ ∈ Irrp′(N) be G-invariant and 
σ-invariant.

(a) If |G : N | is odd, then θ extends to G, and it has a unique σ-invariant extension 
to G.

(b) If θ lies over under χ ∈ Irrp′(G), then θ extends to G.

Proof. These are Theorem 2.1 and Corollary 2.2 of [10]. ✷

In the next result, we remove the hypothesis that G/N is a 2-group in Lemma 3.1.

Theorem 3.3. Let G be a group and set p = 2. Suppose that N ▹ G and that θ ∈ Irrp′(N)
extends to G. If θ is σ-invariant, then some extension of θ to G is σ-invariant.

Proof. We argue by induction on |G : N |. Let χ be any extension of θ to G.
First assume that G/N is solvable. Let K/N be a chief factor. If K/N has odd order, 

then by Theorem 2.1 of [10], there exists a unique σ-invariant extension τ ∈ Irr(K)
of θ. We claim that τ extends to G. By uniqueness, notice that τ is G-invariant. Let 
P ∈ Syl2(G). By Corollary 4.2 of [3], we have that restriction defines a bijection
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Irr(PK|τ) → Irr(PN |θ) .

Therefore, there exists γ ∈ Irr(PK|τ) such that γPN = χPN . Since χN = θ, then 
γK = τ . Hence, τ extends to PK. Suppose now that Q/K is a Sylow q-subgroup of 
G/K for some odd prime q. By Theorem 3.2(a) we have that τ has a unique σ-invariant 
extension ρ ∈ Irr(Q). We conclude that τ extends to every Sylow subgroup of G/K. By 
Corollary 11.31 of [2], τ extends to G. In this case, we are done by induction. If K/N is 
a 2-group, then χK is σ-invariant by Lemma 3.1. Again we are done by induction.

In the general case, let M/N be the solvable residual of G/N , so that M/N is perfect 
and G/M is solvable. We have that θ has a unique extension to M , using Gallagher’s 
theorem and the fact that M/N has a unique linear character. This extension is τ = χM . 
By uniqueness, we have that τ is σ-invariant. Since G/M is solvable, then we are done 
by the first part of the proof. ✷

Theorem 3.4. Let G be a group and let p = 2. Suppose that ψ ∈ Irrp′(G) is σ-invariant 
and ψN = θ ∈ Irr(N). If θ lies in the principal block of N , then ψ lies in the principal 
block of G.

Proof. Since ψ lies in a block of maximal defect, by Problem 4.5 of [6], it suffices to show 
that

(
|K|ψ(x)
ψ(1)

)∗
= |K|∗,

for every conjugacy class K = ClG(x) of a p-regular element x ∈ G with p not dividing 
the index |G : CG(x)|. Since p does not divide ψ(1), it is enough to show that

ψ(x)∗ = ψ(1)∗.

Let H = N⟨x⟩ and let P ∈ Sylp(G) be such that P ⊆ CG(x). Let Q = P ∩ N ∈
Sylp(N). We have that Q ⊆ CN (x) ⊆ CH(x). Since H/N is a p′-group, it follows that 
Q ∈ Sylp(H). In particular, if L = ClH(x), then p does not divide |L|. Moreover, if we 
write Y = ⟨x⟩, then H = NY , where Y is a p′-group centralizing Q.

By Theorem 3.2(a), we have that θ has a unique σ-invariant extension to H, which by 
hypothesis is ψH . On the other hand, by Theorem 3.2 of [9], there is a unique θ̂ ∈ Irr(H)
in the principal block that lies over θ. In fact, θ̂ extends θ. By uniqueness θ̂ is σ-invariant, 
and we conclude ψH = θ̂ lies in the principal block of H. Hence

(
|L|ψ(x)
ψ(1)

)∗
= |L|∗,

which implies ψ(x)∗ = ψ(1)∗ as wanted. ✷

Thanks to Theorem 3.4, we can show that the extension of θ given by Theorem 3.3
lies in the principal block provided that θ lies in the principal block.
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Corollary 3.5. Suppose that N ▹ G. Suppose that θ ∈ Irr(N) has odd degree, extends to 
G and is σ-invariant. If θ is in the principal 2-block of N , then there exists an extension 
ψ ∈ Irr(G) of θ which is σ-invariant and lies in the principal 2-block of G.

