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Abstract

Early studies testing the quiet life hypothesis in banking found strong evidence that banks in more
concentrated markets exhibit lower cost efficiency levels. More recent studies have reexamined the
issue in different contexts, with mixed results. These approaches are based on stipulating a linear re-
lationship between market power and efficiency in banking, which might be problematic, as suggested
by the literature on efficiency analysis. We explore how bank cost efficiency measures are related to
market power using flexible techniques, which are more consistent with those employed to measure
efficiency in the first stage of the analysis. Our study focuses on the Spanish banking industry, which
has been experiencing substantial change in the last few years, combining institutions with different
ownership structures and business models. Results show that the relationship varies according to the
level of market power, the component of efficiency evaluated (cost, technical or allocative) and the type
of banking firm (commercial bank or savings bank), suggesting that the quiet life might be a reality
only for some financial institutions.
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1. Introduction

Over the last twenty years, the changes and challenges faced by most banking industries world-

wide have prompted a remarkable interest in analyzing several industrial organization topics

in banking. Indeed, as suggested by Rhoades (1997), during the past fifteen years or so there

had been more industrial organization (IO)-related research in banking than many students

of IO might expect. Some of the industrial organization topics more profoundly examined

in the banking literature relate to the structure-conduct-performance (SCP) paradigm (Bain

1956), and the ensuing efficient-structure (ES) hypothesis (Demsetz 1973). As reviewed by

Berger et al. (2004), the early 1990s empirical banking studies analyzing the effects of con-

centration and competition were particularly concerned about whether the traditional SCP

paradigm held for the U.S. banking industry. Although this literature is large, and despite the

difficulties of summarizing results, most studies found that banks in more concentrated local

markets—as measured by the Herfindal-Hirschman Index (HII), or n-firm concentration ratio

(CRn)—charged higher rates on loans, and payed lower rates on retail deposits (Berger and

Hannan 1989; Hannan 1991).

Although most findings were consistent with the exercise of market power under the SCP

hypothesis (Hannan and Berger 1991; Neumark and Sharpe 1992), it was not unusual to obtain

weak relationships between concentration and profitability when firms’ market shares were in-

cluded in the regressions. Therefore, paralleling the making in the industrial organization liter-

ature, some studies aimed to analyze the validity of the ES hypothesis in banking—according

to which high concentration endogenously reflects the market share gains of efficient firms.

Typically, such studies controlled for measures of X-efficiency and scale efficiency, allowing

concentration and market share to be functions of these efficiency measures (Berger 1995). As

for the SCP paradigm, the empirical evidence for the ES hypothesis was also weak.

In the context of the literature that analyzes the relationship between performance, market

concentration and efficiency, other papers have focused on the study of the effect of market

power on managerial efficiency. In particular, the quiet life hypothesis (Hicks 1935) is consid-

ered a special case of the market power hypothesis. This hypothesis postulates that the higher

market power, the lower the effort of managers to maximize operating efficiency, a negative

correlation thus existing between market power and efficiency. In the empirical testing of this

hypothesis, market concentration measures are traditionally used as proxy for market power

(Berger and Hannan 1998). However, as stated in Maudos and Fernández de Guevara (2007),

recent studies show the limitations of using market concentration measures as indicators of

banking competition (Berger et al. 2004; Maudos and Fernández de Guevara 2004; Fernández

de Guevara et al. 2005; Claessens and Laeven 2004; Claessens and Laeven 2005). Therefore,

they propose to use other indicators of competition such as the H-statistics (Panzar and Rosse
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1987), or the Lerner index (Lerner 1934).

Our study analyzes the relationship between market power and efficiency considering an

alternative to the traditional means used to evaluate the validity of either the SCP or ES hy-

potheses. Specifically, we employ nonparametric methods which are highly appropriate when

a theory is lacking to evaluate the associations between two variables. Although theories are

well established in our case, the mixed empirical evidence suggests they might be more diffi-

cult to test than one a priori might expect. Earlier initiatives, such as Clark (1986), considered

similar issues, arguing that tests of the structure-performance paradigm yielded quantitatively

small statistical significance because of the methodology employed. However, in contrast to a

less restrictive nonparametric approach, his analysis was entirely confined to the parametric

field, therefore disallowing more flexible interpretations of the relationship. Some recent con-

tributions have also dealt with the quiet life hypothesis and related issues, among which we

can highlight the papers by Koetter et al. (2012), Delis and Tsionas (2009), Casu and Girardone

(2006, 2009), and Turk Ariss (2010). Although their objectives are not exactly coincidental with

those of Clark (1986), they do neither consider flexible techniques to examine the links between

efficiency and market power like we do.

Actually, the issue as to how a given set of covariates influences the efficiencies obtained in

the first stage of the analysis (which is what the test of the quiet life does when examining how

market power impacts on efficiency) has not been properly addressed in banking. As indicated

by Simar and Wilson (2007, 2011), most of this literature, usually referred to as “second-stage

regressions” has been considering nonparametric methods such as Data Envelopment Analysis

(DEA) in the first stage of the analysis and either ordinary least squares (OLS) or tobit regres-

sion in the second stage, relying on conventional methods for inference. This is problematic for

a number of reasons, such as the correlation of DEA efficiency scores. In the particular case of

the analysis of the quiet life hypothesis in banking, where the relationship between efficiency

scores and market power is examined, the empirical evidence taking the severity of these issues

into account is entirely yet to come. Our proposal follows the suggestions by Balaguer-Coll et al.

(2007) and Illueca et al. (2009), who combined the use of efficiency scores obtained in the first

stage with flexible techniques (nonparametric regression and conditional density estimation,

respectively).

Our analysis is focused on the Spanish banking system. It is one of the five largest banking

systems in Europe. It offers a scenario where profound changes took place some years ago

imposed by the Single Market Program of the European Community: important deregulations

such as interest rate deregulation, total removal of legal coefficients, legal homogenization of

both commercial and savings banks, free entry for European Union banks—as long as they

meet European Union legislation—, removal of the restrictions on the geographical expansion
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of savings banks, implementation of new telecommunications technologies, etc. In order to

achieve a full economic and monetary integration with the creation of the euro currency union

in 1999, the higher competitive pressures—and the reduction of market power—would impel

financial institutions to make an extra effort to enhance efficiency. In fact, the advance in the

degree of financial integration in Europe that has taken place after the introduction of the

euro has been accompanied by increasing internationalization and openness of the Spanish

banking sector, as well as an increasing importance of the cross-border activity. In this context

of increased competition, Spanish banks experienced an improvement in their efficiency levels

(Maudos and Fernández de Guevara 2008).

