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Abstract

We present a noncooperative bargaining protocol among n players, applied to the setting of

cooperative games in coalitional form with transferable utility. In this model, players are chosen

randomly to make proposals until one is accepted unanimously, and after each proposal rejection,

the probability that players leave the game increases. If after a rejection, some players withdraw the

bargaining, the remaining players continue the process. We de�ne a new family of values, called the

weighted solidarity values, and we show that these values arise as the associated equilibrium payo¤s

of this bargaining protocol. In these values players have an altruistic behavior between them as the

null player property is not satis�ed.

Keywords: n-person bargaining; coalitional games; altruism; Solidarity value; Shapley value.

JEL Classi�cation: C71

1 Introduction

In a cooperative setting, a value expresses a particular way in which players share the bene�ts of their

cooperation. Following the Nash program, a particular value can be determined either by a set of prop-

erties that the value (and only it) satis�es, which is the axiomatic approach; or by a non cooperative

game trying to re�ect a plausible negotiation process where the cooperative agreement is obtained as the

equilibrium payo¤s of the game, which is the strategic approach. Both are considered as complementary

and hopefully of mutual reinforcement.

We focus on the strategic approach in this paper. Our intention is to add some perspective regarding

what rational players should expect to obtain in a multilateral negotiation process, where partial coop-

eration is likewise possible. This means that not only the coalition of all players can make pro�table

agreements, but also any strict subcoalition can do the same in case some players leave the negotiations.

In this way, the likelihood of partial agreements has an in�uence on the agreement of the grand coalition.
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Most of the bargaining models proposed1 can be better interpreted as suitable protocols that can

implement in a decentralized way a particular cooperative solution which we have in mind, and then the

cooperative solution becomes the target and the bargaining protocol is only a means to �nd it. We wish

to proceed in the opposite direction: present a simple and natural bargaining model and determine what

type of payo¤s can be expected. We therefore need to specify how players �nd agreements and what role

the coalitions play in the process.

Firstly, the agents involved can make feasible o¤ers and countero¤ers, up to the moment when a

proposal is unanimously accepted. It is not speci�ed who is the proposer each time, hence we model this

fact assuming that the selection of the proposer is a random process. If the proposal is rejected by even

one player, another proposer (who may be the same) is selected randomly until an o¤er is accepted by

the remaining players. All players are initially involved in negotiations (they are "active" players).

Secondly, we assume that the time is costly in a very speci�c sense: The players� live time is not

in�nite. When players reject o¤ers, they enlarge the time spent in the bargaining and this cannot be

carried on inde�nitely. As time goes by, the probability of the players leaving the negotiation increases.

If after a rejection, some players leave the game, we assume that the remaining players continue the

bargaining but restricted now only to the feasible payo¤s that can be achieved by the remaining players.

Again, it is not speci�ed who are the candidates to leave the bargaining each time. Then the selection

of the new active set is modeled as a random process which depend of the probabilities that each player

has to remain still in the bargaining.

This is a noncooperative game which has stationary subgame perfect equilibria. In Section 2, we show

in Theorem 1 that the equilibrium proposals are easily characterized: The proposing player o¤ers every

active player their continuation value and claims the rest of the pie. It turns out that being the proposer

is always an advantage, but when the probability of all players continuing in the game, after a proposal

rejection, converges to one, the di¤erence between what a player obtains as a proposer and what as a

respondent vanishes.

Two di¤erent sources of asymmetries among players are allowed in our model: Players can have a

di¤erent probability to be selected as a proposer and players can have a di¤erent probability to leave

the game after a proposal rejection. The �rst class of asymmetries are appropriate when players are

representatives of teams, parties, cities, countries, etc. of di¤erent size. It can also be the case that some

players have a better knowledge of the particular setting in which they are involved, or greater skill and

experience in negotiations, that give they more chance to make o¤ers and countero¤ers. Whereas the

second kind of asymmetry is more appropriate to capture di¤erences in �tness characteristics of players,

as expected time of life or vitality, or di¤erent economic opportunities outside the game. The main result

of this paper is performed in Section 3. In Theorem 4, we are able to calculate these limit proposals for

each speci�cation of these probabilities, in what is referred to as the weighted solidarity value.

This value (in the symmetric case) was �rst given in Sprumont (1990) as an example of a population

monotonic allocation scheme. Subsequently, and independently, Novak and Radzik (1994) provide an

1The Literature in this topic is rather extensive now. The reader can �nd a good survey on the Nash program in Serrano

(2005).
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alternative, and equivalent, formulation, by o¤ering an axiomatic characterization of it. Not a great deal

of attention has been paid on this value so far.

It is usual to de�ne altruism as actions taken by an agent at their own cost for the bene�t of another.

Altruism is incompatible with the null player property. A null player contributes with nothing to all

coalitions he may join. A value satis�es the null player property if it yields nothing to null players. A

well known value which satis�es this property is the Shapley value (Shapley 1953b). A simple example of

value that does not satisfy the null player property is the egalitarian solution, which shares the worth of

the coalition equally among all its members (whether or not they are null players). We can say that if a

null player receives a positive reward in a monotonic game, the rest of players behave altruistically with

respect to him. A very interesting class of games where studying the altruistic behavior of a value is the

class of additive games. In an additive game, the worth of a coalition is the sum of the individual worth2

of its members. In this context, there are no positive gains in cooperation and the marginal contribution

of each player to every coalition is only his own individual worth. Hence, we are in a pure redistributive

setting. If we �nd transfers between players, we can say that players that obtain less than their individual

worth behave altruistically with respect to players that increase their individual worth.

Section 4 shows that the weighted solidarity values do not satisfy the null player axiom. We study

the behavior of the weighted solidarity value in some detail in this class of additive games. In particular,

for the two person case, we �nd:

- If players are symmetric (in the probabilities) then richer agents transfer money to poor agents.

- If players start initially with the same endowments, then powerless players (with higher probability

of leaving the game and lower probability of being a proposer) transfer money to powerful players (with

lower probability of leaving the game and high probability of being a proposer).

For the general n-person case:

- If players interact periodically by using the weighted solidarity values obtained each period as the

initial endowments of the next period, this process ends up with a unique limit point (independently of

the initial endowments). Moreover, the players�payo¤s in the limit are in proportion to their relative

bargaining power (Theorem 3).

Section 5 is devoted to some complementary remarks.

In the �rst subsection, we brie�y review the literature related to the solidarity value and a comparison

is performed with a family of values given by a convex combinations of the Shapley value and the

egalitarian solution. This class was considered by Joosten (1996) and referred to as egalitarian Shapley

values. We show that the solidarity value is not an element of this family.

