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Abstract

A celebrated result of Abreu and Rubinstein [1] states that in repeated
games, when the players are restricted to playing strategies that can be im-
plemented by finite automata and they have lexicographic preferences, the set
of equilibrium payoffs is a strict subset of the set of feasible and individually
rational payoffs. In this paper we explore the limitations of this result. We
prove that if memory size is costly and players can use mixed automata, then
a folk theorem obtains and the set of equilibrium payoff is once again the set
of feasible and individually rational payoffs. Our result emphasizes the role of
memory cost and of mixing when players have bounded computational power.

Keyword: Bounded rationality, automata, complexity, infinitely repeated games,
equilibrium.

1 Introduction

The literature on repeated games usually assumes that players have an unlimited
computational capacity, or unbounded rationality. Since in practice this assumption

∗This work was conducted while the second author was visiting Universidad de Valencia. The
first author thanks both the Spanish Ministry of Science and Technology and the European Feder
Founds for financial support under project SEJ2007-66581 and Generalitat Valenciana (PROME-
TEO/2009/068). The second author thanks the Departamento de Análisis Económico at Universi-
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does not hold, it is important to study whether and how its absence affects the
predictions of the theory.

One common way of modelling players with bounded rationality is by restricting
them to strategies that can be implemented by finite state machines, also called finite
automata. The game theoretic literature on repeated games played by finite automata
can be roughly divided into two categories. One backed by an extensive literature
(e.g., Kalai [8], Ben Porath [3], Piccione [16], Piccione and Rubinstein [17], Neyman
[10], [11], [12], Neyman and Okada [13], [14], [15], Zemel [23]) that studies games where
the memory size of the two players is determined exogenously, so that each player
can deviate only to strategies with the given memory size. In the other, Rubinstein
[18], Abreu and Rubinstein [1], and Banks and Sundaram [2] study games where the
players have lexicographic preferences: each player tries to maximize her payoff, and
subject to that she tries to minimize her memory size. Thus, it is assumed that
memory is free, and a player would deviate to a significantly more complex strategy
if that would increase her profit by one cent. Abreu and Rubinstein [1] proved that
in this case, the set of equilibrium payoffs in two-player games is generally a strict
subset of the set of feasible and individually rational payoffs. In fact, it is the set of
feasible and individually rational payoffs that can be generated by a coordinated play ;
that is, a sequence of action pairs in which there is a one-to-one mapping between
Player 1’s actions and Player 2’s actions. For example, in the Prisoner’s Dilemma
that appears in Figure 1, where each player has two actions, C and D, this set is the
union of the two line segments [3, 3]− [1, 1] and [3, 1]− [1, 3].

Player 1

Player 2

C

D

D C

0, 4

1, 1

3, 3

4, 0

W

0 1 3 4
0

1

3

4

Figure 1: The Prisoner’s Dilemma: the payoff matrix, the feasible
and individually rational payoffs (the dark quadrilateral W ),

and the payoffs that correspond to coordinated
play (the two thick lines).

To obtain their result, Abreu and Rubinstein [1] make two implicit assumptions:
(a) memory is costless, and (b) players can use only pure automata. Removing as-
sumption (a) while keeping assumption (b) does not change the set of equilibrium
payoffs. Indeed, since the preference of the players is lexicographic, no player can
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profit by deviating to a larger automaton when memory is costless, so a fortiori she
has no profitable deviation when memory is costly. The construction in [1] ensures
that a deviation to a smaller automaton yields the deviator a payoff which is close
to her minmax value in pure strategies. Therefore as soon as memory cost is suffi-
ciently small, there is no profitable deviation to a smaller memory as well. Removing
assumption (b), on the other hand, adds new equilibrium payoffs, as exhibited by
Example 6 below.

Our goal in this paper is to show that if one removes both assumptions (a) and (b)
then the result of Abreu and Rubinstein [1] fails to hold. We will show that if memory
is costly (yet memory cost goes to 0) and players can use mixed strategies, then a
folk theorem obtains, and the set of equilibrium payoffs includes the set of feasible
and individually rational payoffs (w.r.t. the minmax value in pure strategies).1 We
assume for simplicity that the players have additive utility: the utility of a player is
the difference between her long-run average payoff and the cost of her computational
power.

We thus present a new equilibrium concept that is relevant when memory size
matters and each player’s set of pure strategies is the set of finite automata. For a
given positive real number c, we say that the vector x ∈ R2 is a c-Bounded Compu-
tational Capacity equilibrium payoff (hereafter, BCC for short) if it is an equilibrium
payoff when the utility of each player is the difference between her long-run average
payoff, and c times the size of its finite state machine.

A payoff vector x ∈ R2 is a BCC equilibrium payoff if it is the limit, as c goes
to 0, of c-bounded computational capacity equilibrium payoffs, and the cost of the
machines used along the sequence converges to 0.

Interestingly, the definition does not imply that the set of BCC equilibrium payoffs
is a subset, nor a superset, of the set of Nash equilibrium payoffs.

Our main result is a folk theorem: in two-player games, every feasible and indi-
vidually rational (w.r.t. the min-max value in pure strategies) payoff vector is a BCC
equilibrium payoff.

Our proof is constructive. The equilibrium play in the BCC equilibrium that we
construct is composed of three phases. The first phase, that is played only once on the
equilibrium path, is a Punishment Phase; in this phase each player plays a strategy
that punishes the other player, that is, an action that attains the min-max value
in pure strategies of the opponent. As in [1], it is crucial to have the punishment
phase on the equilibrium path; otherwise, players can use smaller machines that
cannot implement punishment, thereby reducing their computation cost. However, if
a machine cannot implement punishment, there is nothing that will deter the other

1We do not know what is the set of equilibrium payoffs in the setup of Abreu and Rubinstein [1]
when one allows for mixed automata but keeps memory costless.
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player from deviating. The second phase, called the Babbling Phase, is also played
only once on the equilibrium path. In this phase the players play a predetermined
sequence of action pairs. In the third phase, called the Regular Phase, the players
repeatedly play a predetermined periodic sequence of action pairs that approximates
the desired target payoff. To implement this phase, the players reuse states that were
used in the babbling phase. In fact, the role of the babbling phase is to enable one to
embed the regular phase within it, and its structure is designed to simplify complexity
calculations. It is long enough to ensure that, with only low probability, a player can
correctly guess which of the states in the other player’s machine are reused.

Our construction breaks down in the setup of Abreu and Rubinstein [1] because
some of the states of the automata that implement that players’ strategies are reused;
whereas in the construction of Abreu and Rubinstein each state had a specific role,
and if the opponent deviated a long punishment phase ensued, in our construction
some states accept two different actions of the opponent. When memory is costless
and players can use huge automata, a player can learn which states of the opponent’s
automaton are reused, and play only one of these actions whenever his opponent’s
automaton visits a reused state, thereby increasing his overall average payoff.