The analysis of the Spanish banking sector has an additional attractive feature. The fact

that in Spain there are financial institutions with different ownership structures, corporate gov-

ernance and business models enables us to analyze whether the relationship between market

power and efficiency varies with the type of bank. Specifically, in Spain there are three types

of deposit institutions, private commercial banks, savings banks and credit co-operative banks,

although we focus on the first two as the credit co-operatives have a marginal market share

(only 4% in terms of total assets).

The study proceeds as follows. The next section surveys the literature of the relationship

between efficiency and competition. Section 3 presents the methodology used to measure

market power and efficiency, emphasizing the relevance of focusing on cost efficiency and its

technical and allocative components, introducing both the method and results on market power

and efficiency separately. Section 4 describes the data and the specification of banking inputs

and outputs. Section 5 presents the results. Finally, Section 6 concludes.

2. The relationship between efficiency and competition: the quiet life hypothesis

As it is mentioned in Maudos and Fernández de Guevara (2007), the literature on the relation-

ship between competition and efficiency is related to the hypothesis that explains the relation-

ship between market structure, efficiency and performance. According to the traditional SCP

paradigm referred to in the previous section, firms in markets with higher concentration are

able to earn extra profits as the result of collusion between the firms in the industry. Thus, this

hypothesis postulates a positive relationship between performance and concentration, assum-

ing that the higher the market concentration, the higher the firms’ market power.

An alternative hypothesis establishes that the positive correlation between profitability and

market concentration is spurious and simply proxies for the relationship between superior

efficiency, gains in market share and, consequently, higher concentration. According to this ES

hypothesis (Demsetz 1973) also referred to in the introduction, the effect of concentration on

profitability vanishes once a proxy variable for efficiency is introduced as explanatory variable.
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In this context, the quiet life hypothesis focuses on the effect of market power on efficiency.

This hypothesis postulates that the higher the market power, the lower the effort of managers to

maximize efficiency, a negative correlation thus existing between market power and managerial

efficiency.

There are several reasons that can justify a positive relationship between higher levels of

market power and lower efficiency levels (Berger and Hannan 1998). First, if firms can charge

prices in excess to competitive levels, managers do not have incentives to work as hard to keep

costs under control, enjoying a “quiet life”. Second, market power may allow managers to

pursue objectives other than revenue/profit maximization. Third, in a non-competitive envi-

ronment, managers devote resources to obtaining and maintaining market power which raises

cost and reduces cost efficiency. Finally, market power allows inefficient managers’ behavior to

persist without any intention to pursue goals other than maximizing firm value.

In contrast to the views supporting the quiet life, there are alternative explanations advo-

cating for the rejection of this hypothesis in the specific case of the banking industry. Taking

into account the specific characteristics of banks, this type of firms can reduce problems inher-

ent to them (such as asymmetric information, problems of adverse selection and moral hazard,

etc.) by establishing long-term relationships with clients. As indicated by the literature on

relationship banking (Petersen and Rajan 1995), banks with market power have lower costs of

monitoring and transactions with borrowers. Under such circumstances, a positive relationship

between market power and cost efficiency would emerge. Banks with market power may have

cost advantages in screening certain groups of borrowers. In addition, market power allows

banks to enjoy greater profits, which may create incentives to behave prudently, this behavior

leading to the selection of less risky activities with lower monitoring costs. Finally, banks with

market power are under less pressure to increase the quality of banking services, decreasing

consequently the operating costs.

Although the relationship between profitability, market concentration and efficiency of the

banking industry has been tested in an important number of papers, the available empirical

evidence on the quiet life hypothesis is scarcer. However, in the last few years there is a renewed

interest in analyzing the links between efficiency and market power. After reviewing this recent

literature one may conclude that the empirical evidence is not conclusive—i.e., it is mixed.

The recent available evidence is relatively ample. Berger and Hannan’s (1998) results are

consistent with the quiet life hypothesis as a negative relationship between cost efficiency and

market power (proxied by market concentration) is found for the U.S. banking industry. For a

sample of developing countries, Turk Ariss’s (2010) results also support the quiet life hypoth-

esis, considering that banks with more market power (proxied by the Lerner index) are also

the least cost efficient. However, according to her, one should be cautious about this result, if
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we consider that it is likely that the higher costs associated with market power are eventually

channeled to bank clients which, in turn, may feed into higher prices and possibly boost bank

profit efficiency. Similarly, Delis and Tsionas (2009), using a panel of EMU banks, report a

negative relationship between cost efficiency and market power. Similar results were found by

Coccorese and Pellecchia (2010), whose results support the quiet life in the context of Italian

banking, although the impact of market power on efficiency was not particularly remarkable

in magnitude.

On the contrary, the contributions by Maudos and Fernández de Guevara (2007), Koetter

et al. (2012), Fu and Heffernan (2009) and Casu and Girardone (2009) reject the quiet life hy-

pothesis. The first of these papers analyzes the relationship between market power (measured

by the Lerner index) and cost efficiency for the EU-15 banking sector. Koetter et al. (2012) derive

efficiency-adjusted Lerner indices for the U.S. bank holding companies. They conclude that the

evidence on the relationship between competition and both cost and profit efficiency clearly

rejects the quiet life hypothesis. Casu and Girardone (2009) find positive causation between

market power (proxied by the Lerner index) and efficiency for five EU banking sectors. Finally,

for the Chinese banking system, Fu and Heffernan (2009) do not find evidence to support the

quiet life hypothesis, although a drawback of this paper (as in Berger and Hannan’s) is that

they use market concentration as proxy variable for market power.

3. Methodology

3.1. The measurement of market power

There are basically two methodologies to measure the degree of competition in the banking

industry. The first one is the structural approach that stems from the traditional SCP paradigm

referred to above and that uses market concentration indices as proxy variable for market power

under the assumption that the higher the market concentration, the higher the market power.

The second one is the so-called “New Empirical Industrial Organization” (NEIO) approach

which relies on non-structural models that infer market power from the observation of banks’

conduct. Under this approach, competition measures are developed from theory of the firm

models under equilibrium conditions and typically use some form of price mark-up over a

competitive benchmark. In the Lerner index,1 it is the mark-up of price over marginal cost

and the divergence of price from perceived marginal revenue for the Bresnahan’s measure

(Bresnahan 1989). The higher the mark-up, the greater the market power. An alternative

1The estimation of the Lerner index in banking has been applied in the studies by Angelini and Cetorelli (2003),
Fernández de Guevara et al. (2005), Maudos and Fernández de Guevara (2004, 2007), Fernández de Guevara et al.
(2007), Carbó-Valverde et al. (2003), and Carbó-Valverde et al. (2009), among others.
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approach, developed by Panzar and Rosse (1987)—the so-called H-statistic2—focuses on the

degree to which changes in the input prices leads to subsequent changes in revenues provided

that the industry in a long-run equilibrium.

As mentioned before, some contributions have shown the limitations of proxying bank

competition intensity with concentration measures, pointing to the need of using alternative

indicators. For this reason, we use a competition indicator from the new empirical industrial

organization approach: the Lerner index.