In the second subsection, our multilateral bargaining is compared with the one proposed in Hart and

Mas-Colell (1996). In that paper, the authors propose a bargaining procedure that, in the particular

case of cooperative games with transferable utility, implements the Shapley value (Shapley, 1953). Both

models have in common that every respondent have the same veto right to reject unsatisfactory o¤ers.

The only di¤erence between both procedures lies in what happens after the rejection of a proposal: In the

Hart and Mas-Colell procedure, only the proposer has a probability of defeat, while in our model every

2The worth that each player can obtain alone, i.e. when the remaining players are out of the game.
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subset of players can leave after a rejection. The consequence of this breakdown di¤erence is that the

Hart and Mas-Colell model implements a value that satis�es the null player axiom (the Shapley value),

whereas our model implements a value that violates the null player axiom (the weighted solidarity value).

Hence, it should be clear that the source of the altruistic outcome is not given by the requirement of the

unanimity in the agreement (equivalently the veto right). On the contrary, it is given by the di¤erences

in the opportunity to put the remaining players in front of an ultimatum situation: If an o¤er is rejected,

�I can leave the game and then you will lose my marginal contribution�. In the case of the Shapley

value leaves only the proposer, whereas in the weighted solidarity value every subset of players can leave.

Therefore, the power of this ultimatum position is spread from the proposer (Shapley value) to all players,

proposer and respondents (weighted solidarity value).

2 Bargaining

We �rst start with some de�nitions. Let U = f1; 2; :::g be the (in�nite) set of potential players. A

cooperative game with transferable utility (TU-game) is a pair (N; v) where N � U is a non empty and

�nite set and v : 2N ! R is a characteristic function, de�ned on the power set of N , satisfying v(;) = 0.

An element i of N is called a player and every non empty subset S of N a coalition. The real number

v(S) is called the worth of coalition S, and it is interpreted as the total payo¤ that the coalition S, if it

forms, can obtain for its members. Let GN denote the set of all cooperative TU-games with player set

N . Risk neutral players who use a totally divisible good to make the coalitional payo¤s is an example of

this type of games. Player i 2 N is a null player in (N; v) if v (S [ i) = v(S) for each S � N n i.

For each S � N , we denote the restriction of (N; v) to S as (S; v). For simplicity, we write S [ i

instead of S [ fig, N n i instead of N n fig, and v(i) instead of v (fig). For each vector x 2 RN , let

x(S) :=
P

i2S xi for each S � N .

A TU-game is said monotonic if v(T ) � v(S) whenever T � S. In our setting we made the explicit

assumption that the utilities are previously normalized in such a way that when any player leaves the

game, the payo¤ that it obtains is zero. Monotonicity implies that, for any subcoalition S, the players

have an incentive to cooperate as every player can better attain payo¤s than it will obtain being alone,

�out of�the game. Note also that the payo¤ v(i) is what player i obtains if the remaining Nni players

have left the game, so v(i) = 0 is not need. For example, consider a bankrupt situation where a good, of

liquidation value of one, should be divided between two creditors fi; jg, each one claiming the totality of

the value. The possible outcomes are either the good is owned by only one of the players, say i obtains

his claim and j receives nothing, i.e. v(i) = 1 and j leaves the game receiving zero, or the good can be

shared by both, i.e. v(fi; jg) = 1. This is a monotonic game in which players cannot guarantee their v(i).

If we want to consider examples, as market games, where players can guarantee their initial endowments

without the help of the remaining players we only need to normalize the utilities such that v(i) = 0.

A value is a function 
 which assigns to every TU-game (N; v) and every player i 2 N , a real number


i (N; v), which represents an assessment made by i of his gains from participating in the game. A payo¤
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con�guration is an element of
Y
S�N

RS .

The process that players follow to �nd a cooperative agreement is modeled by an alternating random

proposer protocol. This is a sequential noncooperative game where the proposer is chosen at random at

every step:

Consider a TU-game (N; v). In each round there is a set S � N of �active�players, and a �pro-

poser�which is chosen randomly, from a probability distribution
�
pSi � 0, for each i 2 S;

P
i2S p

S
i = 1

�
among them. In the �rst round, all players are active, i.e. S = N . The proposer i makes

a feasible o¤er aS;i 2 RS , i.e.
P

j2S a
S;i
j � v(S). If the rest of players accept it, then the

process ends with this o¤er. If it is rejected by even one player, we move to the next round

where, from a probability distribution3
h
PST � 0, for each T � S;

P
T�S P

S
T = 1

i
, a coalition

T � S is chosen randomly to be the new set of active players and all players out of T (i.e.,

j 2 SnT ) leave the game receiving a payo¤ of zero.4

As happens in this type of games with three or more players, there is a broad range of associated

subgame perfect equilibria. Hence, we follow the familiar route of considering only the stationary subgame

perfect equilibria (in what follows SP equilibria).

Our �rst result characterizes the o¤ers of an SP equilibrium.

Theorem 1 : Let (N; v) be a monotonic TU-game. Then for each speci�cation of the probability dis-

tributions to select a proposer and to be the new active set under rejection, i.e.
�
pSi
�
i2S and

�
PST
�
T�S

for all S � N , there is an SP equilibrium. The proposals corresponding to an SP equilibrium are always

accepted and they are characterized by:

(1) aS;ii = v(S)�
P

j2Sni a
S;i
j for each i 2 S � N ; and

(2) aS;ij =
P

T�S
T3j

PST a
T
j for each i; j 2 S with i 6= j, and each S � N ;

where aS =
P

i2S p
S
i a

S;i. Moreover, these proposals are unique and nonnegative.

In other words, (2) says that i proposes to j the expected payo¤ that j would get in the continuation

of the game in case of rejection, as the probability of every coalition T � S having to be a new active set

is PST , and (1) says that i gets for himself the remaining up to complete v(S).

Proof. The proof is done by induction. The proposition holds for the 1-player case. And assume

that it is true for less than n players. Let aS;i, for i 2 S � N , be the proposals of a given equilibrium,

and denote by cS 2 RS the expected payo¤ vector for the members of S in the subgame where S is the

set of active players. By (1) and (2) it holds that
P

j2S c
S
j = v(S) for S 6= N . The induction hypothesis

implies that cS = aS for S 6= N .