The rest of the paper is organized as follows. Section 2 presents the model and the
main result. The construction of a mixed equilibrium strategy for both players in the
particular case of the Prisoner’s Dilemma is presented in Section 3. Comments and
further discussion appear in Section 4. In the appendix we indicate how the proof for
the Prisoner’s Dilemma should be altered to fit general two-player games.

2 The Model and the Main Result

In this section we define the model, including the concepts of automata, repeated
games, and strategies implementable by an automaton, we describe our solution con-
cept of Bounded Computational Capacity equilibrium, and we state the main result.

2.1 Repeated Games

A two-player repeated game is given by (1) two finite action sets A1 and A2 for the
two players, and (2) two payoff functions u1 : A1 × A2 → R and u2 : A1 × A2 → R
for the two players. We denote by A := A1 ×A2 the set of action pairs.

The game is played as follows. At each stage t ∈ N, each player i ∈ {1, 2} chooses
an action ati ∈ Ai, and receives the stage payoff ui(a

t
1, a

t
2). The goal of each player is to

maximize his long-run average payoff limt→∞
1
t

∑t
j=1 ui(a

j
1, a

j
2), where {(aj1, a

j
2), j ∈ N}

is the sequence of action pairs that were chosen by the players along the game.2 A

2In general this limit need not exist. Our solution concept will take care of this issue.
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pure strategy of player i is a function that assigns an action in Ai to every finite
history h ∈ ∪∞t=0At. A mixed strategy of player i is a probability distribution over
pure strategies.

2.2 Automata

A common way to model a decision maker with bounded computational capacity is
as an automaton, which is a finite state machine whose output depends on its current
state, and whose evolution depends on the current state and on its input (see, e.g.,
Neyman [10] and Rubinstein [18]). Formally, an automaton P is given by (1) a finite
state space Q, (2) a finite set I of inputs, (3) a finite set O of outputs, (4) an output
function f : Q→ O, (5) a transition function g : Q× I → Q, and (6) an initial state
q∗ ∈ Q.

Denote by qt the automaton’s state at stage t. The automaton starts in state
q1 = q∗, and at every stage t ∈ N, as a function of the current state qt and the current
input it, the output of the automaton ot = f(qt) is determined, and the automaton
moves to a new state qt+1 = g(qt, it).

The size of an automaton P , denoted by |P |, is the number of states in Q. Below
we will use strategies that can be implemented by automata; in this case the size of
the automaton measures the complexity of the strategy.

2.3 Strategies Implemented by Automata

Fix a player i ∈ {1, 2}. An automaton P , whose set of inputs is the set of actions
of player 3 − i and set of outputs is the set of actions of player i, that is, I = A3−i
and O = Ai, can implement a pure strategy of player i. Indeed, at every stage t, the
strategy plays the action f(qt), and the new state of the automaton qt+1 = g(qt, at3−i)
depends on its current state qt and on the action at3−i that the other player played at
stage t. For i = 1, 2, we denote an automaton that implements a strategy of player i
by Pi. We denote by Pmi the set of all automata with m states that implement pure
strategies of player i.

When the players use arbitrary strategies, the long-run average payoff needs not
exist. However, when both players use strategies that can be implemented by au-
tomata, say P1 and P2 of sizes p1 and p2 respectively, the evolution of the automata
follows a (deterministic) Markov chain with p1×p2 states, and therefore the long-run
average payoff exists. We denote this average payoff by γ(P1, P2) ∈ R2.

A mixed automaton M is a probability distribution over pure automata.3 A mixed
automaton corresponds to the situation in which the automaton that is used is not

3To emphasize the distinction between automata and mixed automata, we call the former pure
automata.
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known, and there is a belief over which automaton is used. A mixed automaton defines
a mixed strategy: at the outset of the game, a pure automaton is chosen according
to the probability distribution given by the mixed automaton, and the strategy that
the pure automaton defines is executed.

We will use only mixed automata whose support is pure automata of a given size
m. Denote by Mm

i the set of all mixed automata whose support is automata in
Pmi , and by Mi = ∪m∈NMm

i the set of all mixed automata whose support contains
automata of the same size. If Mi ∈Mm

i , we say that m is the size of the automaton
Mi. Thus, the size of a mixed automaton refers to the size of the pure automata in
its support (and not, for example, to the number of pure automata in its support). If
we interpret each pure automaton as an agent’s type, and a mixed automaton as the
type’s distribution in the population, then the size of the mixed automaton measures
the complexity of an individual agent, and not the type diversity in the population.

When both players use mixed strategies that can be implemented by mixed au-
tomata, the expected long-run average payoff exists; it is the expectation of the
long-run average payoff of the pure automata that the players play:

γ(M1,M2) := EM1,M2 [γ(P1, P2)].

2.4 Bounded Computational Capacity Equilibrium

In the present section we study games where the utility function of each player takes
into account the complexity of the strategy that she uses.

Definition 1 Let c > 0. A pair of mixed automata (M1,M2) is a c-BCC equilibrium,
if it is a Nash equilibrium for the utility functions U c

i (M1,M2) = γi(M1,M2)− c|Mi|,
for i ∈ {1, 2}.

If the game has an equilibrium in pure strategies, then the pair of pure automata
(P1, P2), both with size 1, that repeatedly play the equilibrium actions of the two
players, is a c-BCC equilibrium, for every c > 0.

The min-max value of player i in pure strategies in the one-shot game is

vi := min
a3−i∈A3−i

max
ai∈Ai

ui(ai, a3−i).

An action a3−i that attains the minimum is termed a punishing action of player 3− i.

Remark 2 Abreu and Rubinstein’s [1] proof implies that for every c sufficiently small,
when restricted to pure strategies, the only c-BCC equilibrium payoffs are the feasible
and individually rational payoffs that are implementable by coordinated play. Indeed,
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suppose that x is a c-BCC equilibrium payoff in pure automata that cannot be gener-
ated by a coordinated play, and let (P1, P2) be a c-BCC equilibrium that supports this
payoff. As in Abreu and Rubinstein’s [1] proof, the optimal pure automaton against an
automaton of size m is an automaton of size at most m. This implies that |P1| = |P2|.
In particular, no player can profit by deviating to a larger automaton than the one
that he uses. Since x cannot be generated by a coordinated play, by Abreu and Rubin-
stein [1] the pair of pure automata (P1, P2) is not an equilibrium when preferences are
lexicographic, and in particular one of the players, say Player 1, has an automaton
smaller than P1 that yields higher payoff against P2 than P1. But then (P1, P2) cannot
be a c-BCC equilibrium, a contradiction.

To get rid of the dependency of the constant c we define the concept of a BCC
equilibrium payoff. A payoff vector x is a BCC equilibrium payoff if it is the limit, as
c goes to 0, of payoffs that correspond to c-BCC equilibria.

Definition 3 A payoff vector x = (x1, x2) is a BCC equilibrium payoff if for every
c > 0 there is a c-BCC equilibrium (M1(c),M2(c)) such that limc→0 γ(M1(c),M2(c)) =
x and limc→0 c|Mi(c)| = 0 for i = 1, 2.