The Lerner index measures the capacity to set interest rates above marginal costs as a pro-

portion of prices. This market power indicator is usually derived from the Monti-Klein model

(Freixas and Rochet 1997) and has been empirically approached in several papers cited above.

As we interested in getting an aggregate measure of market power for the whole banking

activity, we use the total assets of each bank as our proxy for banking output. With this ap-

proximation, the Lerner index is defined as the ratio “(price of total assets-marginal costs of

total assets)/price”. The price of total assets is computed from bank-level data as the ratio of

bank revenue/total assets. Marginal costs are estimated from a translog cost function with a

single output (total assets) and three inputs (deposits, labor and physical capital). As a panel

data set is available, the estimation of the cost function includes individual fixed effects and

time effects, which allows to control for the effect of macroeconomic variables such as GDP

growth and inflation rate.

3.2. The measurement of efficiency

Efficiency may be measured via a variety of methods. They fall under the broad categories of

parametric and nonparametric methods. Several monographs provide accurate descriptions of

the available methods (Fried et al. 2008). However, some relatively recent monographs lean

towards either parametric or nonparametric methods. Some findings showing that results may

differ greatly between parametric or nonparametric techniques might have deterred publica-

tion of new monographs describing both approaches. On this respect, the recent paper by

Badunenko et al. (2012) provides an explicit comparison of SFA and DEA estimators.

In addition to this, the evolution of parametric and nonparametric techniques has not been

entirely equal. Up to the early nineties, both groups of techniques went through relevant

progress,3 but some of the most recent proposals have leaned towards the nonparametric field.

Cazals et al. (2002) present a nonparametric estimator (order-m) which is more robust to extreme

2There is also an extensive literature that has been considering the Panzar and Rosse (1987) H-statistic. See for
example, Bikker and Groeneveld (2000), De Bandt and Davis (2000), Claessens and Laeven (2004), among others.

3The paper by Berger and Humphrey (1997) surveyed 130 articles applying frontier efficiency analysis to financial
institutions in 21 countries, which considered either parametric or nonparametric techniques in similar proportions.
Fethi and Pasiouras (2009) provide a more updated survey of this literature, although confined entirely to the
nonparametric case.
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values than DEA (Data Envelopment Analysis) or FDH (Free Disposable Hull), similarly to the

order-α estimator introduced by Aragon et al. (2005).

However, prices do enter the analysis using any of these new methods, and some of them

carry difficulties in handling multiple outputs and multiple inputs. Yet in banking the avail-

ability of prices, and the multiple-input/multiple-output nature of the banking firms suggests

previous nonparametric methods (such as DEA) may still be more advisable—at least until

further progress is made in the aforementioned new fields of research. In addition, both the

order-m and order-α estimators, although presenting some relevant advantages with respect to

DEA or FDH, have also certain limitations partly derived from the need to specify the m (in the

case of order-m) and α (in the case of order-α) parameters, which may be involved.

Therefore, the set of activity analysis techniques presented and revised in Färe and Grosskopf

(2004) is our reference for measuring efficiency. Let x = (x1, . . . , xN) ∈ R
N
+ be the input quanti-

ties, with associated prices ω = (ω1, . . . ,ωN) ∈ R
N
+ , and y = (y1, . . . , yM) ∈ R

M
+ be the output

quantities. Accordingly, total costs will be defined as ωx = ∑
N
n=1 ωnxn. It is important to note

that we are assuming both input and output quantities are divisible and, more importantly,

both the costs and revenues they generate, respectively, are divisible as well. This is a critical

issue in banking, since information disaggregated enough is not always available.

Technology is defined as

T = {(x, y) : x can produce y}, (1)

and input requirement and output sets are defined as

L(y) = {x : (x, y) ∈ T }, y ∈ R
M
+ , (2)

and

P(x) = {y : (x, y) ∈ T }, x ∈ R
N
+ , (3)

respectively.

If x∗s and y∗s is the optimal input vector for firm s, s = 1, . . . , S, cost efficiency indexes will be

defined as CEs = ω′

sx
∗
s/ω′

sxs. The indexes will be bounded by unity from above, i.e., efficient

firms will be those with efficiency scores equal to one—or 100, if results were expressed as

percentages.

Optimal values are found by solving linear programming problem. For cost efficiency, the
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linear programming problem (where X and Y are observed data) for each s firm is as follows:

minλ,x∗s ω′
sx

∗
s

s.t. −ys + Yλ ≥ 0,

x∗s − Xλ ≥ 0,

1λ = 1,

λ ≥ 0.

(4)

3.3. Modeling the links between efficiency and market power

OLS regressions assume the dependent variable of interest to be Gaussian distributed. But

in our case, in which efficiency scores are bounded at unity, this assumption is clearly not

met. The dependent variable must also be independently distributed. However, our efficiency

scores are obtained using linear programming techniques and, therefore, this assumption is

also violated, since firms’ efficiencies are dependent in the statistical sense. This point has been

forcefully made by Simar and Wilson (2007), who provide a valid alternative to these problems.

See also the recent update by Simar and Wilson (2011).

The severity of this problem in the context of testing the quiet life hypothesis has been

acknowledged by Koetter et al. (2012), who coincides in stressing how problematic it is to condi-

tioning competition measures on banks’ efficiency estimates obtained using frontier techniques—

i.e., second-stage regressions using efficiency for the dependent variable lead to inconsistent

and biased results.

The arguments in the previous paragraph would suffice per se to discard testing the quiet

life considering OLS, or any of its variants—when efficiency scores have been obtained using

linear programming techniques. In addition to this, the difficulties that the (scarce) previous

empirical studies might have faced in testing the quiet life may relate to the fact that they

use regression techniques which focus on the average effect for the average bank. However, as

indicated by Reichstein et al. (2010), there are cases in which “the devil might dwell in the

tails”, i.e. the sign and significance of a given coefficient might be driven by the behavior of

few firms. Therefore, under some circumstances OLS is not the most appropriate method, and

more flexible alternatives which consider the entire distributions of efficiencies, the dependency

structures among efficiency scores (in the statistical sense), and the way the relate to market

power, are better.

In addition to the rationale provided above, although using linear models may generally

represent a valid alternative, sometimes their choice entails a fair preliminary approach and

can be very restrictive, leading to departures from reality. Indeed, in econometrics, the assump-

tion of statistical adequacy, or correct model specification has often constituted an important

concern, and functional forms misspecified may lead to invalid tests for the hypotheses under
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discussion (i.e., the so-called “parametric straitjacket”). There are circumstances in which trans-

formations and/or quadratic terms can be used to handle nonlinearities, but it should be kept

in mind that their use can require a good deal of expertise and time. Therefore, it remains an

open question as to why more flexible methods—such as nonparametric regression—are still

far from overused by economists, despite the recent (and not so recent) advances in this field

by both the statistics and econometrics’ literatures (DiNardo and Tobias 2001).