Firstly, note that monotonicity of v implies thatX
S�N

PNS v(S) � v(N):

3We assume stationarity in all probability distributions.
4Although the vectors aS and aS;i are functions of the probability distributions

�
pSi
�
i2S and

�
PST
�
T�S , we write a

S

instead of aS
��
pSi
�
i2S ;

�
PST
�
T�S

�
to simplify notation.
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Let dN;i 2 RN be de�ned by

dN;ij := PNN c
N
j +

X
S N
S3j

PNS a
S
j ;

for each j 6= i and

dN;ii := v(N)�
X
j2Nni

dN;ij :

The amount dN;ij is the expected payo¤ of j following a rejection of i�s proposal, then dN;i is the best

proposal for i among the proposals that will be accepted if i is the proposer. In addition, any proposal

of i which is rejected yields to i at most

PNN c
N
i +

X
S N
S3i

PNS a
S
i :

But

dN;ii �

0B@PNN cNi + X
S N
S3i

PNS a
S
i

1CA =

v(N)�
X
j2Nni

0BB@PNN cNj + X
S N
S3j

PNS a
S
j

1CCA�
0B@PNN cNi + X

S N
S3i

PNS a
S
i

1CA =

v(N)�
X
S�N

PNS v(S) � 0:

Hence, player i will propose aN;i = dN;i and the proposal will be accepted. Thus, it follows that

cN = aN .

To show that the equilibrium proposals aN;i are nonnegative, note that the following strategy will

guarantee to i a payo¤ of at least 0: Accept only if o¤ered at least 0 and, when proposing, propose

aN;ij = 0, for each j 2 N . This implies that aN;i � 0.

We now show that proposals
�
aS;i

�
S�N;i2S satisfying (1) and (2) can be supported as stationary sub-

game perfect equilibria. Firstly, by construction they are feasible. Second, uniqueness and nonnegativity

can be proven by induction. The 1-player case is immediate. Let S � N: Now assume that the system

(1) and (2) has a unique solution and aT;i � 0 for each i 2 T and each T  S.

Let

a�j (S) :=
X
T S
T3j

PST a
T
j ; for all j 2 S:

Condition (2) implies that aS;ij = aS;kj for all i; k 6= j, so de�ne âSj := a
S;i
j , where i 2 Snj. From conditions
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(1) and (2), it holds that,

âSj = PSS a
S
j + a

�
j = P

S
S

 X
i2S

pSi a
S;i
j

!
+ a�j (S) = P

S
S

0@pSj aS;jj +
X
i2Snj

pSi a
S;i
j

1A+ a�j (S)
= PSS

24pSj
0@v(S)� X

i2Snj

âSi

1A+ X
i2Snj

pSi â
S
j

35+ a�j (S)
= PSS

24pSj
0@v(S)� X

i2Snj

âSi

1A+ �1� pSj � âSj
35+ a�j (S); for all j 2 S:

Therefore �
1� PSS

�
1� pSj

��
âSj + P

S
S p

S
j

X
i2Snj

âSi = P
S
S p

S
j v(S) + a

�
j (S) ; for all j 2 S: (1)

But,

detA(S) = det

26666664
1� PSS + PSS pS1 PSS p

S
1 ::: PSS p

S
1

PSS p
S
2 1� PSS + PSS pS2 ::: PSS p

S
2

...
...

. . .
...

PSS p
S
n PSS p

S
n ::: 1� PSS + PSS pSn

37777775 =
�
1� PSS

�s�1 6= 0;

and then, the linear system (1) has a unique solution. We now show the nonnegativity. For each i 2 S,

aSi =
X
j2S

pSj a
S;j
i = pSi a

S;i
i +

X
j2Sni

pSj a
S;j
i

= pSi

0@v(S)� X
j2Sni

âSj

1A+ �1� pSi � âSi
= pSi

0@v(S)�X
j2S

âSj

1A+ âSi
= pSi

0BB@v(S)�X
j2S

X
T�S
T3j

PST a
T
j

1CCA+X
T�S
T3i

PST a
T
i

= pSi

0@v(S)�X
T�S

PST v(T )

1A+ PSS aSi +X
T S
T3i

PST a
T
i

and then �
1� PSS

�
aSi = p

S
i

0@v(S)�X
T�S

PST v(T )

1A+X
T S
T3i

PST a
T
i : (2)

By induction hypothesis, we know that aTi � 0 for all i 2 T  S; and by monotonicity,

v(S) �
X
T�S

PST v(T );

therefore aSi � 0 for all i 2 S: Then, for each i; j 2 S with i 6= j,

aS;ij =
X
T�S
T3j

PST a
T
j � 0;
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and

aS;ii � aS;ji = v(S)�
X
j2Sni

0BB@X
T�S
T3j

PST a
T
j

1CCA�X
T�S
T3i

PST a
T
i (3)

= v(S)�
X
j2S

0BB@X
T�S
T3j

PST a
T
j

1CCA = v(S)�
X
T�S

PST v(T ) � 0:

Hence aS;ii � aS;ji � 0.

We can now check whether the strategies corresponding to these proposals do form an SP equilibrium.

According to the induction hypothesis, this is so in any subgame with player set S 6= N . Fix a player

i in N . Given the strategies of the other players, as a proposer, i cannot increase his payo¤ aN;ii from

proposals that are accepted, and making proposals that were systematically rejected would only lead to

an expected payo¤ aN;ji , whereas the suggested strategy yields aN;ii which is a better outcome. As a

respondent, i can only deviate by rejecting o¤er aN;ji made by another player j, but this amount is just

equal to his expectation in case of continuation. Therefore, the only conceivable gain can come from

managing defeat. Yet this gives a payo¤ of 0, whereas the suggested strategy yields nonnegative payo¤s.

Remark 1 Note that (1) implies that afig;i = v(i). So afig;i is nonrandom, which iterating in (2) yields

that aS;i is also nonrandom. Therefore, in an SP equilibrium, mixed strategies only could appear when

aS;ii = aS;ji . However, in this case, as proposer, player i can also claim an amount bS;ii > aS;ii for himself.

But this implies an amount bS;ij < aS;ij for some j 2 Sni, and then this proposal bS;i will be rejected by j

for sure. In this case, the expected payo¤ associated to this strategy is again aS;ii = aS;ji . Therefore, as a

proposer, any mixed strategy between o¤ering aS;i or bS;i, always yield the same payo¤s.

Remark 2 From Theorem 1 it follows that being the proposer is always an advantage, because aS;ii �

aSi � a
S;j
i , for each i; j 2 S � N; i 6= j.