Proof. By Theorem 3.3, we know that there exists a σ-invariant ψ ∈ Irr(G) such that 
ψN = θ. Now apply Theorem 3.4. ✷

4. Semisimple by 2-groups

In this section, we study groups of the form G = NP , where N ▹ G is direct product 
of non-abelian simple groups transitively permuted by G and P ∈ Sylp(G) for p = 2.

Lemma 4.1. Suppose that N is the direct product of distinct subgroups S1, . . . , St of N . 
Assume that A acts as automorphisms on N and permutes Ω = {S1, . . . , St} transitively. 
Write S = S1. Let B = NA(S1), let ai ∈ A such that Sai = Si, so that {a1, . . . , at} is a 
complete set of representatives of right cosets of B in A.

(a) The map f : CS(B) → CN (A) given by c #→
∏

i c
ai is a group isomorphism.

(b) The map IrrB(S) → IrrA(N) given by ψ #→ ψa1 × · · ·× ψat is a bijection.

Proof. Let ∆ = {a1, . . . , at} so that A acts on ∆. Write ai · a = aσ(i), where Baia =
Baσ(i). If c ∈ CS(B), then caia = caσ(i) , and it follows that f is a well-defined group 
homomorphism. Because it is a direct product the map is injective. Suppose that d =
x1 . . . xt is A-invariant, where xi ∈ S. Then x1 is fixed by B. It is also clear that xi = xai

1 . 
The second part is Lemma (4.1)(ii) of [8]. ✷

Lemma 4.2. Suppose that G = NP , where P ∈ Sylp(G), and N ▹ G is a direct product 
of subgroups Ω = {S1, . . . , St} which are permuted transitively by P . Let H = NG(S1), 
and P1 = H ∩ P . Then NG(P ) has a normal p-complement if, and only if, NS1P1(P1)
has a normal p-complement.

Proof. Write S = S1, N ⊆ H ⊆ G, and notice that P1 ∈ Sylp(H). Also, we can choose 
representatives {x1, . . . , xt} of right cosets of P1 in P such that Sxi = Si, and x1 = 1. 
Now, write Q = P ∩N = P1∩N , and R = Q ∩S = P ∩S = P1∩S ∈ Sylp(S). Notice too 
that NG(P )/P is naturally isomorphic to C/Q = CNG(Q)/Q(P ) and that NG(P ) = CP . 
By the same reason, NSP1(P1)/P1 is naturally isomorphic to B/R = CNS(R)/R(P1) and 
NSP1(P1) = BP1. Now, Q = Rx1 × · · ·×Rxt , and NN (Q) = NS(R)x1 × · · ·×NS(R)xt . 
Now, P acts naturally on the group Γ = (NS(R)/R)x1 × · · · × (NS(R)/R)xt which is 
P -isomorphic to NN (Q)/Q.

Let y = zx1
1 . . . zxt

t ∈ NN (Q), where zi ∈ NS(R). By Lemma 4.1(a), we have that 
y ∈ NG(P ) if, and only if, there is zR ∈ CNS(R)/R(P1) such that ziR = zR for all i, and 
where z can be chosen p-regular.
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Assume first that NS1P1(P1) has a normal p-complement, and let y ∈ NG(P ) be 
p-regular, so that y ∈ NN (P ) ⊆ NN (Q). Write as before y = zx1

1 . . . zxt
t , where 

zi ∈ NS(R) is p-regular. We know that zi = zri for some ri ∈ R and some 
zR ∈ CNS(R)/R(P1), where z is p-regular, by the previous paragraph. Since NS1P1(P1)
has a normal p-complement, we deduce that [z, P1] = 1. Since zi = zri is p-regular and 
[z, R] = 1, we deduce that ri = 1 for all i. Hence, we easily check that y = zx1 . . . zxt is 
fixed by P using that [z, P1] = 1. We deduce that NG(P ) has a normal p-complement.