Nonparametric regression4 allows us to understand how some variable of interest, in our

case the efficiency (Y or, in our particular setting, EFF) of any particular decision unit, is

affected by variations in some other variable X (in our case, market power). The utmost advan-

tage of this type of technique—compared to parametric methods such as linear or polynomial

regression—is its absence of a priori assumptions concerning the particular functional form on

the link between Y and X.

As suggested by Jennen-Steinmetz and Gasser (1988), out of the three best-known estima-

tors of the nonparametric regression problem—smoothing splines, k-nearest neighbor estima-

tor, and kernel estimators—the large body of theoretical results regarding asymptotic proper-

ties of these estimators has so far not solved the problem as to which method is always best

and, if not, under which circumstances each method is preferable.5 Several comparative stud-

ies exist such as Jennen-Steinmetz and Gasser (1988) and, in an application to Engel curves

estimation, see Engel and Kneip (1996). A comparison among the three most popular and

easy-to-implement methods, namely, the kernel, the k-nearest neighbor, and the (cubic) spline

smoothers, is performed in Härdle (1990), both in theoretical and empirical terms. Silverman

(1984) has demonstrated that spline smoothing corresponds approximately to smoothing by a

kernel method with bandwidth depending on the local density of design points.

The underpinnings of nonparametric regression methods can be found elsewhere, yet we

provide some insights to make the exposition as self- contained as possible. For a particular

data set {(Xs,Ys)}Ss=1, we are interested in estimating the mean response curve m:

Ys = m(Xs) + εs, s = 1, . . . , S. (5)

It is often difficult to ascertain the particular nature of m(•), i.e., to know whether the

relationship is linear, quadratic, growing in X, etc. In such cases nonparametric regression

advantages turn out to be especially relevant.

We use a particular variant of nonparametric regression, namely, smoothing splines, which

4Some recent and not-so-recent monographs cover this topic; see, for instance, Li and Racine (2007).
5In addition, although many different methods have been proposed to construct nonparametric estimates of a

smooth regression function, the attention devoted to the different smoothing methods has not been great. Among
them, the kernel, k-nearest neighbor (k− NN), orthogonal series and spline estimators have received far more atten-
tion than some others such as recursive techniques, the regressogram, convolution smoothing, median smoothing,
split linear fits or empirical regression which notwithstanding represent satisfactory choices in some specific cases.
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provide a seamless link with semiparametric approaches to regression. Other studies such as

Bao and Wan (2004) have used this alternative, considering that in some circumstances the un-

derlying theories are not capable of conveying sufficient information to enable a correct and

successful specification of parametric models. The penalized (or p-splines) variant to smoothing

splines (Ruppert and Carroll 2000) introduces a penalty to control for possible spatial hetero-

geneity in the regression function. Similarly to kernel regression, m in Equation (5) is assumed

to be a smooth function equal to the conditional mean of ys given xs, which is estimated using

a regression spline model:

m̂(x; β) = β0 + β1x+ . . .+ βpx
p +

K

∑
k=1

βp+k(x− κk)
p
+. (6)

Splines are essentially piecewise polynomials whose different polynomial segments are tied

together at a series of knots in a way that insures certain continuity properties (Bao and Wan

2004). In Equation (6) the knots are represented by κ1, κ2, . . . , κK, whereas p ≥ 1 is an integer,

β = (β0, . . . , βp, βp+1, . . . , βp+K)
⊤, with βp the coefficient of the pth knot, is a vector of regression

coefficients, and (u)
p
+ = up I(u ≥ 0). Since the number of knots determines whether the fit may

be too rough, or too smooth (too many knots yield quite a rough fit), it may be relevant to

constrain their influence. Penalized spline regression provides means for doing so, hoping to

result into a less variable fit.

Equation (6) represents a spline model of general degree (i.e., a pth-degree spline) in which,

using truncated power functions, the basis is:

1, x, . . . , xp, (x− κ1)
p
+, . . . , (x− κk)

p
+,

which is known as the truncated power basis of degree p. When p is odd, a set of basis

functions spanning the space of pth-degree polynomials with knots at κ1, . . . , κK is

1, x, . . . , xp, |x− κ1|
p, . . . , |x− κk|

p.

Smoothing splines have a natural representation in terms of this type of functions, some-

times called radial basis functions. Specifically, we consider the cubic smoothing spline:

m̂(x; β) = β0 + β1x+
K

∑
k=1

β1k|x− κk|
3 (7)

where β̂0, β̂1 and β̂11, . . . , β̂1K minimize

||y− X0β0 − X1β1||
2 + λ3β⊤

1 Kβ1 (8)
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for some λ > 0, subject to

X⊤
0 β1 = 0, (9)

where β0 ≡ [β0, β1]
⊤, β1 = [β11, . . . , β1K]

⊤, X0 = [1, xi]1≤i≤n, and:

X1 =
[
|xi − κk|

3
]
, K =

[
|κk − κk′ |

3
]

This is accomplished by specifying a knot sequence κ1, . . . , κK using the basis functions

1, x, |x − κ1|
3, . . . , |x − κK|

3. λ is a smoothing parameter which controls the trade-off between

smoothness, and goodness of fit to the data. The larger the value of γ, the more the data will

be smoothed to produce the curve estimate. λ3β⊤
1 Kβ1 is called a roughness penalty because it

penalizes fits that are too rough, thus yielding a smoother result. We have followed Ruppert

et al. (2003) regarding the choice of smoothing parameter and knots’ position.

4. Data, inputs, and outputs

The Spanish banking system is made up of private commercial banks, savings banks, and credit

co-operatives. For regulatory reasons, they have traditionally specialized in different lines of

business. After the deregulation process that took place at the beginning of 1990s, they now face

exactly the same operational regulation, which allows them to undertake the same activities.

The only regulatory differences among them arise from their types of ownership, as commer-

cial banks are privately owned, savings banks are foundations, and credit co-operatives are

mutually owned. This difference is subtle, as savings banks are allowed to acquire commercial

banks, but the opposite does not hold, as the former are a mix of privately- and publicly-owned

companies. In contrast, due to this ownership type, savings banks have substantial difficulties

in gaining equity. In fact, in the period analysed in this paper, 50% of their profits had to be

dedicated to increasing reserves. However, the three types of firms are still influenced by their

historical specializations, although over the last few years firms’ product mixes have varied

greatly.6 See Crespí et al. (2004) for deeper insights on the peculiar ownership type of Spanish

savings banks.