This proposer�s advantage e¤ect follows from the existence of the defect probabilities. The extreme

case appears when PST = 0 for all ; 6= T � S and PS; = 1, which is just the ultimatum o¤ers game. Here,

the i�s proposal is aS;ii = v(S), and aS;ij = 0 for each j 6= i. This advantage e¤ect is in sharp contrast with

the Hart and Mas-Colell (1996) result for the Shapley value, where being the proposer is not necessarily

an advantage; it depends on the monotonicity degree of the TU-game.5 Nevertheless, this e¤ect vanishes

when the probabilities of defeat are lower. This is the content of the next Proposition.

Proposition 1 The proposals corresponding to an SP equilibrium satisfy that
���aS;ii � aS;ji

��� ! 0, when

PSS ! 1, for each i; j 2 S and S � N .
5 In the Hart and Mas-Colell model, the probabilities of continuing in the game depend of who was the proposer. In

particular, if i 2 S was the proposer, then PS;iS = �, PS;i
Sni = (1� �) and P

S;i
T = 0 otherwise, for some 0 � � < 1.
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Proof. It is straightforward taking into account (3) and that PSS ! 1 implies PST ! 0 for all T  S.

Hence, when the probability of defeat is lower for all players, all the proposals aS;i are small deviations

of the average aS .

3 Solidarity values

When a cooperative solution is considered from an axiomatic point of view, asymmetric versions of the

value appear when the property of symmetry6 is dropped from the set of axioms which characterizes the

value. What type of reasons justi�es each asymmetric value depends on the context at hand. It could be

di¤erences in the negotiation ability of players (whatever that means), or because they are representatives

of groups of di¤erent size, etc. On the contrary, the noncooperative game that models the bargaining

process must be completely speci�ed in the strategic approach. Now, the source of asymmetric payo¤s

will correspond to a particular speci�cation of certain parameters in the game.

Consider our bargaining process with the probabilities being speci�ed as follows: Given two �xed

vectors !; � 2 RN with !i > 0 and �i > 0 for each i 2 N , and a parameter � 2 R with 0 � � < 1, for all

S � N we have

pSi =
�i
�(S)

; (i 2 S) ;

PST =
Q
i2T

�!i
Q

j2SnT
(1� �!j ) ; (T � S) :

Denote by aS;ji (�) ; i; j 2 S � N , the proposals corresponding to an SP equilibrium.

Here, each player has their own (independent) probability pSi =
�i
�(S) of being selected as a proposer

and, after rejection, every player has their own (independent) probability �!i of remaining as an active

player. By increasing �i, we increase the probability of being selected as a proposer, and by increasing

!i we decrease the probability �!i of continuing in the game after rejection. Given the independence as-

sumption, the probability of coalition T � S being a new active coalition is PST =
Q
i2T

�!i
Q

j2SnT
(1� �!j ),

for each T � S.

An interpretation for these parameters is as follows.

The di¤erences in �i �ts very well when players are representatives of groups of di¤erent size. For

example, consider the problem of distributing pro�ts among the teams/departments of a �rm. Any

amount of money given to a team can be freely distributed among its members. Assume that the team

can only carry out its work when it is complete, as all of its members are equally necessary for its

completeness, which means that they are symmetric players. Moreover, as individual members (when

the team is not complete), each player alone does not contribute to the productivity of the other teams.

So they must only jointly be taken into account with the rest of the team in the distribution of the

pro�ts. This provides the economic justi�cation for replacing the original worker game by the team

game. Suppose that all workers have the same probability of being selected as a proposer in an active
6Two players i; j 2 N are symmetric in (N; v) if v (S [ i) = v (S [ j) for all S � N n fi; jg. A value 
 satis�es symmetry

if 
i(N; v) = 
j(N; v) whenever i and j are symmetric.
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coalition S of completed teams in the bargaining process, this implies that the probability of selecting a

representative of a team i is �i
�(S) , where �i measures the amount of workers of the team i.

Other examples are: Simple voting games in which players are parties with di¤erent number of seats

in a parliament; sharing a cost allocation of a public facility among cities, or communities, of di¤erent

size; international agreements among countries of di¤erent population, and so on.

An interpretation of �!i is based on the fact that negotiations take place during the time � 2 [0;1).

Each player i has his own probability pi(�) of being in the game up to time �. Suppose that the rate at

which this probability changes is a proportion of the time, that is, dpi(�) = �!i�. Here, !i is a positive

and constant coe¢ cient of proportionality, �xed by some characteristics of the player. A possibility can

be performed by some �tness characteristic, as expected time of life or vitality; another possibility could

be an �outside options� type of economic interpretation, that is, players with better options outside

the game have a greater chance of leaving the negotiation after successive rejections. The negative sign

means that pi(�) is decreasing in time. Taking the initial condition pi(0) = 1, the solution of this ordinal

di¤erential equation is pi(�) = e�!i�. Enumerate the sequence of rounds by t = 0; 1; 2; :::, and denote

by � > 0 the length of time that each round takes. We can now write pi(t) = e�!i�t as the probability

of player i being in the game at round t. Letting � = e�� we obtain pi(t) = �!it, under our stationary

assumption this means that, after a rejection, the probability of being in the game at round t conditional

on still being in the game at round t � 1 is �!i . When the period of time of each round � approaches

zero, � converges to 1 and so �!i ! 1.

We now show that an explicit formula for the average proposals can be found when we take these

limits.

Some de�nitions are �rst necessary. Let (N; v) be a TU-game. For each coalition S � N and each

player i 2 S, de�ne

�i(v; S) := v(S)� v(Sni):

We call �i(v; S) the marginal contribution of player i to coalition S in the TU-game (N; v).

For each coalition S � N , de�ne

�av! (v; S) :=
X
i2S

!i
!(S)

�i(v; S):

We call �av! (v; S) the weighted average of the marginal contributions of players within coalition S in

the game (N; v).

We de�ne the payo¤ con�guration Slw(v) = (Slw(S; v))S�N inductively by7

Slwi (S; v) =
�i
�(S)

�av! (v; S) +
X
j2Sni

!j
!(S)

Slwi (Snj; v); (i 2 S � N) ; (4)

starting with

Slwi (fig; v) = v(i), (i 2 N) :

We call Sl as the weighted solidarity value.8

7 It is clear that these vectors Slw are functions of � and !.
8 In formula (4), the payo¤s� homogeneity with respect to ! and � is clear. Therefore, payo¤s are only sensitive to

changes in the relative weights.
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Theorem 2 Let (N; v) be a monotonic TU-game. Let 0 � � < 1 and �i > 0 and !i > 0 for each i 2 N .

Then, for every coalition S the average of the SP equilibrium payo¤ proposals aSi (�) =
P

j2S
�j
�(S)a

S;j
i (�),

converge as �! 1 to Slwi (S; v) for each i in S.