It follows from the discussion above that every pure equilibrium payoff is a BCC
equilibrium payoff. Using Abreu and Rubinstein’s [1] proof, one can show that any
strictly individually rational payoff (relative to the min-max value in pure strategies)
that can be generated by coordinated play is a BCC equilibrium payoff. For the
formal statement, assume w.l.o.g. that |A1| ≤ |A2|.

Theorem 4 (Abreu and Rubinstein, 1988) Let σ : A1 → A2 be a one-to-one
function. Then any payoff vector x in the convex hull of {u(a1, σ(a1)), a1 ∈ Ai} that
satisfies xi > vi for i = 1, 2 is a BCC equilibrium payoff.

2.5 The Main Result

The set of feasible payoff vectors is

F := conv{u(a), a ∈ A}.

The set of strictly individually rational payoff vectors (relative to the min-max value
in pure strategies) is

V :=
{
x = (x1, x2) ∈ R2 : x1 > v1, x2 > v2

}
.

Our main result is the following folk theorem, that states that every feasible and
strictly individually rational payoff vector is a BCC equilibrium payoff.
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Theorem 5 If the set F ∩ V has a non-empty interior, then every vector in F ∩ V
is a BCC equilibrium payoff.

Observe that Theorem 5 is not a characterization of the set of BCC equilibrium
payoffs, because it does not rule out the possibility that a feasible payoff that is
not individually rational (relative to the min-max value in pure strategies) is a BCC
equilibrium payoff. That is, we do not know whether threats of punishments by a
mixed strategy in the one-shot game can be implemented in a BCC equilibrium.

Theorem 5 stands in sharp contrast to the main message of Abreu and Rubinstein
[1] where it is proved that lexicographic preferences, which are equivalent to an in-
finitesimal cost function c, imply that in equilibrium players follow coordinated play,
so that the set of equilibrium payoffs is sometimes smaller than the set of feasible and
individually rational payoffs. Our study shows that the result of Abreu and Rubin-
stein [1] hinges on two assumptions: (a) memory is costless, and (b) the players use
only pure automata. Once we assume that memory is costly and that players may
use mixed automata, the set of equilibrium payoffs changes dramatically.

2.6 A Detour to Abreu and Rubinstein [1]

Abreu and Rubinstein [1] study repeated games in which players have lexicographic
preferences and can use only pure automata. They consider both the undiscounted
game and the discounted game with a discount factor that is close to 1. A pair of
pure automata is an equilibrium if (a) no player can profit by deviating to any other
pure automaton, and (b) a player who deviates to a smaller automaton loses.

Abreu and Rubinstein [1] prove that the set of equilibrium payoffs is the set of fea-
sible and individually rational payoff vectors that can be generated by a coordinated
play.

In the Prisoner’s Dilemma (see Figure 1) the min-max level of each player is 1, and
the punishing action of each player is D. The set of feasible and (weakly) individually
rational payoffs appear in Figure 1. It is equal to the quadrilateral W with extreme
points (1, 1), (1, 32

3
), (3, 3) and (32

3
, 1). The result of Abreu and Rubinstein implies

that the set of equilibrium payoffs is the union of the two line segments (1, 1)− (3, 3)
and (1, 3)− (3, 1).

The argument leading to the result of Abreu and Rubinstein’s [1] are the following.

1. When Player 1 uses an automaton with m states, Player 2’s best response is
an automaton with at most m states. The reason is that given the automa-
ton of Player 1, Player 2’s optimization problem reduces to a Markov decision
problem with m states. In such a problem, the decision maker has a station-
ary pure optimal strategy, which can be implemented by an automaton with at
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most m states. This property implies that when the players have lexicographic
preferences, in an equilibrium both players use automata of the same size.

2. Each player’s equilibrium automaton uses distinct states until it completes one
cycle of its states. This follows from a result that says that if the states of
one player which are used in any two periods t and t

′
of equilibrium play are

identical, then the average payoff of the opponent between stages t to t
′
coincides

with the average payoff from t
′

onwards, and therefore also the average payoff
from t onwards. Therefore if the cycle starts before all the states for both
player are used, players could modify their machine to skip the stages between
stages t and t′. This modification does not change the long-run average payoff,
yet it lowers the number of states of the automaton, contradiction with the
equilibrium condition.

3. If in stage t the automaton Pi plays the same action it plays in stage t′, then in
stage t the automaton P3−i plays the same action it plays in stage t′. Indeed, by
Point 2, the automaton Pi uses different states along its cycle, and in particular
the states that are used in stages t and t′ are used only in those stages. Assume
by way of contradiction that the automaton P3−i plays differently in stages t
and t′. Then player 3 − i can lower the size of his automaton by using the
same state in stages t and t′, and letting the action of player 3 − i control the
transition out of this state. But this contradicts the equilibrium condition.

Abreu and Rubinstein’s equilibrium construction is as follows.

• The players start by implementing a punishment phase: both players play the
action D for a large number of stages. The states used for this phase are all
distinct. Moreover those states are used only at the beginning of the equilibrium
play. They could be understood as a signal of strength.

• A cycle of action pairs, which is called the regular phase, is repeated. The cycle
starts after mi stages using all the states once. The states used in the cycle and
not in the punishment phase are used infinitely many times. Each of them may
start a punishment going to the first state if a deviation is detected. The action
pairs of the cycle conforms a coordinated play. This implies that there exists a
one-to-one relationship between the action set of Players 1 and 2 in equilibrium.

A crucial assumption to the result of Abreu and Rubinstein is that players use
pure automata. As the following example shows, the result does not hold when mixed
automata are allowed.
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Example 6 Consider the two-player game that appears in Figure 2, where each
player has three actions.

Player 1

Player 2

D

B

A

A B D

0, 0 0, 0 0, 0

3, 2 1, 1 0, 0

1, 1 3, 2 0, 0

Figure 2: The Game in Example 6.

The minmax value of each player is 0, the set of feasible and individually rational
payoffs is the triangle W that appears in Figure 3, and the set of equilibrium payoffs
when players are restricted to pure automata and have lexicographic preferences is
composed of the two line segments (0, 0)− (1, 1) and (0, 0)− (3, 2), see Figure 3.

W

0 1 2 3
0

1

2

3

Figure 3: The feasible and individually rational payoffs in Example 6.

We claim that when the players have lexicographic preferences and they are re-
stricted to mixed automata, there are equilibrium payoffs that are arbitrarily close to
(3
2
, 1) = 1

2
(1, 1) + 1

2
(3, 2). To this end, for each action a ∈ {A,B} we define the pure

automaton P1(a) of Player 1, that depends on a positive integer k (see Figure 4).

• The automaton starts by playing a punishment phase of length k2. That is,
the automaton outputs the action D and it expects the other player to play the
action D; that is, it moves to the next state if the other player played the action
D.

• In stage k2 + 1 it plays the action a, and observes the action played by the other
player at that stage.

