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Abstract

This note provides a way to translate a strategic game to a characteristic
cooperative game assuming that the set of players of the cooperative game is
the set of pure actions of the strategic game. Coalitions generated with only one
action for each player and the total coalition characterize the Core. We calculate
the worth of the total coalition to guarantee the non-emptyness condition. In
particular, for a two-player game, this value is equal to the maximal sum of the
diagonals.
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1 Introduction

Strategic and cooperative behavior are not mutually exclusive as numerous papers
have shown (e.g. Nash 1953, Raiffa 1953, Selten 1960 Aumann 1961). There is also
extensive evidence in the empirical front that, indeed, agents act in a cooperative way
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(e.g. Roth 1979, Rabin 1993, Binmore 1994, Fehr and Schmidt 1999, Camerer 2003).
Consistent with these two streams of the literature, is the notion that some agents
prefer cooperating or, in other words, they can be benevolent with other agents in
strategic situations. In light of this, we ask ourselves how those benevolent agents
would play in a strategic situation formalized as a normal form game if they were
considering that either their payoff or that of their opponents could be transferred,
(i.e., a cooperative game with transferable utility, TU-games).

This note presents a cooperative game approach to study strategic situations
with agents of a marked cooperative profile. Namely, we inquire about the minimal
value that highly cooperative agents would need to support agreements immune to
blockades of coalitions. Given a normal form game we construct a new cooperative
game such that i) the set of agents in the new cooperative game is the union of all
pure actions of the original game; ii) the characteristic function is tailored such that
any collection of actions gives the maximal worth. In particular, it is the maximal of
the sum of the payoffs associated to this action profile. The first assumption follows
from Harsanyi’s interpretation of a bayesian player playing an incomplete game. The
fictitious agents are defined following the type-agent representation of Bayesian games
suggested by Harsanyi: the actions of each agent are interpreted as their type in such
class of games. In our case, each action could be considered as a different type where
the opponent has the information on the set of types for each player. The second
assumption establishes a positive case. Using an utilitarian criterion, we extrapolate
the behavior of the players. If agents are strongly cooperative, they see their payoff
as the opponent payoff and viceversa. Therefore, the sum of their payoffs is the best
combination of their achievement.

Our result establishes the existence of the total coalition value in order to guar-
antee the existence of the Core solution accepted in the literature. Moreover, we
present a characterization of such a value using only the relevant coalition for the
non-cooperative game. In other words, coalitions generated with only one action for
each player and the total coalition matter. In particular, for a two-player game, this
value is equal to the maximal sum of the diagonals.

In Cooperative Games, there is a wide literature which gives a strategic interpre-
tation to cooperative solutions (see the survey of Highland, 2009). Our approach is
the opposite. In a similar vein, Ui (2000) gives a relationship between strategic games
with potential and the Shapley value of a particular class of cooperative games in-
dexed by the set of strategy profiles. This fact is in contrast with the large literature
that gives strategic interpretation to cooperative solutions (see the survey of Serrano,
2009).

The note is organized as follows. Section 2 presents the construction of a family
of cooperative games from a strategic game. Section 3 characterizes the endorsement
associated to a strategic game by characterizing the Core of the cooperative game.



Finally, the computation of such value for a two-player game closes the note.

2 From (G,u) to {I',v},

Let (G,u) = (N,S;,u; : WienS; — R) be a strategic game where N = {1,...,n}
is the finite set of players, S; = {ii,...,4,} the action set and w; represents the
utility function of player i. From (G,u) we generate a family of coalitional games
denoted by {I'(c) }4er+. Each coalitional game in such family is defined by both the
set of players and the characteristic function v. The function v assigns a worth to any
possible coalition of players. First, let’s translate any action k of each player ¢ denoted
by i to an agent of the new coalitional cooperative game. We call these agents as
types. Therefore, each action of player i from the original game GG corresponds with
a type at the new coalition game I'. Denote by N™ = U,;cn5; the set of agents in T"
and for all coalition S € N™, and p;(S) = S N S; corresponds with the actions that
player ¢ participates.
Define I'(a) = (N™,v%) with v®: 2¥" — R where

v*(S) = 0if 3i € N such that p;(S) =0 [1]

v*(S) = Max (Zui(tl,tQ,...,tN) b€ pi(S)> ifVie N:p(S)#0
v (N") = « Z

The first condition says that any coalition of types which does not represent a
possible action profile in G has zero worth. The second one sets up the worth of
a coalition S where any player is active by at least one action, i.e.: p;(S) # 0. In
particular, if |S| = n and p;(S) # 0, Vi € N then v*(S) = >, ui(p1(S), ..., pn(95)).
The last condition states the worth of the total coalition. We call a the endorsement
of the game G and we look for conditions on « to guaratee cooperative solution in

I'().