Proof. Let S � N . In order to show that, for each i 2 S; aSi (�) converges to Slwi (S; v) as �! 1; the

proof is done by induction. When S = fig, it holds that

a
fig
i (�) = v(i) = Slwi (fig; v):

Assume that aTi (�)! Slwi (T; v) for each T  S and each i 2 T . For each i 2 S, following in formula (2),

we have�
1� �!(S)

�
aSi (�) =

�i
�(S)

0@v(S)�X
T�S

�!(T )
Q

r2SnT
(1� �!r ) v(T )

1A+X
T S
T3i

�!(T )
Q

r2SnT
(1� �!r ) aTi (�)

=
�i
�(S)

0@v(S)� �!(S)v(S)�X
T S

�!(T )
Q

r2SnT
(1� �!r ) v(T )

1A+X
T S
T3i

�!(T )
Q

r2SnT
(1� �!r ) aTi (�) ,

and then

aSi (�) =
�i
�(S)

0B@v(S)�X
T S

�!(T )
Q

r2SnT
(1� �!r )�

1� �!(S)
� v(T )

1CA+X
T S
T3i

�!(T )
Q

r2SnT
(1� �!r )�

1� �!(S)
� aTi (�) :

Applying the l�Hôpital�s rule, when �! 1, we have

lim
�!1

�!(T )
Q

r2SnT
(1� �!r )�

1� �!(S)
� = lim

�!1

!(T )�!(T )�1
Q

r2SnT
(1� �!r )� �!(T )

P
r2SnT

!r�
!r�1 Q

k2(SnT )nr
(1� �!k)

�!(S)�!(S)�1 :

When t = s� 1 it holds that SnT = frg. Hence,

lim
�!1

!(T )�!(T )�1
Q

r2SnT
(1� �!r )� �!(T )

P
r2SnT

!r�
!r�1 Q

k2(SnT )nr
(1� �!k)

�!(S)�!(S)�1

= lim
�!1

!(T )�!(T )�1 (1� �!r )� �!(T )!r�!r�1
�!(S)�!(S)�1 =

!r
!(S)

;

and for all t < s� 1 it holds that jSnT j � 2, then

lim
�!1

!(T )�!(T )�1
Q

r2SnT
(1� �!r )� �!(T )

P
r2SnT

!r�
!r�1 Q

k2(SnT )nr
(1� �!k)

�!(S)�!(S)�1 =
0

�!(S) = 0:

Hence, applying the induction hypothesis,

lim
�!1

aSi (�) = lim
�!1

264 �i
�(S)

0B@v(S)�X
T S

�!(T )
Q

r2SnT
(1� �!r )�

1� �!(S)
� v(T )

1CA+X
T S
T3i

�!(T )
Q

r2SnT
(1� �!r )�

1� �!(S)
� aTi (�)

375
=

�i
�(S)

 
v(S)�

X
r2S

!r
!(S)

v(Snr)
!
+
X
r2Sni

!r
!(S)

Slwi (Snr; v)

=
�i
�(S)

 X
r2S

!r
!(S)

(v(S)� v(Snr))
!
+
X
r2Sni

!r
!(S)

Slwi (Snr; v)

=
�i
�(S)

�av! (v; S) +
X
r2Sni

!r
!(S)

Slwi (Snr; v) = Slwi (S; v):
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Remark 3 When � ! 0, aSi (�) ! �i
�(S)v(S); for each i in S. This is the weighted egalitarian payo¤

con�guration
��
xSi =

�i
�(S)v(S)

�
i2S

�
S�N

.

Remark 4 Note that for the particular case of the unanimity game in the grand coalition, (N;uN ), it

holds that Slwi (N;uN ) = �i=�(N) for each i in N . This is because all subgames (S; uN ), where S 6= N ,

are zero games and then all players obtain Slwi (S; uN ) = 0, i 2 S  N . In the bargaining of the grand

coalition, each player has the chance �i=�(N) of being the proposer, and if even one defeats after a

rejection, all players obtain zero. After a rejection, the probability that all players continue the bargaining

is then
Q
i2N

�!i . As far as all probabilities �!i converge to one,
Q
i2N

�!i converges to one too, independently

of the values of weights !i. This is the reason why the values of ! do not in�uence the �nal payo¤s in

this pure bargaining game and they only depend on the relative weights of �.

Remark 5 Although the analysis has been performed for games with transferable utility, there are no

conceptual di�culties for its extension to games without transferable utility (NTU-games). Under the

standard assumptions of convexity and monotonicity in the feasible utility sets, the previous results can be

reproduced step by step. In Calvo (2008), the de�nition of the symmetric solidarity value in NTU-games

can be seen.

4 Additive games

A player i 2 N is a dummy player in a game (N; v) if, for each S � Nni: v(S [ i) = v(S) + v(i). We say

that a value 
 satis�es the dummy player property if 
i(N; v) = v(i) when i is a dummy player in (N; v).

Many values considered in the cooperative game theory satisfy this property. We can cite the Shapley

value (Shapley, 1953), and the Banzhaf value (Banzhaf, 1965), which are two elements of the family of

probabilistic values (Weber, 1988). In any of these values, each player has his own probability distribution

on the coalitions to which he belongs, i.e., for each player i 2 N; there is a vector (pS;i)S�N :S3i such

that pS;i � 0 for each S � N : S 3 i and
P

S�N :S3i pS;i = 1. Assuming that the payo¤ obtained in

each coalition is their marginal contribution, then the probabilistic value � is their marginal expected

contribution to the game:

�i(N; v) =
X
S�N
S3i

pS;i�
i(v; S); (i 2 N) :

The marginal contribution of a dummy player is a constant (�i(v; S) = v(i)), and it is then straight-

forward that the payo¤ for a dummy player i is �i(N; v) = v(i).

When all players in a game are dummy players, the game is said to be an additive game. In that case,

starting from a vector a 2 RN , we can build an additive game (N; a) by performing a(S) =
P

i2S ai, for

each S � N . If (N; a) is an additive game any value 
 that satis�es the dummy player property must

yield as the payo¤�s vector 
(N; a) = a:9 Note that if the additive game is also monotonic (i.e., a 2 RN+ )
9The property that 
(N; a) = a whenever (N; a) is an additive game is also known as the projection axiom. It was

considered for example in Aumann and Shapley (1974) and Dubey et al. (1981).
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the core of the game (Gillies, 1953) is just one point: C(N; a) = fag. At �rst glance, it seems reasonable

in additive games that a player i should accept at least his constant contribution ai.