• In the following k stages it repeats the action that the other player played at
stage k2 + 1, and it expects the other player to play the action a in those stages.
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• Finally, in stage k2 + 1 + k+ 1 it marks the end of the regular phase by playing
D, and, if the other player plays the action D as well, it moves to the state in
which it has been at stage k2 + 2.

• Every deviation from this plan triggers a punishment phase.

Put differently, the players jointly select one of the four non-zero entries in the payoff
matrix, by having each player choose the action of the other player. The size of this
automaton is k2 + 1 + 2(k + 1).

�→4→4→. . .→4︸ ︷︷ ︸→•→ AA−block︷ ︸︸ ︷
•→•→. . .→•→•→4

�→. . .→�→�︸ ︷︷ ︸
BA−block

→4
6

?

B

A

Punishment

@
@R

The automaton P1(A)

4: output D

•: output A

�: output B

�→4→4→. . .→4︸ ︷︷ ︸→�→
AA−block︷ ︸︸ ︷

•→•→. . .→•→•→4

�→. . .→�→�︸ ︷︷ ︸
AB−block

→4
6

?

B

A

Punishment

@
@R

The automaton P1(B)

4: output D

•: output A

�: output B

Figure 4: The automata P1(A) and P1(B).

Let M1 be the mixed automaton of Player 1 that plays each of P1(A) and P1(B)
with equal probabilities. Let P2(A), P2(B), and M2 be the analog automata of Player 2.
We argue that (M1,M2) is an equilibrium when the players have lexicographic prefer-
ences. Indeed, under (M1,M2) the automata never restart and the long-run average
payoff is k−1

k

(
1
2
(3, 2) + 1

2
(1, 1)

)
.
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We finally show that if, say, Player 1, deviates to a smaller automaton, he loses.
Let then P ′1 be a pure automaton of Player 1. To play well against M2, the automaton
P ′1 should play well both against P2(A) and against P2(B). In particular, since in the
first k2 stages the play is coordinated, and since in stage k2 + 1 the automaton P ′1
should play an action which is not D, the automaton P ′1 must devote k2 states to
pass the punishment phase.4,5 Since M2 chooses between P2(A) and P2(B) with equal
probabilities at stage k2 + 1, Player 1 is indifferent between playing A and B at that
stage, and by symmetry if he can profit by playing one of these actions, he can profit
by playing the other as well. Assume then w.l.o.g. that P ′1 plays the action B in stage
k2 + 1. In the following k + 1 stages the play consists of a coordinated play of k + 1
stages in which Player 1 is supposed to play A against P2(A) and B against P2(B),
followed by a final stage in which it should play D, and any deviation triggers a long
punishment phase. Since the transition from the last state, in which Player 1 plays
D, is different when facing P2(A) and P2(B), the automaton P ′1 must devote 2(k+ 1)
states to succeed passing this play against both P2(A) and P2(B).

Overall, to attain a payoff k−1
k

(
1
2
(3, 2) + 1

2
(1, 1)

)
against M2 the automaton P ′1

must be of size at least k2 + 1 + 2(k + 1), as claimed.

3 BCC Equilibria in the Prisoner’s Dilemma

In the present section we prove Theorem 5 for the Prisoner’s Dilemma. The construc-
tion in this case contains all the ingredients of the general case, yet the simplicity of
the Prisoner’s Dilemma allows one to concentrate on the construction’s main aspects.
In Section A we generalize this basic construction to general two-player repeated
games.

Consider, for example, the payoff vector x = (7
6
, 19

6
). This vector can be written

as a convex combination of three vectors in the payoff matrix as follows:

(7
6
, 19

6
) = 1

6
(1, 1) + 2

6
(3, 3) + 3

6
(0, 4). (1)

We now describe a c-BCC equilibrium with payoff (7
6
, 19

6
), for a properly chosen c.

Our construction depends on a parameter k that determines the size of the automata
that the players use: Player 1 mixes between pure automata of size k3 + 2k2 + k + 1
and Player 2 mixes between pure automata of size k3 + 2k2 + k+ 4. We will choose k
to be sufficiently large so that min{x1 − 1, x2 − 1} > 6

k
. To facilitate calculations we

assume that k is divisible by 4 and that it is sufficiently large so that k3 > 3k2+2k+8.

4We elaborate on this issue in Section 3.2.
5The punishment phase could have been significantly shorter. To make the construction here

similar to subsequent constructions, we chose to have a long punishment phase here as well.
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3.1 The Equilibrium Play

The equilibrium play will be independent of the pair of pure automata that the players
choose and it will consist of three phases, as follows.

• A Punishment Phase that consists of k3 times playing (D,D):

Q∗ := k3 × (D,D).

• A Babbling Phase that consists of 2k + 1 blocks: in odd blocks (except the last
one) the players play k times (C,C); in even blocks they play k times (D,D);
and in the last block the players play k + 1 times (C,C).

B∗ :=
k∑

n=1

(
k × (C,C) + k × (D,D)

)
+ (k + 1)× (C,C).

• A Regular Phase in which the players repeatedly play actions along which the
average payoff is the target payoff x.

R∗ := 1× (D,D) + 2× (C,C) + 3× (C,D).

.

Formally, the equilibrium play path ω∗ is

ω∗ := Q∗ +B∗ +
∞∑
n=1

R∗ (2)

= k3 × (D,D)︸ ︷︷ ︸
Punishment

+
k∑

n=1

(
k × (C,C) + k × (D,D)

)
+ (k + 1)× (C,C)︸ ︷︷ ︸

Babbling

+
∞∑
n=1

R∗︸ ︷︷ ︸
Regular

.

To implement other feasible and individually rational payoff vectors x as c-BCC
equilibria we change the regular phase to contain a cycle of action pairs whose average
payoff is close to x.

The roles of the three phases are as follows.

• As in Abreu and Rubinstein [1], the punishment phase ensures that punishment
is on the equilibrium path. Because the players minimize their automaton size,
subject to maximizing their payoff, if the punishment phase was off the equi-
librium path, players could save states by not implementing it. But if a player
cannot implement punishment, the other player may safely deviate, knowing

13



that she will not be punished. In our construction, detectable deviations of the
other player will lead the automaton to restart and reimplement ω∗, thereby
initiating a long punishment phase. The length of the punishment phase, k3, is
much longer than the babbling phase to ensure that the punishment is severe.

• The babbling phase serves two purposes. First, because it is coordinated, it is
not difficult to calculate its complexity for each player i, that is, the size of the
minimal pure automaton of player i that can implement player i’s part in this
sequence, given that the other player, player 3−i, plays his part in the sequence.
As we show below, the complexity of ω∗ for Player 1 is k3 + 2k2 + k+ 1 and its
complexity for Player 2 is k3 + 2k2 + k + 4. This implies in particular that if
a player deviates to an automaton smaller than the complexity of the sequence
for that player, while the other player does not deviate, then there will be a
stage in which that player’s play deviates from ω∗.