Conversely, assume that NG(P ) has a normal p-complement, and let y ∈ NSP1(P1)
be p-regular. Thus y ∈ B, where B/R = CNS(R)/R(P1). Let z = yx1 . . . yxt ∈ NN (Q). 
Again zQ is fixed by P , and we deduce that z is a p-regular element in NG(P ). Therefore 
[z, P ] = 1. This implies that [y, P1] = 1. ✷

In the next lemma, we use that if G1 and G2 finite groups, then Irr(B0(G1 ×G2)) =
Irr(B0(G1)) × Irr(B0(G2)). (This follows directly from the definition of the principal 
block, see Definition 3.1 of [6].)

Lemma 4.3. Suppose that G = NP , where P ∈ Syl2(G) and N ▹ G is the direct product 
of non-abelian simple subgroups S1, . . . , St of N transitively permuted by P . Let H =
NG(S1) and P1 = H ∩ P . Then every odd degree character in Irr(B0(G)) is σ-invariant 
if, and only if, every odd degree character in Irr(B0(S1P1)) is σ-invariant.

Proof. Write p = 2. Note that P1 ∈ Sylp(H). Let xi ∈ P be such that Sxi
1 = Si and 

{x1, . . . , xt} is a right transversal of P1 in P . By Lemma 4.1(b), we have that the map 
IrrP1(S1) → IrrP (N) given by θ #→ θx1 × · · ·× θxt is a bijection.

Assume first that every odd degree τ ∈ Irr(B0(S1P1)) is σ-invariant. Let χ ∈
Irrp′(B0(G)). Then χN ∈ Irrp′(B0(N)) is P -invariant. Hence χN = θx1 × · · · × θxt , 
for some P1-invariant θ ∈ Irrp′(B0(S1)). Since the determinantal order of θ is trivial, by 
Corollary 6.28 of [2] θ extends to θ̂ ∈ Irr(S1P1). Since S1P1/P1 is a p-group θ̂ lies in the 
principal block of S1P1. By hypothesis, θ̂ is σ-invariant, and hence also θ is σ-invariant. 
Consequently χN is σ-invariant. By Lemma 3.1, we have that χ is σ-invariant.

Assume finally that every odd degree Irr(B0(G)) is σ-invariant. Let τ∈Irrp′(B0(P1S1)). 
Hence θ = τS1 ∈ Irrp′(B0(S1)) is P1-invariant. Write η = θx1 × · · ·× θxt ∈ Irrp′(B0(N)). 
Then η is P -invariant. Since the determinantal order of η is 1, again we have that 
η extends to some χ ∈ Irr(G), which necessarily lies in B0(G). By hypothesis, χ is 
σ-invariant. This implies that χS1 , which is a multiple of θ, is σ-invariant. Therefore, θ is 
σ-invariant. ✷

5. Sylow normalizers with a normal 2-complement

In this section, we prove one half of Theorem B. We shall need the following results.
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Lemma 5.1. Let G be a group and let p be a prime number. Let χ, ψ ∈ Irr(G) and 
β ∈ Irrp′(G) be such that χ = βψ. If β and ψ lie in the principal block of G, then also 
does χ. If χ and ψ lie in the principal block, then also does β.

Proof. The first part of the statement is Lemma 3.5 of [9]. The second part follows from 
a similar argument. ✷

Lemma 5.2. Let G be a finite group, let p be a prime, let P ∈ Sylp(G), and let χ ∈
Irrp′(G). Assume that N ▹ G. Then χN has a P -invariant irreducible constituent θ. 
Also, any two of them are NG(P )-conjugate.

Proof. To show that χN has a P -invariant irreducible constituent, is enough to use that 
χ has p′-degree. For the conjugacy part, use the Frattini argument. ✷

Theorem 5.3. Let G be a group, and let P ∈ Sylp(G), where p = 2. Suppose that NG(P )
has a normal p-complement. Assume that, whenever H is an almost simple group involved 
in G with H = F∗(H)Q, where Q ∈ Sylp(H) and such that NH(Q) has a normal 
p-complement, every ψ ∈ Irrp′(B0(H)) is σ-invariant. Then every χ ∈ Irrp′(B0(G)) is 
σ-invariant.