Moreover, when the value 
 is e¢ cient, i.e.,
P

i2N 
i (N; a) = a(N), if a player i receives 
i (N; a) > ai

another player j must necessarily receive 
j (N; a) < aj . In such a case, and when players voluntarily

agree to follow this cooperative rule 
, we could say that a player j, such that 
j (N; a) < aj behaves

altruistically.10 Obviously, it is impossible to �nd this behavior in additive games under any value which

satis�es the dummy player property.

The value Slw takes into account the weighted average of the marginal contributions �av! instead of

the own marginal contributions �i, and it is therefore rather straightforward to check that Slw does not

satis�es the dummy player property, not even in additive games. For this fact to be clear, consider a

two-player case with N = fi; jg. Note that Slw is e¢ cient by construction, and suppose that both players

have the same weights, i.e. �i = �j and !i = !j . In that case

Sli(fi; jg ; a)� ai =
1

4
(aj � ai) ;

then Sli(fi; jg ; a) < ai if and only if ai > aj .

Suppose that we interpret the worth ai as the initial rent that agent i has and the worth of a coalition

as the sum of the rents that agents contribute to this coalition. In that case, the value Sl determines how

the total rent between the agents is to be redistributed. In our case, if agent i is richer than j (ai > aj),

i increases altruistically the rent of the "poor" agent j (Slj(fi; jg ; a) > aj) by decreasing his own rent

(Sli(fi; jg ; a) < ai).

Alternatively, suppose that players start initially with the same endowments, ai = aj = a, then it

holds that

Slwi (fi; jg ; a) =
�

�i
�i + �j

+
!j

!i + !j

�
a;

then a greater �i means a higher probability of being the proposer, �i=�(S), and then a bigger payo¤

Slwi . A greater !i means a higher probability of defeat, (1� �!i), and then a lower payo¤ Slwi .

A very interesting question can now be considered: what happens if players interact periodically

transferring rents among them? Can we �nd a steady state where no more transfers are given?

Consider that each player i 2 N starts initially with some endowments a0i = ai. They obtain a1i =

Slwi (N; a
0) in the �rst interaction and by e¢ ciency the total sum is equal to a(N) with some endowment

transferences among players. In the following period, they interact again obtaining a2i = Sl
w
i (N; a

1), and

so on so forth. We have a sequence fatg1t=0 of a redistributive process and some questions can be raised.
10The usual de�nition of altruism in economics is the individual behavior that bene�ts others at one�s own expense and

individualism is the self interest or unwillingness to bene�t others, except perhaps at zero cost to oneself. This way of

thinking is slightly confusing. It is not clear whether it is a characteristic of the agents that in�uence their behavior or

a behavior product of the environment in which the agents are involved. We prefer the following ethological de�nition of

altruism (Graham, 2008):

"Behavior by an individual that increases the �tness of another individual while decreasing the �tness of the

actor"
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Is there a limit point? If that is so, is it dependent on the initial starting point? Can something be said

about the �nal payo¤s�redistribution?

More formally, for each a 2 RN+ , de�ne �(a) :=
�
x 2 RN+ :

P
i2N xi = a(N)

	
and f : �(a)! �(a) as

f(x) := Slw(N;x); (x 2 �(a)) :

The function f is well-de�ned, since, by de�nition, Slwi (N;x) � 0 for each i 2 N and, by e¢ ciency,X
i2N

fi(x) =
X
i2N

Slwi (N;x) =
X
i2N

xi = a(N); (x 2 �(a)) :

Moreover, f is linear. Let us de�ne the following sequence fatg1t=0 by

a0 = a;

at+1 = f(at); (t = 0; 1; 2; :::) :

Theorem 3 For each a 2 RN+ , the sequence fatg
1
t=0 converges, when t!1, to a unique �xed point a�

of f . This �xed point is characterized by

(a)
!ia

�
i

�i
=
!ja

�
j

�j
(i; j 2 N) ;

(b)
X
i2N

a�i = a(N):

Moreover, a� is given by

a�i =
�i
!i

1P
j2N

�j
!j

a(N); (i 2 N) : (5)

Proof. Firstly, we shall prove that f satis�es11

kf(x)� f(y)k < kx� yk ; (x; y 2 �(a); x 6= y) : (6)

By the de�nition, when x is considered as an additive game,

�av! (x; S) =
X
j2S

!jxj
!(S)

; (S � N; x 2 �(a)) :

Then,

fi(x) = Sl
w
i (N;x) =

�i
�(N)!(N)

X
j2N

!jxj+
1

!(N)

X
j2N�i

!jSli(N�j; x); for each i 2 N and for each x 2 �(a):

Let x; y 2 �(a), x 6= y. Since
P

i2N xi =
P

i2N yi = a(N), there must exist k; l 2 N such that

xk > yk and xl < yl, and then����!k (xk � yk) + !l (xl � yl)(!k + !l)

���� < ����!k (xk � yk)(!k + !l)

����+ ����!l (xl � yl)(!k + !l)

���� :
Denote S� = fk; lg � N .

For each i; j 2 N , we have

Slwi (fi; jg ; x) =
�i

�i + �j

!ixi + !jxj
(!i + !j)

+
!jxi
!i + !j

;

11Where kxk :=
P
i2N jxij.
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and

Slwj (fi; jg ; x) =
�j

�i + �j

!ixi + !jxj
(!i + !j)

+
!ixj
!i + !j

:

Then, for each i; j 2 N ,

jSlwi (fi; jg ; x)� Slwi (fi; jg ; y)j+
��Slwj (fi; jg ; x)� Slwj (fi; jg ; y)�� = jSlwi (fi; jg ; x� y)j+ ��Slwj (fi; jg ; x� y)�� =���� �i

�i + �j

!i (xi � yi) + !j (xj � yj)
(!i + !j)

+
!j (xi � yi)
!i + !j

����+ ���� �j
�i + �j

!i (xi � yi) + !j (xj � yj)
(!i + !j)

+
!i (xj � yj)
!i + !j

���� �����!i (xi � yi) + !j (xj � yj)(!i + !j)

����+ ����!j (xi � yi)!i + !j

����+ ����!i (xj � yj)!i + !j

���� �����!i (xi � yi)(!i + !j)

����+ ����!j (xj � yj)(!i + !j)

����+ ����!j (xi � yi)!i + !j

����+ ����!i (xj � yj)!i + !j

���� = jxi � yij+ jxj � yj j
and, in particular, for S� = fk; lg it holds that

jSlwk (S�; x� y)j+ jSlwl (S�; x� y)j < jxk � ykj+ jxl � ylj :