Second, the babbling phase is sufficiently long, so that to implement the regular
phase one does not need new states, but can rather reuse states that implement
the babbling phase. Moreover, its long length ensures that, if the states that are
reused are chosen randomly, to find which states are reused with non-negligible
probability, the other player must use a prohibitively large automaton: to profit
by deviating the other player needs to search for the reused states, a task that
requires a significantly larger automaton than the one she currently uses.

• On the equilibrium path the regular play will be played repeatedly, so that the
long-run average payoff will be the average payoff along R∗, which is (7

6
, 19

6
).

3.2 The Complexity of ω∗

We say that a pure automaton Pi of player i is compatible with the play ω∗ (or that
the play ω∗ is compatible with the automaton Pi) if, when the other player 3 − i
plays her part in ω∗, the automaton generates the play of player i in ω∗. A mixed
automaton Mi of player i is compatible with ω∗ if all the pure automata in its support
are compatible with ω∗.

Plainly, different automata may be compatible with ω∗. The complexity of ω∗

w.r.t. player i is the size of the smallest pure automaton of player i that is compatible
with ω∗. This concept was first defined and studied by Neyman [12], who also provided
a simple way to calculate it.

We elaborate on the concept of the complexity of a sequence in Section 3.6. The
following Lemma provides the complexity of the sequence ω∗ w.r.t. the two players.

Lemma 7 The complexity of ω∗ w.r.t. Player 1 is k3+2k2+k+1, and its complexity
w.r.t. Player 2 is k3 + 2k2 + k + 4.
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In Section 3.6 we will prove that the complexity of ω∗ w.r.t. each player is at least
the quantity given by Lemma 7. In Section 3.3 we provide a pure automaton for
Player 1 with k3 +2k2 +k+1 states that is compatible with ω∗, and in Section 3.4 we
provide a pure automaton for Player 2 with k3 + 2k2 +k+ 4 states that is compatible
with ω∗, thereby completing the proof of Lemma 7.

3.3 An Automaton P1 for Player 1 that is Compatible with
ω∗

Fix j ∈ {1, 2, . . . , k − 1} and h1, h2 ∈ {4, 5, . . . , k} such that h1 6= h2. In this section
we define a pure automaton P1 = P j,h1,h2

1 for Player 1 with size k3 + 2k2 + k+ 1 that
is compatible with ω∗; that is, when Player 2 plays his part in ω∗, the generated play
is ω∗.

Denote the states of P1 by the integers Q = {1, 2, . . . , k3 + 2k2 + k + 1}, where
q∗ = 1 is the initial state. We will construct the automaton P1 in four steps.

3.3.1 Step 1: Implementing the Punishment and Babbling Phases

The Punishment and Babbling Phases, whose total length is k3 + 2k2 + k + 1, are

ω1 = k3 × (D,D) +
k∑

n=1

(
k × (C,C) + k × (D,D)

)
+ (k + 1)× (C,C).

The length of these phases is similar to the size of the automaton that we construct.
A naive implementation is to have one state for each action of Player 1 in ω1: state
q ∈ Q will implement the q’th action pair in ω1. Formally, we divide Q into three
sets:

1. QP = {1, 2, . . . , k3} is the set of all states that implement the Punishment
Phase.

2. QC =
(⋃k−1

n=0{k3 + 2nk + 1, . . . , k3 + 2nk + k}
)
∪ {k3 + 2k2 + 1, . . . , k3 + 2k2 +

k + 1} is the set of states in all C-blocks.

3. QD =
⋃k−1
n=0{k3 + 2nk + k + 1, . . . , k3 + 2nk + 2k} is the set of states in all

D-blocks.

The output function is

f(q) =

{
D q ∈ QP ∪QD,
C q ∈ QC ,
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and the transition function is

g(q, f(q)) = q + 1, 1 ≤ q < k3 + 2k2 + k + 1.

Because the play in ω1 is coordinated, the transition is defined only if Player 2 complies
with the desired play ω1. Figure 5 illustrates the first step in the construction of the
automaton P1. In this figure, the initial state is the dotted circle to the left, the
white squares correspond to states where the action played is D, and the black circles
correspond to states where the action played is C.

�→�→�→. . .→�︸ ︷︷ ︸→•→. . .→•︸ ︷︷ ︸→�→. . .→�︸ ︷︷ ︸→. . .→•→. . .→•︸ ︷︷ ︸→�→. . .→�︸ ︷︷ ︸→•→•→. . .→•︸ ︷︷ ︸
Punishment C-block D-block C-block D-block C-block

Figure 5: An implementation of ω1.

3.3.2 Step 2: Implementing the Regular Phase.

We now add to the automaton P1 transitions that implement the regular play, which
is (D,D) + 2× (C,C) + 3× (C,D). The implementation will use states in the j1’th
D-block and in the (j1+1)’th C-block. Specifically, the last state in the j1’th D-block
is used to implement the first action pair of the regular play (which is (D,D)); the
first two states in the (j1 + 1)’th C-block are used to implement the next two action
pairs of the regular play (both of which are (C,C)); the third state in the (j1 + 1)’th
C-block, as well as the h1’th and h2’th states, are used to implement the subsequent
action pair of the regular play (which are (C,D)).

Formally, we add the following transitions (see Figure 6):

g(k3 + 2k2 + k + 1, C) = k3 + 2j1k, (3)

g(k3 + 2j1k + 3, D) = k3 + 2j1k + h1, (4)

g(k3 + 2j1k + h1, D) = k3 + 2j1k + h2, (5)

g(k3 + 2j1k + h2, D) = k3 + 2j1k. (6)

We call the three states k3 + 2j1k + 3, k3 + 2j1k + h1, and k3 + 2j1k + h2 the
accept-all states of the automaton P1. In Figure 6, the three accept-all states are
denoted by triangles. When the automaton P1 is at such a state it plays the action
C; if Player 2 plays the action C, the transition is to the subsequent (black circle)
state, whereas if Player 2 plays D, the transition is to the next triangle state.
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6
j1’th D-block (j1 + 1)’th C-block D-block C-block

Figure 6: The j1’th D-block and the (j1 + 1)’th C-block in P1.

3.3.3 Step 3: Deviations.

By construction, the automaton P1 is compatible with ω∗. We now add transitions
to detect deviations of Player 2 as follows: all transitions that were not defined in
Steps 1-3 lead to state 1.

Only the three accept-all states accept both actions of Player 2; the other states
accept only the action that they output. Because a punishment phase of length
k3 begins in state 1, any deviation in a non-accept-all state is followed by a severe
punishment.

3.3.4 A Mixed Automaton M1 = M1(k)

The pure automaton P1 = P1(j, h1, h2) that was constructed in Section 3.3.1–3.3.3
depends on three parameters: j, h1, and h2. We will now define a mixed automaton
M1 = M1(k) that chooses these parameters randomly.

