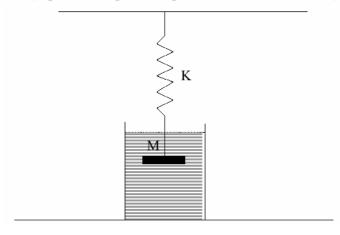
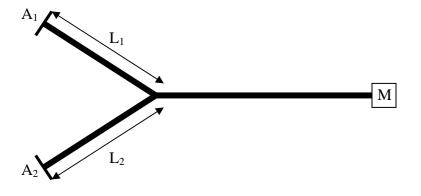
XV OLIMPIADA DE FÍSICA 2004 24 de febrero de 2004


	-	- 1	
	Or	nh	re:
1 7	()1	ш	71 C.

Centro:

1.


Considerad el oscilador armónico amortiguado de la figura donde, como es habitual, supondremos que la fuerza amortiguadora es proporcional y de sentido contrario a la velocidad de la masa M. Si sabemos que oscila con una frecuencia $f=0.50\ s^{-1}$ y que, al cabo de 10 oscilaciones, su amplitud se ha reducido a un quinto (1/5) de la inicial (La inicial es la que tiene para t=0).

- 1. Calculad el tiempo T que ha de transcurrir desde el comienzo del movimiento para que su amplitud sea la décima parte (1/10) de la inicial.
- 2. ¿Qué porcentaje de la energía elástica del muelle (sobre la inicial, a t=0) ha perdido cuando ha realizado 20 oscilaciones completas?
- 3. Si vaciamos el líquido del recipiente, de forma que el oscilador deje de estar amortiguado, observamos que su frecuencia de oscilación pasa a ser f' = 0.60. Si la masa M = 1 Kg., ¿cuál es la constante K del muelle y la energía del sistema (suponiendo que la amplitud inicial es de 25 cm.)?

2. El esquema de la figura corresponde a unos tubos en forma de "Y" griega, con dos altavoces A₁ y A₂ en dos extremos y un micrófono M en el tercer extremo. Los altavoces se emplean para generar dos ondas acústicas de frecuencia 4000 Hz.

El brazo L_2 es ajustable en longitud. La tabla adjunta recoge la medida de la amplitud de la señal del micrófono (en mV) en función del alargamiento de L_2 : ΔL . Deducid a partir de dicha medida la velocidad del sonido en el tubo.

$V (mV) \Delta L (mm)$			
54	0		
44	5		
28	10		
14	15		
6	20		
4	25		
4	30		
6	35		
19	40		
39	45		
54	50		
62	55		
62	60		
60	65		
60	70		
58	75		
58	80		
54	85		
49	90		
36	95		
20	100		
3	105		
0	110		
9	115		
21	120		

3. Un niño se balancea sobre un columpio del parque e intenta medir su período. Calcula el periodo que medirá suponiendo que el columpio se puede aproximar a un péndulo simple, siendo la longitud del columpio de 2 m. ¿Qué período medirá la madre del niño, que es astronauta y está viajando en ese momento a una velocidad de 0,4c respecto a su hijo?