As mentioned before, we concentrate our analysis in commercial banks and savings banks,

considering that cooperative banks only represent 4% of the Spanish banking sector in terms of

6The outbreak of the international financial crisis in 2007 and the subsequent economic crisis has affected many
Spanish financial institutions severely, specially savings banks. This has partly occurred because of the concentration
of many Spanish savings banks in the real state development and construction sector, dependence on wholesale
market funding, excess capacity, small average size of institutions, loss of profitability, etc. As a result, some
regulatory initiatives such as the Royal Decree-Law 9/2009 of 26 June 2009 and the Royal Decree-Law 11/2012 of 9
July 2010 have laid the legal foundations in Spain for the restructuring of the savings bank sector. According to the
Bank of Spain, this restructuring was unavoidable due to the structural limitations associated with the legal nature
of savings banks, such as the legal restrictions on raising high quality capital. This process of rapid change provide
an extra interest to the analysis carried out here.
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total assets. The data used in the article are provided by the Spanish Confederation of Savings

Banks (Confederación Española de Cajas de Ahorro, CECA) and the Spanish Association of

Commercial Banks (Asociación Española de Banca, AEB). This is the only public information

available for Spanish commercial and savings banks at the individual firm level. Although the

Bank of Spain provides some additional disaggregated information for different balance sheet

categories, it is available only for aggregated data—i.e., commercial banks and/or savings

banks considered altogether. Data come from each firm’s balance sheet and profit and loss

account. The overwhelming majority of firms making up the industry are considered in the

study. The banks for which either missing or unreliable information (zero employees, etc.)

were excluded from the study. Our sample represents more than 90% of total industry assets.

The period analyzed is 1992–2003. In 2004 there was a regulatory change so that bank

public data are now published following a very different decomposition of the balance sheet

items. There have been no institutional initiatives so far to provide a homogeneous database

covering the years before and after 2004. We chose the pre-2004 period because it allows to

include more years in the study and to analyze the impact of deregulation on market power

and efficiency.

Specifying inputs and, especially, outputs, is often a controversial issue in banking. On

the input side, our choice stands with most previous literature. We consider three inputs,

namely, labor (x1), capital (x2) and purchased funds (x3). See Table 1 for specific definitions

and summary statistics for year 2003. We can calculate prices for each input category since

information on the costs they generate is also available—i.e., labor expenses, amortizations and

other noninterest expenses, and financial costs, respectively. There exist three basic approaches

to define bank output, namely, the asset, user cost, and value-added approach (Berger and

Humphrey 1992). Most studies fall under the first category, basically due to data limitations.

Many others have considered an “enlarged” version of the asset approach, considering not only

that asset categories yielding revenues are to be considered outputs, but also that transaction

deposits are also an output, since they may be considered a proxy for the provision of payment

and safekeeping services provided by each bank. However, there is no available disaggregation

for deposits, which severely restrains our choice.

Taking into account the rationale presented above, we consider banks to provide four out-

puts: loans (y1), fixed-income securities (y2), other securities (y3), and nontraditional output

(y4). Specific descriptions for each of them, along with descriptive statistics, are provided in

Table 1. Our choice is also conditional on the available information on the revenues attributable

to each output category. Following Rogers (1998), we have also considered a further category,

namely, nontraditional output, based on Rogers’ findings which pointed out that disregarding

the new activities in which most banks engage (basically activities that provide financial ser-
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vices and generate fee income) leads to biased efficiency estimates for both cost, revenue, and

profit efficiency.

5. Results

5.1. Results on market power

Figure 1 displays violin plots on the evolution of market power for all banking firms, commer-

cial banks, and savings banks.7 They show that market power has been increasing over time,

regardless of the type of firm under analysis. However, several specificities emerge. Consid-

ering the entire banking industry (Figure 1.a), the median (the yellow circle inside each box)

indicates that market power has been increasing over the sample period. However, there is still

a remarkable amount of extreme behavior, as shown by the long tails, both upper and lower.

Although more than 50% of banking firms have Lerner indices above 0.4 in the 2000–2003 pe-

riod, this did not occur in the preceding years. However, there is a remarkable number of

firms whose market power is quite low, as indicated by the longer and thinner lower tail of

the distributions. In sum, although this is a hypothesis which need to be tested properly, the

distribution of the Lerner index is stretching over the sample period, indicating that the new

competitive and regulatory environment has had a relatively strong impact on market power.

The reasons explaining this evolution are multiple, and lie beyond the scope of this paper.

However, some of them could be related to the differing trends found for commercial banks

and savings banks. As indicated in Figure 1.b, there is a remarkable amount of variability

for commercial banks, whose violin plots indicate that the distance between the tails of the

distribution is increasing. And this is not only attributable to the behavior of the observations

at both extremes of the distribution, since the central 50% of the probability mass (the “box”)

has also become bigger.

In contrast, savings banks show a different pattern. In this case, distributions are much

tighter, indicating that homogeneity prevails among this group of banking firms. This is a

relatively surprising finding, since the deregulatory initiatives (Tortosa-Ausina et al. 2012) have

enabled commercial banks and savings banks to face the same regulatory environment—they

only differ in their type of ownership. However, discrepancies among savings banks in many

fields (in this case, in terms of market power) are still minor.

7The violin plots combine the advantages of the box plots with density traces in one diagram, by making the
width of the box proportional to estimated density. Specifically, the density traces are plotted symmetrically to the
left and the right of the (vertical) box plot. Note also that there is no difference in these density traces compared to
the standard densities obtained, for instance, via kernel smoothing, other than the direction in which they extend. By
adding two density traces we obtain a symmetric plot, which facilitates realizing the magnitude of the density. The
box inside represents the interquartile range (IQR), containing the 50% midrange values of the variable analyzed,
and the horizontal line inside the box is the median. This mix of the density trace and the box plot enables quick
and insightful comparison of several distributions (Hintze and Nelson 1998).
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We can consider a proper test in order to elucidate whether the differences among the dif-

ferent types of institutions are significant or not. Table 2 provides results on the Li (1996) test in

order to ascertain whether results differ according to a variety of hypotheses, namely, we test

whether market power distributions differ significantly when comparing both types of firms,

and when comparing the different types of firms over time—i.e., 1992 vs. 2003, for which the

relevant hypotheses are H0 : f (·) = g(·), where f and g represent the relevant distributions.

Details on the specifics of the test are provided not only in Li (1996) but also in other appli-

cations such as Balaguer-Coll et al. (2010). In brief, it consists of comparing two distributions

based on kernel methods, making no assumptions on the shape of the distributions, and fo-

cusing on their entirety rather than simple summary statistics such as ANOVA, Kruskal-Wallis

or Wilcoxon and related tests do. This is important because the average may mask important

trends at firm level.