Let H = {(jd, hd1, hd2) : 1 ≤ d ≤ k
4
} be a collection of k

4
triplets that satisfy the

following conditions:

A1 (jd)
k/4
d=1 are distinct elements from {1, 2, . . . , k−1}, (hd1)

k/4
d=1 are distinct elements

from {4, 5, . . . , k}, and (hd2)
k/4
d=1 are distinct elements from {4, 5, . . . , k}.

A2 {hd11 , hd12 } ∩ {hd21 , hd22 } = ∅ for every distinct d1, d2 ∈ {1, 2, . . . , k4}.

A3 hd12 − hd11 6= hd22 − hd21 for every distinct d1, d2 ∈ {1, 2, . . . , k4}.

One can define, e.g., jd = d, hd1 = 3+d and hd2 = hd1 + k
4

+d for every d ∈ {1, 2, . . . , k
4
}.

The mixed automaton M1 = M1(k) chooses uniformly one of the pure automata
{P j,h1,h2

1 , (j, h1, h2) ∈ H}. In particular, all pure automata in the support of M1 are
compatible with ω∗ for Player 1, so that M1 is compatible with ω∗ for Player 1 as
well.

The choice of the parameters j, h1, and h2 that define these pure automata was
done to ensure that, when Player 2 deviates from ω∗, at most one of the automata
in {P j,h1,h2

1 , (j, h1, h2) ∈ H} will not restart. This property is stated in the following
Lemma.
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Lemma 8 Let P1 = P j,h1,h2
1 and P ′1 = P

j′,h′1,h
′
2

1 be two different pure automata in the
support of M1 and let P2 be any pure automaton of Player 2. Let t be the first stage
in which the play under (P1, P2) differs from ω∗. Then at least one of the automata
P1 and P ′1 restarts before stage t+ 2k2 + k + 1.

Note that since both P1 and P ′1 are compatible with ω∗, the first stage in which
the play under (P ′1, P2) differs from ω∗ is also t. The Lemma is valid for any strategy
of Player 2, and not necessarily only for those implementable by pure automata.
Conditions (A1)–(A3) required from the parameters of the automata in the support
of M1 are the key ingredient in the proof of Lemma 8.

Proof. Denote by q(t) (resp. q′(t)) the state of the automaton P1 (resp. P ′1)
when facing P2. Denote by ω∗(t) the action pair at stage t according to ω∗. Then
ω∗2(t) is the action that Player 2 is supposed to play at stage t according to ω∗.

Since P1 and P ′1 are compatible with ω∗, and since in stage t the play under (P1, P2)
differs from ω∗, it follows that in stage t the pure automaton P2 does not play the
action ω∗2(t). If q(t) (resp. q′(t)) is not an accept-all state, then the automaton P1

(resp. P ′1) restarts at stage t, and the lemma follows. Thus, we assume from now on
that both q(t) and q′(t) are accept-all states.

In which stages do both P1 and P ′1 visit an accept-all state? During the punishment
phase none of these automata visits an accept-all state, and since j1 6= j′1, during the
implementation of the babbling phase they do not visit an accept-all states at the
same stage. Thus, only in the regular phase both automata visit accept-all states
simultaneously, when implementing the action pairs (C,D). We will show that if P2

deviates when P1 implements either one of these action pairs, a punishment phase
will ensue in at most 2k2 + k+ 1 stages. This will follow because the accept-all states
of P1 lie in a different C-block than the accept-all states of P ′1.

Suppose first that state q(t) is the h1’th state of the j1’th C-block. Then q′(t) is
the h′1’th state of the j′1’th C-block. Since P2 deviates in stage t, it plays C instead
of D, so that q(t+ 1) = q(t) + 1 and q′(t+ 1) = q′(t) + 1. The automaton P1 expects
now the sequence (k − h1) × (C,C) + 1 × (D,D) and is going to visit an accept-
all state in h2 − h1 stages. Similarly, the automaton P ′1 expects now the sequence
(k − h′1) × (C,C) + 1 × (D,D) and is going to visit an accept-all state in h′2 − h′1
stages. By (A2) and (A3) we have h1 6= h′1 and h2 − h1 6= h′2 − h′1, and therefore no
sequence of actions that P2 can generate is compatible with both automata, hence at
least one of them will restart within at most k stages.

The argument is similar if state q(t) is the h2’th stage of the j1’th C-block.
It is left to handle the case in which state q(t) is the third stage of the j1’th C-

block, in which case state q′(t) is the third stage of the j′1’th C-block. The automaton
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P1 expects now the sequence

ω := (k−3)× (C,C)+k× (D,D)+
k∑

j=j1+2

(k× (C,C)+k× (D,D))+(k+1)× (C,C),

and visits two accept-all states in h1− 3 and h2− 3 stages. Similarly, the automaton
P ′1 expects the sequence

ω′ := (k−3)× (C,C)+k× (D,D)+
k∑

j=j′1+2

(k× (C,C)+k× (D,D))+(k+1)× (C,C),

and visits two accept-all states in h′1 − 3 and h′2 − 3 stages. By (A2) and (A3) we
have h1 6= h′1, h2 6= h′2, and j1 6= j′1, and therefore no sequence of actions that P2 can
generate is compatible with both automata, hence at least one of them will restart
within at most 2k2 + k + 1 stages. The proof is thus completed.

Remark 9 Lemma 8 assumes that both automata start at state 1. However, the
reader can verify that the proof is valid as soon as the two automata start at the same
state; that is, it holds whenever q(1) = q′(1).

3.4 An Automaton P2 for Player 2 that is Compatible with
ω∗

As in Section 3.3 we define a family of pure automaton for Player 2, which are
compatible with ω∗ and have size k3 + 2k2 + k + 4. As for player 1, the automata in
the family depend on two parameters, an integer j ∈ {1, 2, . . . , k− 1} and a set H of
integers.

3.4.1 Step 1: Implementing the Punishment and Babbling Phases.

We start by implementing the Punishment and Babbling Phases whose length is
k3 + 2k2 + k + 1 states.

ω2 = k3 × (D,D) +
k−1∑
n=0

(k × (C,C) + k × (D,D)) + (k + 1)× (C,C),

As for player 1, we define an automaton that implements each action pair in one
state. Let Q = {1, 2, . . . , k3 + 2k2 + k+ 4} be the set of states of the automaton with
q∗ = 1 the initial state. The sets QP , QC , and QD of the states that implement the
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Punishment Phase, the C-blocks, and the D-blocks, respectively, are defined as in
Step 1 in Section 3.3.

The output function is:

f(q) =

{
D q ∈ QP ∪QD,
C q ∈ QC ,

and the transition function is

g(q, f(q)) = q + 1, 1 ≤ q < k3 + 2k2 + k + 1.

3.4.2 Step 2: Implementing the play (D,D) + 2 × (C,C) of the Regular
Phase.

We now add the transitions that implement the next three actions pairs in ω∗, which
are ω5 = (D,D) + 2× (C,C). To this end we use the last three states of Q.