Suppose, by induction, thatX
i2S

jSlwi (S; x� y)j �
X
i2S

jxi � yij ; (S  N)

and, for each S  N such that S� � S, it holds thatX
i2S

jSlwi (S; x� y)j <
X
i2S

jxi � yij :

Then,

kf(x)� f(y)k =
X
i2N

jSlwi (N;x)� Slwi (N; y)j =
X
i2N

jSlwi (N;x� y)j

=
X
i2N

������ �i�(N)
�av! (x� y;N) +

X
j2N�i

!j
!(N)

Slwi (N�j; x� y)

������
� j�av! (x� y;N)j+

X
i2N

X
j2N�i

!j
!(N)

jSlwi (N�j; x� y)j

�
X
j2N

!j jxj � yj j
!(N)

+
1

!(N)

X
i2N

!i
X

j2N�i

��Slwj (N�i; x� y)�� :
Applying the induction hypothesis,

kf(x)� f(y)k <
1

!(N)

X
j2N

!j jxj � yj j+
1

!(N)

X
i2N

!i
X

j2N�i

jxj � yj j

=
1

!(N)

X
i2N

!i

0@jxi � yij+ X
j2N�i

jxj � yj j

1A
=

1

!(N)

X
i2N

!i kx� yk = kx� yk :

Thus, expression (6) is already proved. Since �(a) is a compact set, by the Edelstein�s theorem, f

has a unique �xed point and the sequence fatg1t=0 converges, when t!1, to the �xed point of f .
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Now let a� be the vector de�ned by (5). It can immediately be seen that a� satis�es

(a)
!ia

�
i

�i
=
!ja

�
j

�j
(i; j 2 N) ;

(b)
X
i2N

a�i = a(N):

Hence this equation system ((a) and (b)) has a solution. Moreover, for any a� which satis�es (a) and

(b), for each i 2 S we have

�i
�(S)

�av! (a
�; S) =

�i
�(S)

24X
j2S

!j
!(S)

a�j

35 = �i
�(S)

24X
j2S

�j
�i

!i
!(S)

a�i

35 = !ia
�
i

!(S)
; (S � N) :

Therefore,

Slwi (fi; jg; a�) =
�i

�i + �j
�av! (a

�; fi; jg) + !j
!i + !j

Slwi (fig; a�) =

!i
!i + !j

a�i +
!j

!i + !j
a�i = a

�
i ; (i; j 2 N) :

Applying an induction argument,

Slwi (N; a
�) =

�i
�(N)

�av! (a
�; N) +

X
j2Nni

!j
!(N)

Slwi (Nnj; a�)

=
!ia

�
i

!(N)
+
X
j2Sni

!j
!(N)

a�i = a
�
i ; (i 2 N) :

Thus a� must be the unique �xed point of f .

Then, the payo¤s in the steady state are determined by the relative bargaining power of the players:

A greater �i means a higher probability of being the proposer, �i=�(S), and then a bigger payo¤ a�i . A

greater !i means a higher probability of defeat, (1� �!i), and then a lower payo¤ a�i .

5 Additional remarks

5.1 Related Literature

Some precedents exist in the literature for the family of values Slw introduced in this paper. To the best

of our knowledge, the �rst author that introduced the value Sl de�ned recursively by

Sli(S; v) =
1

s
�av(v; S) +

X
j2Sni

1

s
Sli(Snj; v); (i 2 S � N) ; (7)

where

�av(v; S) :=
X
i2S

�i(v; S)

s
;

starting with

Sli(fig; v) = v(i); (i 2 N) ;

was Sprumont (1990; Section 5). He soughts to show that, in the class of increasing average marginal

contributions (IAMC) games, i.e. games such that �av(v; S) � �av(v; T ), whenever S � T , it is
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possible to �nd a population monotonic allocation scheme (PMAS). A PMAS is a payo¤ con�guration�
xS
�
S�N 2

Y
S�N

RS such that

(i) For each S � N ,
P

i2S x
S
i = v(S),

(ii) For each S; T � N and each i 2 S, S � T ) xSi � xTi .

This is a population monotonicity property: No existing player is worst o¤ by adding a new player in

the game. Sprumont (1990, Proposition 4) shows that this payo¤ con�guration is a PMAS in the class

of IAMC games.

The next formula

Sli(N; v) =
X
S�N
i�S

(n� s)! (s� 1)!
n!

�av(v; S); (i 2 N) ; (8)

was introduced by Nowak and Radzik (1994) in order to de�ne what they called the solidarity value of

the game (N; v). They notice that this value does not satisfy the null player axiom. Instead, they propose

an average null player axiom. We say that a player i 2 N in the game (N; v) is an average null player

if �av(v; S) = 0 for each coalition S � N containing i. A value 
 satis�es the average null player axiom

if 
i(N; v) = 0 when i is an average null player in (N; v). They o¤er the following axiomatic support of

Sl, parallel to the characterization of the Shapley value (Shapley, 1953):

Theorem 4 (Nowak and Radzik, 1994) A value 
 on GN satis�es e¢ ciency, additivity, symmetry and

average null player axiom if, and only if, 
 is the solidarity value.

In Calvo (2008), de�nitions (7) and (8) are shown to be equivalent.

An alternative family of solutions which do not satisfy the null player axiom is the convex combination

of the Shapley and the egalitarian solution (i.e. Ei(N; v) = v(N)=n, i 2 N). This family was considered

in Joosten (1996) as egalitarian Shapley values:

E�(N; v) = �Sh(N; v) + (1� �)E(n; v); (0 � � � 1):

Note that for the two player case, it holds that Sl = (1=2)Sh + (1=2)E, but this relationship is not

longer true for jN j � 3. Hence, the solidarity value is not an element of this family.

We can imagine alternative convex combinations of the egalitarian value with values that do not

satisfy the null player axiom. Some of them can be found in van den Brink, Funaki and Yu (2011).

All of them are parametrized by a parameter which indicates the closeness that the value has with the

egalitarian solution, as a kind of "altruism" index. On the contrary, the solidarity value only emerges

in our model as a consequence of the environment in which utility maximizer players interact seeking

cooperative agreements. Hence, we do not need any kind of ethical predisposition of the agents to explain

altruistic outcomes. Our approach is more in the spirit of Dawkins�sel�sh gene theory (Dawkins, 1976)

which explains why individuals behave altruistically toward their close relatives (as they share many of

their own genes and not because they are altruistic).
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5.2 Related bargaining protocols

The �rst bargaining process which yields a strategic support to the Solidarity value appears in the work

of Hart and Mas-Colell (1996). Their main objective is to propose, in the setting of games without

transferable utility (NTU-games), an elegant and simple variation of the alternating o¤ers protocol which

supports the consistent solution (Maschler and Owen, 1989 and 1992).