Results show that differences are always significant at the 1% significant level. When

comparing commercial banks and savings banks, the null hypothesis of equality of distribu-

tions ( f (LernerCommercial banks) = g(LernerSavings banks)) is strongly rejected. When comparing

the distributions of the Lerner index at the initial and final sample years (1992 and 2003),

although the test statistics are lower, the null hypothesis is also rejected at the usual signifi-

cance levels, for all banking firms ( f (LernerBanking firms, 1992) = g(LernerBanking firms, 2003)), com-

mercial banks ( f (LernerCommercial banks, 1992) = g(LernerCommercial banks, 2003)) and savings banks

( f (LernerSavings banks, 1992) = g(LernerSavings banks, 2003)).

5.2. Results on efficiency

Tables 3, 4 and 5 display results for cost, technical and allocative efficiency, respectively. Mean

cost efficiency has been declining from 0.843 in 1992 to 0.698 by 1999 for all banking firms,

reviving to reach 0.760 by 2003. Commercial banks were the best performers; they departed

from 0.912, bottomed at 0.749 by 1999, but ended up with efficiency levels similar to those of

1992. A similar pattern is found for savings banks, yet their efficiency is substantially lower.

Savings banks also bottomed earlier, declining from 0.774 to 0.625 in 1998, reaching 0.683 by

the end of the sample period. Weighted values are higher in all instances, yet the inflection by

the end of the nineties is mirrored. In this case, the inflection occurs earlier, suggesting that

large firms could be leading in an industry characterized by rapid change.

Therefore, despite the intense regulatory initiatives, inefficiency not only persists but also

increases over time. In addition, although all banking firms face the same regulation, and they

can perform the same operations, cost efficiency differences, on average, are not fading away.

The decomposition of cost efficiency into their technical and allocative components is quite

revealing, since the sources of inefficiency are identified. Technical efficiency (see Table 4) is
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remarkable, reaching mean values close to 100% in some cases. Firms’ performances are much

closer than in the cost and revenues cases, as revealed by much lower standard deviations. In

contrast, allocative efficiency (Table 5), presents more instability, since it does not differ a great

deal from technical efficiency at the beginning of the sample period, yet ends up being, on aver-

age, much lower. Therefore, when prices do not enter the analysis one faces an industry where

most firms are close to the efficient frontier. However, when they are included, discrepancies

are remarkable, driving efficiency downwards.

Although the variety of summary statistics are helpful for achieving better insights on the

peculiar distributions of efficiencies, its informativeness is overshadowed by what more com-

prehensive, graphical based, indicators such as violin plots reveal. Violin plots on cost, technical

and allocative efficiency are displayed in Figures 2, 3 and 4, respectively, for all types of banking

firms. Considering the banking industry as a whole, Figure 2(a) indicates that discrepancies are

important on the cost side, and they increase over time, as probability mass tends to become

more spread. This points to a great variety of firm behavior. These trends are not entirely

coincidental when analyzing each type of banking firm, as shown in Figures 2(b) and 2(c). On

the one hand, differences among commercial banks increase rapidly, and are very high; how-

ever, there are many efficient commercial banks. On the other hand, savings banks’ behavior is

much more homogeneous, although differences seem also to be growing.

The violin plots corresponding to technical and allocative efficiency (Figures 3 and 4, re-

spectively) clearly corroborate the views provided by Tables 3, 4 and 5, indicating that the main

contributor to cost inefficiency is its allocative component. This occurs regardless of the type of

banking firm considered, but in the case of commercial banks technical efficiency is particularly

high. However, although it has been increasing over the analyzed period, for both commercial

and savings banks there are few firms which are much more inefficient than the rest, as shown

by the long and thin tails.

5.3. On the causality between efficiency and market power

The links between market power and the variety of efficiency concepts considered here are ex-

plored in Figures 5–7 which show results on the links between efficiency and market power, for

all cost, technical, and allocative efficiency and using penalized spline smoothing. We provide

standard error bands—in particular, pointwise ±2 std. error bands—which provide a more

precise view of the probability mass supporting the sign of the relationship. All estimations

have been performed for the entire 1992–2003 period. Each figure contains three panels: bank-

ing firms, commercial banks, and savings banks. We have performed the analysis separately

because, while it is true that both types of firms face the same regulatory environment and

can perform exactly the same operations, strategies to respond to deregulation have differed a
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great deal.

When considering the relationship between market power and cost efficiency estimated

via spline smoothing (Figure 5), the difficulties of fitting a linear model are blatant due to

the apparent nonlinearity of the relationship. When all banking firms are considered (Figure

5.a) the link shows a U-inverted functional form. For low levels of the Lerner index, the

relationship is found to be positive, yet the wide standard error bands suggest significance is

low. However, an inflection point is observed in the vicinity of Lerner ≈ 0.2, when considering

banking firms as a whole, and the regression line turns negative. Although the relationship

between market power and cost efficiency becomes positive for high values of the Lerner index,

the wide standard error bands, and also the number of observations (which are displayed on

the OX axis using short vertical bars) indicate that behavior is caused by very few observations,

therefore not providing statistical support to this claim. Therefore, Figure 5.a gives support to

these techniques as a relevant tool for testing the quiet life, since the negative relationship

(supporting the “quiet life”) does not hold for the entire conditional distribution.

Results vary a great deal if performing the analysis separately for commercial banks and

savings banks. As suggested by Figure 5.b, cost efficiency has no apparent links with market

power for commercial banks, as shown by the standard error bands. Therefore, the empirical

evidence would be too weak either to support or reject the quiet life. Figure 5.c, on the other

hand, suggests that the negative relationship found is mostly driven by savings banks.

As revealed by Figures 6 and 7, the patterns found for cost efficiency are mostly driven

by their allocative components. The trend is apparent for either type of firm. In the case

of technical efficiency, the sign of the relationship is mostly positive regardless of the type

of firm under analysis, but especially for savings banks—which also showed the clearest ten-

dencies for cost efficiency. In the case of banks, although the trend is unsteady, for the bulk

of observations—ranging in the Lerner ∈ (0.2, 0.5) interval—the relationship is also positive.

Therefore, allocative efficiency would be the main source for the types of relationships found

for cost efficiency. As suggested in Figure 7, the shape is clearly U-inverted for commercial

banks (especially for revenue efficiency) and mostly negative for savings banks.

6. Concluding remarks

Although several studies have analyzed the relationship between market power and efficiency

in banking, the empirical evidence obtained to date is not conclusive. On the one hand, the

studies by Berger and Hannan (1998), Delis and Tsionas (2009) and Turk Ariss (2010), among

others, support the quiet life hypothesis, according to which managers would translate higher

inefficiencies into higher prices—as opposed to the efficient structure paradigm, where best

practice allows firms to earn market power. On the other hand, papers by Maudos and Fernán-
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dez de Guevara (2007), Casu and Girardone (2009), Fu and Heffernan (2009), and Koetter et al.

(2012), among others, reject that hypothesis. In this context, Casu and Girardone (2009) have

recently pointed out that the relationship between competition and bank performance might

be more complex, and the view that competition is unambiguously good might be particularly

naïve in banking (Claessens and Laeven 2004).