The action function for these states is given by

f(k3 + 2k2 + k + 2) = D; f(k3 + 2k2 + k + 3) = C; f(k3 + 2k2 + k + 4) = C

and the transition is given by

g(q, f(q)) = q + 1, k3 + 2k2 + k + 1 ≤ q < k3 + 2k2 + k + 4.

3.4.3 Step 3: Implementing the play 3× (C,D) of the Regular Phase.

The last part of the Regular Phase is implemented by reusing states of the Babbling
Phase. Fix j ∈ {1, . . . , k} and h1, h2, h3 ∈ {1, 2, . . . , k} such that h1 < h2 < h3. We
will reuse the h1’th, h2’th, and h3’th states of the j’th D-block. Formally,

g(k3 + 2k2 + k + 4, C) = k3 + 2kj + h1 (7)

g(k3 + 2kj + h1, C) = k3 + 2kj + h2, (8)

g(k3 + 2kj + h2, C) = k3 + 2kj + h3. (9)

Finally, from the last state k3 + 2kj + h3 the Regular Phase should be repeated,
so that we define

g(k3 + 2kj + h3, C) = k3 + 2k2 + k + 2.

The three reused states k3 + 2kj + h1, k
3 + 2kj + h2, and k3 + 2kj + h3 are called

the accept-all states of P j,h1,h2,h3
2 .
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3.4.4 Step 4: Deviations.

As for Player 1 we add transitions to handle deviations in states that are not accept-
all states. All transitions that are not defined in Steps 1–3 lead to state 1, so that
such deviations initiate a long punishment phase.

3.4.5 Mixed strategy of player 2.

The definition of the mixed strategy M2 is analog to that of M1. The pure automaton
P2 = P2(j, h1, h2, h3) that was constructed in Sections 3.4.1–3.4.4 depends on four
parameters j, h1, h2 and h3. We will now define a mixed automaton M2 = M2(k)
that chooses these parameters randomly.

Let H = {(jd, hd1, hd2, hd3) : 1 ≤ d < k
4
} be a collection of k

4
triplets that satisfy the

following conditions:

B1 (jd)
k/4
d=1 are distinct elements from {1, 2, . . . , k − 1}, and for each l ∈ {1, 2, 3},

(hdl )
k/4
d=1 are distinct elements from {1, 2, . . . , k}.

B2 {hd11 , hd12 , hd13 } ∩ {hd21 , hd22 , hd23 } = ∅ for every distinct d1, d2 ∈ {1, 2, . . . , k4}.

B3 For every distinct d1, d2 ∈ {1, 2, . . . , k4} the six numbers hd12 − hd11 , hd22 − hd21 ,

hd13 − hd12 , hd23 − hd12 , hd13 − hd11 , and hd23 − hd11 are distinct.

One can define, e.g., jd1 = d, hd1 = d, hd2 = 2d + k
4
, and hd3 = 3d + 3k

4
, for every

d ∈ {1, 2, . . . , k
4
}.

The mixed automaton M2 = M2(k) chooses uniformly one of the pure automata
{P j,h1,h2,h3

2 , (j, h1, h2, h3) ∈ H}. As for Player 1, all pure automata in the support of
M2 are compatible with ω∗ for Player 2, so that M1 is compatible with ω∗ for Player 1
as well. The analog of Lemma 8 is the following.

Lemma 10 Let P2 = P j,h1,h2,h3

2 and P ′2 = P
j′,h′1,h

′
2,h
′
3

2 be two different pure automata
in the support of M2 and let P1 be any pure automaton of Player 1. Let t be the
first stage in which the play under (P1, P2) differs from ω∗. Then at least one of the
automata P2 and P ′2 restarts before stage t+ 2k2 + k + 1.

3.5 (M1,M2) is a c-BCC Equilibrium

In this section we prove that (M1,M2) is a c-BCC equilibrium, provided the cost of
memory C is neither too high nor too low. Note that if c is very low, switching to
a significantly larger automaton may not be too costly, while if c is very high, the
cost of the automaton Mi, which is c|Mi|, is high, so that the players will profit by
deviating to a small automaton, thereby saving the cost of the automaton. Here
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we will prove that if 12
k4

< c < η
4k3

then (M1,M2) is a c-BCC equilibrium, where
η < min{x∗1 − 1, x∗2 − 1}.

By construction, the average payoff under (M1,M2) is

γ(M1,M2) = 1
6
u(D,D) + 2

6
u(C,C) + 3

6
u(C,D) = (7

6
, 19

6
).

How can a player increase his payoff? To this end he needs to learn which states are
the accept-all states of the other player’s realized pure automaton. In our construction
each state is reused by at most one pure automaton, and therefore learning the reused
states essentially means enumerating over all possible reused states. There are O(k)
different possibilities for reused states, and each failed attempt requires k3 new states
to pass the ensuing punishment phase. It therefore follows that to successfully learn
the reused states the deviator needs to use a memory size of the order of k4. The
relation between c and k will ensure that such a deviation is not profitable. We now
turn this intuition into a formal argument.

3.5.1 A Lower Bound on the Size of Player 2’s Automaton that can Gain
Against M1

In the present section we provide a lower bound on the size of an automaton P2 of
Player 2 that profits when facing M1. As we will see, the size of such an automaton
P2 will be larger than O(k3), the complexity of ω∗.

Denote by (P d
1 )
k/4
d=1 the pure automata in the support of M1. Suppose that the

players use the automata (P d
1 , P2). Denote by q2(t;P

d
1 ) the state of the automaton

P2 at stage t when it faces the automaton P d
1 .

If P2 is not compatible with ω∗ for Player 2, then P d
1 restarts whenever a deviation

from ω∗ is detected, and a punishment phase starts. Denote by tdn the stage at the
n’th time in which P d

1 visits state 1 when facing P2, that is, the stage in which the
n’th punishment phase starts:

td1 := 1,

tdn+1 := min
{
t > tdn : q1(t) = 1

}
, n ≥ 1.

By convention, the minimum of an empty set is ∞.
There are two scenarios in which Player 2 may improve her long-run average

payoff. One possibility is if there exists n such that tdn < ∞ = tdn+1. Then tdn is the
last stage in which the automaton P d

1 restarts. If the play after stage tdn is different
from ω∗, it means that Player 2 plays as if she knows (some of) the parameters that
determine P d

1 , and she might use this information to improve her payoff. Another
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possibility is that (tdn)n∈N are finite and between two of these stages the average payoff
of Player 2 is higher6 than x∗2.

This leads us to the following definition. For every d ∈ {1, 2, . . . , k
4
} and every

n ∈ N let ωdn be the play generated from stage n and on under (P d
1 , P2).

Definition 11 The automaton P2 fools the automaton P d
1 if either one of the follow-

ing conditions hold when the automata (P d
1 , P2) face each other.

C1) There is n0 ∈ N such that tdn0
<∞ = tdn0+1 and ωdn0

6= ω∗.

C2) tdn < ∞ for every n ∈ N, and there is n0 ∈ N such that the average payoff for
Player 2 between stages tdn0

and tdn0+1 − 1 is strictly higher7 than x∗2.