Proof. We proceed by induction on |G|. Let χ ∈ Irrp′(G) lie in the principal block of G. 
Let N be a minimal normal subgroup of G. By Lemma 5.2 let θ ∈ Irr(N) be P -invariant 
under χ. Let ψ ∈ Irr(Gθ|θ) be the Clifford correspondent of χ. By Brauer’s third main 
theorem and Corollary 6.2 of [6], we have that ψ lies in the principal block of Gθ. If 
Gθ < G, then by induction ψ is σ-invariant, so also χ = ψG is σ-invariant. Hence, we 
may assume that G = Gθ.

We claim that it is enough to show that θ is σ-invariant. In such case, by Theo-
rem 3.2(b), we have that θ extends to G. By Corollary 3.5, we can choose a σ-invariant 
extension ψ ∈ Irr(G) of θ in the principal block of G. By Gallagher’s theorem, χ = βψ

for some β ∈ Irrp′(G/N). Moreover β lies in the principal block of G by Lemma 5.1. 
By Corollary 2.2, β lies in the principal block of G/N , and hence β is σ-invariant by 
induction. Consequently, χ is σ-invariant, and the claim follows.

Suppose now that NP < G. Since χ has p′-degree, some irreducible constituent τ of 
χPN has p′-degree, and hence τ extends θ. Notice that τ lies in the principal block of 
PN for PN/N is a p-group. Since NPN (P ) has a normal p-complement, by the inductive 
hypothesis, τ is σ-invariant. Hence, also θ is σ-invariant, and by the previous paragraph 
we are done.

Therefore, we may assume that NP = G. If N is a p-group, then G is a p-group, and 
there is nothing to prove, because σ fixes 2-power roots of unity. If N is a p′-group, then 
N ⊆ kerχ, and again we are done. Hence, we may assume that N is a direct product 
of non-abelian simple groups Si which are transitively permuted by P . By the previous 
argument, we may also assume that N is the unique minimal normal subgroup of G. By 
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Lemma 4.2 and Lemma 4.3, we may assume that G = SP , where S ▹ G is a non-abelian 
simple group of order divisible p, and it is the unique minimal normal subgroup of G. 
Thus G is almost simple, and by hypothesis χσ = χ and we are done. ✷

6. Odd degree irreducible characters in the principal block

The aim of this section is to prove the other half of Theorem B. The following is an 
easy observation.

Lemma 6.1. Let N and M be distinct normal subgroups of a group G. Let P be a Sy-
low p-subgroup of G. Suppose that NG/N(PN/N) and NG/M (PM/M) have a normal 
p-complement. If N ∩M = 1, then NG(P ) has a normal p-complement.

Proof. By elementary group theory we have that NG/N (PN/N) = NG(P )N/N . By 
hypothesis, NG(P )/NN (P ) ∼= NG(P )N/N has a normal p-complement. Similarly, 
NG(P )/NM (P ) has a normal p-complement. Hence

NG(P ) = NG(P )/(NN (P ) ∩ NM (P ))

has a normal p-complement. ✷

We will use the following which appears as Corollary 6.4 in [6].

Lemma 6.2. Let H ≤ G, let b be a p-block of H, and let ψ ∈ Irr(H). Assume that the block 
B = bG is defined. Then the p-part f |G : H|ψ(1) is the p-part of 

∑
χ∈Irr(B)[ψG, χ]χ(1). 

In particular, if p does not divide |G : H|ψ(1), then there exists χ ∈ Irr(B) of p′-degree 
such that p does not divide [ψG, χ].

The two results below are stated for the reader’s convenience.

Lemma 6.3. Let P be a p-subgroup of G. Let N ▹ G be such that N ⊆ P . Write Ḡ = G/N . 
Let b be a block of NG(P ) of defect P and assume that b̄ is a block of NG(P )/N contained 
in b. Then bG is the unique block containing b̄Ḡ.

Proof. This is Lemma 3.2 of [7]. ✷

Theorem 6.4. Let p be a prime. Let N ▹ H be such that H/N is solvable of order not 
divisible by p. Assume that H = CH(Q)N , where Q is a Sylow p-subgroup of N . If γ
is an irreducible character in the principal block of H, then γN is irreducible. In fact 
γ #→ γN defines a bijection Irr(B0(H)) → Irr(B0(N)).