3 The endorsement of cooperation

This section presents the characterization of the Core of I'(«) denoted by C(I'(«)).
In order to prove proposition 1, we apply the characterization of balanced games to
state the existence of non-empty Core. Thereafter, we propose a way to describe
the Core using coalitions in ['(«) where each player participates with only one of her
actions. Finally, we state the minimum « for 2-players game in order to guarantee a
non-emptiness Core. We call this amount as the endorsement of G .



Proposition 1 There exists a > 0 such that C(I'(«)) # 0.

Proof. Notice that I'(«) is a balanced game for an « large enough, namely, for
@ = Y geonn 0(S). By using Bondavera-Shapley theorem (M. J. Osborne and A.
Rubinstein,1995. ppp 262 Proposition 262.2), I'(«) has nonempty core. ®

Given that family of cooperative games {I'(«)}, with non empty Core, by conti-
nuity and zero bounded restriction, it is easy to check the existence of the solution of
the problem min (o) subject to Core(I'(a)) # 0. Let & be the solution of the above
problem.

The value & represents the minimal investment in order to preclude the blocking
of coalitions, in particular those coalitions linked to a profile of action of G. Let
K={ScN"|S|=nand SNS; # 0 for all i € N} be the set! of coalitions with
non-zero worth. From K, we define a new set K(I'(«)) which consist of the set of
imputations determined by inequalities written only for coalitios in K. Therefore,
any profile of actions in G represents a inequality in K (I'(«)). Formally:

K (I'(«a) = {:z: e RY": sz > v*(S) VS € K and Z T; = a}

€S 1EN™

The proposition below states that the Core of I'(«) is equal to the set K (I'(«r)).
Proposition 2 C(I'(a)) = K (I'(«))

Proof. It is straightforward that C(I'(a))) C K (I'(a)). In order to prove that
K (I'(a)) € C(I'(ev)), it is enough to see that

in > v*(S) if pi(S) # 0 for all i and |S| >n
i€s
for all imputation z € K (I'(«)).

Let S € N™ such that |S| = n 41 and p;(S) # 0 for all i € N. Suppose w.l.o.g
that the first action for all players is in S and the second action of player 1, i.e.:
S ={11,15,21,31,...,n1}. By definition of the characteristic function v*:

UQ(S) = Max(Zui(ll,Ql,Sl,. .. 7711) ,Zui<12,21,31,. o ,nl) )

€N 1EN

I'Notice that K is isomorphic to the cartesian product of S;, i.e.: K = x;enS;.



If x € K(I'(«)) it satisfies that

>
T1, + E T4y

iEN\{1}

by the non negative condition, we get:

E {Eil

1EN

+ T,

1, —+ X1, + Z X4q
1eN\{1}

Therefore,

$11+$12+ Z Ly 2 Max(Zui(ll,Ql,ZSl, RN ,nl) ,Zui(12,21,31,. .. ,77,1> ) = UQ(S)

ieN\{1} 1EN

iEN

Therefore z € C' (I'(«)) and the result hold. m

The next proposition depicts the value & for the family of two players games. In
particular, the value & is either the sum of the principal diagonal of the payoff matrix

or the sum of the other diagonal.

Consider the following notation for the matrix payoff of G = ({1, 2}, S; = {0, 1}, u;)

a two person game:

20

2

1o

00, boo

ao1, bor

L

a0, b10 11, b1

Proposition 3 Suppose that agy + boo > a;; + bi; ¥V (i,7) # (0,0). Then & = agy +
boo +ap + b11 or o = Qg1 + b01 + a9 + bm.

Proof. Given that & is the lowest value of the total coalition such that Core(I'(«))
is not empty, let’s solve the following problem:

Min  x;, + xy + xjy + 75

s.t.

Tio + Ljo
Lig + Ljy
T + Lo

Ti + Ljy

5

aoo + boo
ao1 + bot
ai + bio
ap +bn

AVAR AVARLAVARLY,



The min contition allows us to write the problem as:

MZ’/L anpo —+ boo -+ ZEil + le

Ss.a. L + o 2 ao1 + 601
Ty + T > aio + bio
Ty, + x5, = aiy + b

Adding the first and the second restriction, we obtain that x;, +x;, > a1 + b1 +
a1 + big — agy — bog. Given the first condition, then the minimum is:

& = ago + boo + max{ai; + b1, a1 + bor + aio + bio — aoo — oo}

and the result holds. =
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