Despite the view that the relationship between competition and efficiency is complex is

becoming increasingly popular, there have been no attempts to explore the relationship assum-

ing more flexible approaches, postulating no a priori relationship between market power and

efficiency. This is precisely what we do in this paper. Specifically, we consider nonparametric

regression techniques, which are appropriate in our particular setting not only because of their

flexibility, but also because they do not confine the analysis to the average effect for the aver-

age bank, and for representing an alternative to OLS which “are invalid in this context due to

complicated, unknown serial correlation among the estimated efficiencies” (Simar and Wilson

2007). Therefore, we consider a fully consistent approach in which nonparametric techniques

are employed not only for measuring bank efficiency but also in the second stage of the analy-

sis, in which a deeper understanding of the relationship between efficiency and market power

is investigated.

Our study is focused in the Spanish banking industry, one of the largest banking systems

in Europe, which is changing dramatically in some aspects since the international financial

crisis started. In particular, the specific savings banks’ sub-sector is being reshaped rapidly, as

the number of savings banks will be reduced almost to one third of that existing before the

beginning of the crisis.

In this particular context, our results show that there are remarkable differences between

commercial banks and savings banks’ market power indicators, and also between the efficien-

cies found for both types of firms. In contrast to most previous studies, we conduct some tests

which enable to conclude whether differences between the types of firms are significant or not.

However, the most interesting finding is that, for the entire banking industry, the relationship

between market power (measured using a non-structural indicator of the degree of market

competition such as the Lerner index) and efficiency is not linear. The parameter that shapes

the relationship between both variables is not constant along the distribution, indicating that

the significance market power’s impact on efficiency varies for each firm.

The analysis steps further by assessing how the different components of inefficiency—

technical and allocative—are linked to market power, using the same techniques. The analysis

for technical efficiency, which sets prices aside, reveals also interesting trends: in this case, a

positive relationship is found, especially for savings banks; on the other hand, when prices en-

ter the analysis—allocative efficiency—we find that the relationship is either U-shaped or even
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negative which is, again, the case for savings banks. Therefore, we consider that examining the

links between market power and efficiency would benefit not only by considering these flexible

approaches but also from a decomposition of the type of efficiency being analyzed.

Therefore, comparing our results with those obtained in other studies that contrast the

quiet life hypothesis shows the importance of analyzing separately the different components of

cost efficiency, considering that the relationship between market power and technical efficiency

presents peculiarities compared to the relationship with allocative efficiency. Similarly, given

that our study, as far as we know, is the only one so far published that shows the non-linearity

of the relationship between market power and efficiency in the specific case of the Spanish

banking sector, it is necessary to obtain additional evidence in order to test whether this result

is robust in other banking sectors. Actually, the different results achieved depending on the

type of bank ownership structure and business model would point out to the need of obtaining

additional evidence in other countries where competition among banks with different corporate

governance structure exists.
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Table 1: Definition of the relevant variables, 2003

Variable Variable name Definition Mean Std. dev.

Outputs

y1 Loans‡ All forms of loans 10,218,555.16 21,432,079.11

y2 Fixed-income securities‡ Fixed-income securities 2,090,161.71 6,650,321.65

y3 Other securities‡ Other securities and participating interests 802,539.46 3,210,842.41
y4 Nontraditional output Noninterest income (net) 87,626.85 215,877.86

Inputs

x1 Labor‡ Number of employees 2,505 4,827.83

x2 Capital‡ Physical capital 185,679.47 364,581.79

x3 Purchased funds‡ All deposit categories 12,446,063.86 28,729,959.75

Input prices

ω1 Wages & salaries Labor expenses/x1 51.287 10.627
ω2 Price of physical capital (Amortizations+other noninterest expenses)/x2 0.987 1.994
ω3 Price of purchased funds Financial costs/x3 0.019 0.009
‡In thousands of euros.
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Table 2: Distribution hypothesis testsa (Li 1996) (1992–2003)

Null hypothesis (H0)
b T-test

statistics

1-Percent
significance level

(critical value=2.3263)

f (LernerCommercial banks) = g(LernerSavings banks) 33.5789 H0 rejected

f (LernerBanking firms, 1992) = g(LernerBanking firms, 2003) 17.1974 H0 rejected

f (LernerCommercial banks, 1992) = g(LernerCommercial banks, 2003) 3.4918 H0 rejected

f (LernerSavings banks, 1992) = g(LernerSavings banks, 2003) 15.9216 H0 rejected

a Notes: f (·) and g(·) are (kernel) distribution functions for market power.
b The null hypothesis tests for the equality of distributions H0 : f (x) = g(x), ∀x, against the alterna-
tive, H1 : f (x) 6= g(x), for some x.
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Table 3: Cost efficiency, 1992–2003

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

Unweighted mean 0.843 0.822 0.814 0.802 0.817 0.734 0.714 0.698 0.733 0.760 0.722 0.760
Weighted mean 0.928 0.930 0.929 0.904 0.906 0.872 0.845 0.876 0.898 0.910 0.867 0.884
Std.Dev. 0.113 0.138 0.133 0.138 0.134 0.170 0.181 0.205 0.181 0.164 0.181 0.172

Banking Median 0.839 0.821 0.777 0.775 0.802 0.695 0.682 0.669 0.691 0.753 0.684 0.749
firms Kurtosis –1.032 –0.463 –1.421 –1.067 –1.339 –1.103 –1.137 –1.234 –1.196 –1.156 –1.136 –1.230

Skewness –0.058 –0.375 0.225 0.012 0.076 0.306 0.229 0.193 0.236 0.101 0.258 0.010

# observations 106 104 102 108 105 108 104 100 94 86 94 86

Unweighted mean 0.912 0.894 0.887 0.874 0.889 0.803 0.795 0.749 0.806 0.816 0.777 0.849
Weighted mean 0.966 0.967 0.974 0.956 0.954 0.920 0.910 0.936 0.965 0.960 0.939 0.960
Std.Dev. 0.090 0.126 0.123 0.128 0.116 0.167 0.173 0.225 0.190 0.171 0.203 0.174

Commercial Median 0.924 0.924 0.928 0.892 0.926 0.792 0.798 0.737 0.846 0.797 0.759 0.902
banks Kurtosis –0.332 1.411 –1.069 0.045 –0.580 –1.264 –1.261 –1.338 –1.460 –1.369 –1.442 –0.673

Skewness –0.693 –1.362 –0.665 –0.865 –0.750 –0.135 –0.225 –0.236 –0.306 –0.297 –0.216 –0.870