Proof. This is Lemma 1 of [1]. ✷
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Lemma 6.5. Let H be a group of odd order. If every irreducible character of H is 
σ-invariant, then H = 1.

Proof. We have that χ(x) = χ(x2) for every χ ∈ Irr(H), and therefore we have that 
every x ∈ H is H-conjugate to x2. Then apply Lemma 5.1 of [7]. ✷

We can now prove the remaining half of Theorem B.

Theorem 6.6. Let G be a finite group and let p = 2. Suppose that every Irrp′(B0(G))
is σ-invariant. Assume that whenever H is an almost simple group involved in G with 
H = F ∗(H)Q where Q ∈ Sylp(H) and such that every Irrp′(B0(H)) is σ-invariant 
then NH(Q) has a normal p-complement. If P ∈ Sylp(G), then NG(P ) has a normal 
p-complement.

Proof. Let G be a minimal counterexample to the statement. Recall that Irr(B0(G/N)) ⊆
Irr(B0(G)), by elementary block theory. By Lemma 6.1 and the minimality of G, we may 
assume that G has a unique minimal normal subgroup N , and that NG(P )N/N has a 
normal p-complement. Since Op′(G) is contained in the kernel of every character in 
Irr(B0(G)) (by Theorem 6.10 of [6]), we may assume that N is not a p′-group.

Step 1. We may assume that N is a direct product of non-abelian simple groups.
If N is a p-group, then by minimality of G as a counterexample, we have that 

NG(P )/N = P/N × V/N , so NG(P ) = PV . Let L = Op′(PV ). We want to show 
that PV = PL. Since PV/PL has odd order, by Lemma 6.5 it suffices to show that 
every Irr(PV/PL) is σ-invariant. Let τ ∈ Irr(PV/PL). Now τ ∈ Irr(P/N × V/N), and 
we can write τ = 1P × γ, where γ ∈ Irr(V/N), and γ contains L in its kernel. By 
Theorem 2.1(d), let χ ∈ Irrp′(G/N) be such that

χV = eγ + p∆,

where p does not divide e. By Theorem 2.1(b), we know that χ belongs to the block b̄Ḡ, 
where Ḡ = G/N and b̄ is the unique block of PV/N covering γ. We have that b̄ is con-
tained in B0(PV ) for τ ∈ Irr(b̄) lies over 1L (using Theorem 10.20 of [6]). By Lemma 6.3
and Brauer’s third main theorem, B0(G) is the unique block of G containing b̄Ḡ. Hence 
χ ∈ Irrp′(B0(G)), and by hypothesis, we deduce that χ is σ-invariant. Since

χV = eγσ + p∆,

we conclude that γσ = γ, and so τ is also σ-invariant.

Step 2. We may assume that G = KP , where K = NCG(Q) and Q = P ∩ N ∈
Sylp(N).

We have that K ▹ G by the Frattini argument. Let R = P ∩ K ∈ Sylp(K), so that 
Q ⊆ R. Then CG(R) ⊆ CG(Q) ⊆ K. By Lemma 3.1 of [9] and Brauer’s third main 
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theorem, B0(G) is the unique block covering the principal block of K, so Irr(G/K) ⊆
Irr(B0(G)). By minimality of G, we have that NG(P )K/K = PK/K ×W/K. We claim 
that W = K. Since W/K has odd order, it suffices to show that every γ ∈ Irr(W/K) is 
σ-invariant, by Lemma 6.5. By Theorem 2.1(d), let χ ∈ Irrp′(G) be such that

χW = eγ + p∆,

for some integer e not divisible by p. Since χ lies in B0(G), then it is fixed by σ. This 
implies γσ = γ, as desired. Thus, NG(P )K = PK and therefore NG(P ) ⊆ PK. If 
KP < G, then it suffices to show that PK satisfies the hypothesis. Let τ be an odd degree 
irreducible character lying in B0(PK). Then θ = τK ∈ Irrp′(B0(K)) is P -invariant. By 
Problem 4.2 of [6], and using that NG(P ) ⊆ PK, notice that B0(KP )G is defined and 
equals the principal block of G. By Lemma 6.2, let χ ∈ Irrp′(B0(G)) lie over τ (and hence 
over θ). By Lemma 5.2, χK contains a unique P -invariant constituent, namely θ. Since 
χσ = χ, then we have that θσ is another P -invariant constituent of χK . By uniqueness, 
θσ = θ. Then τσ = τ by Lemma 3.1.