The Hart and Mas-Colell bargaining procedure goes as follows:

There is a �xed parameter � (0 � � < 1). In each round there is a set of �active�players, and

a �proposer�which is chosen randomly (from uniform distribution) among them. In the �rst

round, all players are active. The proposer makes a feasible o¤er. If the rest of the players

accept it, then the process ends with this o¤er as the �nal payo¤. If it is rejected by even one

player, we move to the next round where, with probability �, the set of active players is the

same and, with probability (1� �), the proposer drops out of the game (receiving a payo¤ of

zero), and the remaining players becomes the new active set.

This bargaining procedure has stationary subgame perfect equilibrium. Moreover, when the proba-

bility � goes to one, every limit of the noncooperative equilibria belongs to the set of consistent payo¤s

of the NTU-game. The consistent values in a TU-game are just the Shapley value, whereas the Nash

bargaining solution (Nash, 1950) follows when it is a pure bargaining game.

Although the protocol proposed in Hart and Mas-Colell (1996) looks rather similar to the one proposed

here, there is a substantial di¤erence in what happens after the rejection of a proposal: In the Hart and

Mas-Colell procedure, only the proposer has a probability of defeat, while in our model every player

(proposer and respondents) has his own, and independent, probability of defeat. Both models have in

common that every respondent has the same veto right to reject unsatisfactory o¤ers. Nevertheless the

consequences are very di¤erent: The Hart and Mas-Colell model implement a value that satis�es the null

player axiom (the Shapley value), whereas our model implements a value that violates the null player

axiom (the weighted solidarity value). Hence, it should be clear that the source of the altruistic outcome

is not given by the requirement of the unanimity in the agreement (equivalently the veto right).

For a better understanding of what is happening in these random proposer models, it should be clear

why the marginal contributions of the players to the coalitions arise in the computation of the limit

of the equilibrium proposals. This comes from the fact that when a player makes an o¤er, he has the

opportunity to put the remaining players in front of an ultimatum situation: If an o¤er is rejected, �I may

leave the game and then you will lose my marginal contribution�. In the case of the Shapley value only

the proposer i leaves, accordingly, the Shapley value makes an expectation of the marginal contribution

to the coalitions that the proposer belongs to, i.e. an expectation of �i(S; v) = v(S) � v(Sni), S � N

s.t. i 2 S. If the proposer is a null player, the average of his marginal contributions is zero.

Whereas in the weighted solidarity value every subset of players T , proposer and respondents, may

leave after a rejection, and then, an expectation of the average of the marginal contributions �T (S; v) =

v(S) � v(SnT ), T � S, s.t. i 2 S must be taken into account. Hence, the expectation of the average of

the marginal contributions can be positive for a null player.
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Moreover, in the case of the weighted solidarity value, under the assumption that the probabilities �!i

are independent, when �! 1 it happens that for all T ( Snj, the probability PST =
Q
k2T

�!k
Q

k2SnT
(1� �!k)

converges faster to zero than PSSnj = (1� �!j )
Q

k2Snj
�!k, that is, the terms corresponding to more than

one player living the game become relatively negligible, and this is why, at the limit, the expectation of

the weighted average of the marginal contributions, �av! (S; v) is computed.

The payo¤s of the weighted solidarity value are obtained in expectation, as it happens in mechanisms

where the proposer is selected randomly. Nevertheless, when the probability of leaving the game becomes

small enough, the respondent takes into account that there is a high probability of the same situation

being repeated, and he may be chosen as proposer. This means that the proposals depend very little

on who is chosen to be the proposer. At the limit, the di¤erence between being the proposer or being a

respondent vanishes.

Additionally, Hart and Mas-Colell consider several variations of the random alternating o¤ers protocol

and characterize their associated payo¤s. In one of these variations, after an o¤er rejection, all players

(proposer and respondents) drop out with equal probability. The player that leaves the game receives a

zero payo¤, and the rest restart the bargaining process.

The authors mention that in the TU-case:

�The resulting solution is di¤erent from the previous ones (thus, it is neither the Shapley

value nor the equal split solution12)."

In Calvo (2008), this variation (called the random removal model) is shown to yield the Solidarity

value in TU-games as a limit payo¤s. It is also proven that this random removal process yields a unique

payo¤ vector in the NTU-games setting as a limit.

It is noteworthy that they also propose a further variation in which, after a rejection, the pro-

poser drops out with probability (1� �)�, whereas each respondent drops out with equal probability

(1� �) (1� �) = (1� s). In this case, the game implements the corresponding egalitarian Shapley value

E�.

At this point one also could think that there is a very little di¤erence between the random removal

model and ours. On the contrary, we think that there is justi�cation to consider whether, in real-

life negotiations, we observe that only one agent (either proposer or respondent) can withdraw from

negotiations each time an o¤er is refused, as happens in the random removal protocol. This is a question

related on how natural the negotiation models look. In our approach, on the one hand, players make

proposals to be accepted. There is no speci�c order to follow. Each one can be the proposer every

time. The process ends when an o¤er is accepted. On the other hand, the process cannot be enlarged

inde�nitely in time. As time goes by without an agreement being reached, the probability of players

leaving the negotiation increases. If after a rejection, some players leave the game, the remaining players

continue the process, but restricted to the payo¤s that can be achieved by themselves. As far as these

probabilities are of public knowledge (to be selected each one as a proposer, and to leave the game after

12That is, the egalitarian solution.
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each rejection) we can expect the weighted solidarity value to arise in a natural way as the associated

equilibrium payo¤s.

In all variations considered in Hart and Mas-Colell (1996), only one agent has the chance of withdraw-

ing from the process each time: either the proposer for the Shapley value; or only one of the respondents

for the egalitarian value; or only one of all agents (proposer and respondents) for the solidarity value; or

with a probability of � the proposer and with (1� �) only one respondent for the �-egalitarian Shapley

values. We note that this only one agent withdrawal restriction is also common to the bidding mechanism

proposed by Pérez-Castrillo and Wettstein (2001). Here, agents previously bid to choose the proposer.

The winner agent has the right to make the proposal, which can be accepted or rejected. Now, in case of

rejection, the proposer is sure to leave the game and the remaining agents continue the process. The way

in which bids are performed guarantees that the payo¤s associated to the subgame perfect equilibrium

yields exactly the Shapley value (and not only in expectation, as all the mechanisms that select the

proposer randomly).
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