# observations 53 53 52 58 56 58 54 51 47 41 48 40

Unweighted mean 0.774 0.747 0.739 0.719 0.735 0.653 0.625 0.644 0.659 0.710 0.665 0.683
Weighted mean 0.861 0.861 0.847 0.809 0.819 0.785 0.733 0.772 0.786 0.835 0.776 0.794
Std.Dev. 0.090 0.109 0.096 0.097 0.101 0.137 0.144 0.170 0.138 0.142 0.136 0.128

Savings Median 0.760 0.737 0.714 0.710 0.719 0.619 0.593 0.601 0.647 0.694 0.646 0.660
banks Kurtosis 0.101 1.430 1.376 0.669 0.957 –0.060 –0.414 –0.684 –0.299 –0.564 –0.356 –0.204

Skewness 0.452 –0.134 1.160 0.556 1.013 0.758 0.585 0.553 0.420 0.274 0.430 0.256

# observations 53 51 50 50 49 50 50 49 47 45 46 46
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Table 4: Technical efficiency, 1992–2003

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

Unweighted mean 0.940 0.918 0.952 0.928 0.948 0.936 0.950 0.970 0.961 0.970 0.957 0.953
Std.Dev. 0.049 0.080 0.045 0.067 0.045 0.074 0.069 0.033 0.047 0.036 0.061 0.069

Banking Median 0.934 0.917 0.952 0.926 0.946 0.947 0.967 0.977 0.973 0.987 0.979 0.978
firms Kurtosis –1.447 1.537 0.290 2.771 –1.450 6.804 8.605 0.283 2.609 1.000 7.998 4.489

Skewness –0.027 –1.171 –0.628 –1.235 –0.133 –2.121 –2.536 –0.911 –1.509 –1.214 –2.489 –2.130

# observations 106 104 102 108 105 108 104 100 94 86 94 86

Unweighted mean 0.969 0.949 0.976 0.951 0.971 0.962 0.971 0.983 0.977 0.982 0.970 0.962
Std.Dev. 0.041 0.078 0.037 0.064 0.037 0.046 0.054 0.024 0.042 0.028 0.057 0.080

Commercial Median 1.000 0.998 1.000 0.982 0.998 0.992 1.000 1.000 1.000 1.000 1.000 1.000
banks Kurtosis –0.235 4.220 0.834 2.859 –0.276 –0.730 10.608 –0.489 9.261 2.775 6.508 4.007

Skewness –1.041 –1.984 –1.434 –1.547 –0.990 –0.836 –3.029 –1.030 –2.759 –1.711 –2.559 –2.263

# observations 53 53 52 58 56 58 54 51 47 41 48 40

Unweighted mean 0.911 0.887 0.927 0.902 0.920 0.906 0.928 0.956 0.944 0.959 0.943 0.945
Std.Dev. 0.037 0.070 0.038 0.061 0.038 0.087 0.076 0.036 0.046 0.039 0.063 0.058

Savings Median 0.902 0.895 0.921 0.904 0.917 0.922 0.942 0.961 0.949 0.968 0.956 0.955
banks Kurtosis 0.077 2.239 3.158 5.671 -0.245 4.542 7.973 -0.158 1.462 0.246 10.271 7.144

Skewness 0.759 –1.160 –0.630 –1.659 0.776 –1.906 –2.391 –0.546 –1.002 –0.863 –2.695 -2.231

# observations 53 51 50 50 49 50 50 49 47 45 46 46
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Table 5: Input allocative efficiency, 1992–2003

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

Unweighted mean 0.894 0.889 0.852 0.860 0.858 0.779 0.746 0.715 0.758 0.780 0.751 0.793
Std.Dev. 0.083 0.087 0.110 0.100 0.107 0.142 0.158 0.196 0.163 0.150 0.164 0.147

Banking Median 0.904 0.893 0.830 0.859 0.845 0.752 0.713 0.702 0.723 0.776 0.734 0.771
firms Kurtosis –0.401 –0.676 –1.264 –0.944 –1.166 –1.115 –1.083 –1.204 –1.100 –1.099 –1.015 –1.164

Skewness –0.481 –0.358 0.033 –0.096 –0.099 0.290 0.254 0.126 0.208 0.080 0.157 0.010

# observations 106 104 102 108 105 108 104 100 94 86 94 86

Unweighted mean 0.940 0.938 0.906 0.915 0.912 0.831 0.816 0.759 0.821 0.828 0.798 0.877
Std.Dev. 0.067 0.073 0.106 0.087 0.095 0.148 0.157 0.219 0.176 0.160 0.189 0.138

Commercial Median 0.949 0.957 0.953 0.931 0.942 0.829 0.816 0.745 0.867 0.814 0.816 0.920
banks Kurtosis 3.788 1.565 –0.704 0.383 –0.155 –1.212 –1.051 –1.303 –1.240 –1.274 –1.232 –0.719

Skewness –1.517 –1.383 –0.820 –0.927 –0.899 –0.248 –0.316 –0.290 –0.386 –0.350 –0.354 –0.810

# observations 53 53 52 58 56 58 54 51 47 41 48 40

Unweighted mean 0.848 0.838 0.796 0.795 0.797 0.718 0.670 0.670 0.694 0.737 0.702 0.720
Std.Dev. 0.071 0.069 0.082 0.072 0.084 0.108 0.120 0.158 0.121 0.127 0.117 0.112

Savings Median 0.841 0.836 0.794 0.789 0.795 0.691 0.643 0.628 0.696 0.735 0.697 0.712
banks Kurtosis –0.468 0.668 0.600 0.344 0.143 0.000 –0.192 –0.715 –0.116 –0.411 –0.159 –0.213

Skewness –0.076 –0.018 0.591 0.239 0.514 0.721 0.631 0.485 0.405 0.251 0.391 0.213

# observations 53 51 50 50 49 50 50 49 47 45 46 46
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Figure 1: Violins plots of market power (Lerner index), 1992–2003

(a) Banking firms
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Figure 2: Violin plots of banks’ cost efficiency, 1992–2003
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Figure 3: Violin plots of banks’ technical efficiency, 1992–2003
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Figure 4: Violin plots of banks’ allocative efficiency, 1992–2003

(a) Banking firms

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

A
ll
o
ca
ti
v
e
ef
fi
ci
en

cy

S
a

1992–1995 1996–1999 2000–2003

(b) Commercial banks

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

A
ll
o
ca
ti
v
e
ef
fi
ci
en

cy

1992–1995 1996–1999 2000–2003

(c) Savings banks

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

A
ll
o
ca
ti
v
e
ef
fi
ci
en

cy

1992–1995 1996–1999 2000–2003

31



Figure 5: Cost efficiency vs. market power (Lerner index), spline smoothing regression (1992–
2003)
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Figure 6: Technical efficiency vs. market power (Lerner index), spline smoothing regression
(1992–2003)

(a) Banking firms
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Figure 7: Allocative efficiency vs. market power (Lerner index), spline smoothing regression
(1992–2003)

(a) Banking firms
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