Step 3. We may assume that PN ▹ G.
By minimality, it is enough to show that NG(P )N satisfies the hypothesis of the 

theorem.
We know that NG(P )N/N = PN/N × V/N . Notice that V = NCV (Q), because 

G = NCG(Q). Let τ ∈ Irrp′(B0(PV )) and let θ ∈ Irr(N) be a P -invariant constituent 
of τN (by Lemma 5.2). Since θ lies in the principal block of N , by Theorem 6.4, we have 
that θ is V -invariant. Now, again B0(PV )G = B0(G), and we can find χ ∈ Irr(B0(G))
of odd degree over τ , by Lemma 6.3. By hypothesis, χσ = χ, and therefore θσ and θ are 
NG(P )-conjugate. Since θ is NG(P )-invariant, we deduce that θσ = θ. Now, V ▹ PV and 
every irreducible constituent of τV lies in the principal block of V . Since θ is PV -invariant, 
by Theorem 6.4, we deduce that τV = eγ, where γ is the only character in the principal 
block over θ. By uniqueness, γ is σ-invariant, and τ is σ-invariant by Lemma 3.1.

Step 4. Let M = NCG(P ). Then PM = G.
We have that M ▹ G by the Frattini argument, so PM ▹ G. By Lemma 3.1 of [9] and 

Brauer’s first main theorem, B0(G) is the unique block covering the principal block of 
PM . Hence Irr(G/PM) ⊆ Irr(B0(G)). By hypothesis, every irreducible character of the 
odd order group G/PM is σ-invariant. By Lemma 6.5, this forces G = PM .

Final step. Suppose that PN < G. Let τ ∈ Irrp′(B0(PN)) and let χ ∈ Irr(B0(G)) lie 
over τ (using that PN ▹ G and Theorem 9.2 of [6]). Then χ has odd degree and so it is 
σ-invariant. By Theorem 6.4, χPN = τ , and therefore τ is also σ-invariant. By minimality 
of G, we have that NPN (P ) has a normal p-complement, this is, NPN (P ) = CPN (P )P . 
Hence

NG(P ) = NG(P ) ∩ (CG(P )PN) = CG(P )NPN (P ) = CG(P )P,
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as wanted. Hence, we may assume that NP = G. Then N is the direct product of non-
abelian simple groups {S1, . . . , St} which are transitively permuted by P . By Lemma 4.2
and Lemma 4.3, we may assume that G = SP , where S ▹ G is a non-abelian simple 
group of order divisible p. By the first paragraph of this proof S is the unique minimal 
normal subgroup of G. Thus G is almost simple, and by hypothesis NG(P ) has a normal 
p-complement. ✷

We conclude these notes by showing that Conjecture A implies the 2-self-normalizing 
conjecture in [7].

Theorem 6.7. Let G be a finite group and P ∈ Syl2(G). Assume that Conjecture A is 
true for G. Then P = NG(P ) if, and only if, every odd-degree irreducible character of 
G is σ-invariant.

Proof. If P = NG(P ), then G has a unique block of maximal defect. Therefore, every 
irreducible odd-degree character of G is σ-invariant. Conversely, assume that every ir-
reducible odd-degree character of G is σ-invariant. Since G satisfies Conjecture A, we 
have that NG(P ) = P × V . Now, let α ∈ Irr(V ). By Theorem 2.1, let χ ∈ Irr(G) of odd 
degree such that χ̂ = α. Now,

χV = eα + 2∆ ,

where e is odd. Since χ is σ-invariant, it follows that [χV , ασ] = e, and by uniqueness 
we deduce that α = ασ. By Lemma 6.5, we conclude that V = 1, as desired. ✷
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