Since the punishment phase lowers the average payoff, provided that k is suffi-
ciently large, if Condition C2 holds, then the play between stages tdn0

and tdn0+1− 1 is
not a prefix of ω∗.

Neither C1 nor C2 imply that the long-run average payoff under (P d
1 , P2) is higher

than x∗2. Yet, as the next lemma shows, the converse is true: if the long-run average
payoff of Player 2 under (P d

1 , P2) exceeds x∗2, then P2 must have fooled P d
1 .

Lemma 12 If P2 does not fool P d
1 then γ2(P

d
1 , P2) ≤ x∗2.

Proof. Since both P d
1 and P2 are automata, γ2(P

d
1 , P2), which is the long-run

average payoff of Player 2 under (P d
1 , P2), exists. Suppose first that tdn <∞ for every

n ∈ N. Since P2 does not fool P d
1 , for every n ∈ N the average payoff of Player 2

between stages tdn and tdn+1 − 1 is at most x∗2, and therefore γ2(P
d
1 , P2) ≤ x∗2.

Suppose now that there is n0 ∈ N such that tdn0
< ∞ = tdn0+1. Since P2 does not

fool P d
1 , we have ωdn0

= ω∗, so that γ2(P
d
1 , P2) = x∗2, and the result follows.

If condition C1 holds, we say that P2 fools P d
1 in stages {tdn0

, tdn0
+ 1, . . .}. If

condition C2 holds, we say that P2 fools P d
1 in stages {tdn0

, tdn0
+ 1, . . . , tdn0+1 − 1}. In

both cases8 we set td∗ = tdn0
, and we say that at stage td∗ Player 2 starts to fool P d

1 .
Denote by Rd = {q2(td∗;P d

1 ), q2(t
d
∗ + 1;P d

1 ), · · · , q2(td∗ + k3 − 1;P d
1 )} the k3 states that

P2 visits at the beginning of the period in which it fools P d
1 . During these stages the

automaton P d
1 executes the punishment phase, and the payoff of Player 2 is low. We

now prove that the sets (Rd)
k/4
l=1 are disjoint, thereby bounding from below the size of

any automaton of Player 2 that obtains high payoff when facing M1.

6In fact, if (tdn)n∈N are finite then, so that Player 2 improves her payoff, the average payoff between
tdn and tdn+1 − 1 should be higher than x∗ infinitely often.

7Observe that in this case tdn0+1 ≥ tdn0
+ k3. In fact, a stronger bound can be obtained.

8If condition C2 holds, there may be several stages n0 at which P2 starts to fool P d
1 . In such a

case we choose one of them arbitrarily.
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Lemma 13 Let 1 ≤ d1 < d2 ≤ k
4
. If P2 fools both P d1

1 and P d2
1 , then Rd1 ∩Rd2 = ∅.

An immediate corollary of Lemma 13 is the following, which is the main result of
this section.

Theorem 14 Denote by L0 the number of pure automata P d
1 , 1 ≤ d ≤ k

4
, that P2

fools. Then |P2| ≥ L0k
3.

Proof of Lemma 13.
The proof relies on Lemma 18 that we will prove in Section 3.6, when we discuss

complexity of sequences of action pairs.
The first k3 + 1 action pairs of ω∗ are coordinated, and the (k3 + 1)’th action

of Player 2 differs from her actions in the first k3 stages. Lemma 18(3) implies the
following:

Fact 1: If P2 fools P d
1 then the states in Rd are distinct: |Rd| = k3.

Moreover, Lemma 18(3) also implies the following.

Fact 2: If Rd1 and Rd2 are not disjoint, then the last state in Rd1 coincides with the
last state in Rd2 , that is, q2(t

d1
∗ + k3 − 1;P d1

1 ) = q2(t
d2
∗ + k3 − 1;P d2

1 ).

Indeed, suppose that Rd1 and Rd2 are not disjoint, and assume that q2(t
d1
∗ +

n1;P
d1
1 ) = q2(t

d2
∗ + n2;P

d2
1 ). We argue that necessarily n1 = n2. This will imply

that the last state in Rd1 coincides with the last state in Rd2 . Assume then to the
contrary that, w.l.o.g., n1 < n2. Lemma 18(3) implies that q2(t

d1
∗ + n1 + s;P d1

1 ) =
q2(t

d2
∗ + n2 + s;P d2

1 ) for every s that satisfies 1 ≤ s ≤ k3 − n2 + 1. Since P2 fools
P d1
1 , the action that P2 plays in state q2(t

d1
∗ + n1 + k3 − n2 + 1;P d1

1 ) is D. Since P2

fools P d2
1 , the action that P2 plays in state q2(t

d2
∗ + n2 + k3 − n2 + 1;P d2

1 ) is C. But
q2(t

d1
∗ + n1 + k3 − n2 + 1;P d1

1 ) = q2(t
d2
∗ + n2 + k3 − n2 + 1;P d2

1 ), a contradiction.

We are now ready to prove that Rd1 ∩Rd2 = ∅.
Assume to the contrary that Rd1 and Rd2 are not disjoint. By Fact 2, the last

state in Rd1 coincides with the last state in Rd2 , that is, q2(t
d1
∗ + k3 − 1;P d1

1 ) =
q2(t

d2
∗ + k3 − 1;P d2

1 ). Because, for i = 1, 2, at stage tdi∗ the automaton P2 starts
fooling P di

1 , it follows that the play under (P di
1 , P2) after this stage is different from

ω∗. Denote by tdi∗ + t the first stage in which the play under (P di
1 , P2) differs from

ω∗. Lemma 8 implies that at least one of the automata (P di
1 )i=1,2, say the automaton

P d1
1 , restarts before stage tdi∗ + t + 2k2 + k + 1 (see Comment 9). We argue that P2

does not fool P d1
1 , a contradiction.

Indeed, the play from stage td1∗ until the automaton P d1
1 restarts consists of

• k3 stages of the punishment phase, in which Player 2’s payoff is 1 per stage;
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• 2k2 + k+ 1 stages of the babbling phase in which his payoff is at most 4 in each
stage;9

• several rounds, say r, of the regular phase, in which his average payoff is x2 per
round;

• if deviation occurs in a regular phase, at most 6 stages in a portion of the regular
phase, in which the per-period payoff is at most 4;

• and at most k2 + k+ 1 stages between the deviation and the stage in which P d1
1

restarts, in which his payoff is at most 4 in each stage.

Thus, Player 2’s average payoff between stage td1∗ and the stage in which P d1
1 restarts

is at most

k3 × 1 + (3k2 + 2k + 8)× 4 + 6r × x2
k3 + 3k2 + 2k + 8 + 6r

, (10)

which is strictly lower than x2 provided

x2 >
k3 + 12k2 + 8k + 32

k3 + 3k2 + 2k + 8
> 1 +

6

k
,

as we claimed.

The analog of Theorem 14 is the following.

Theorem 15 Let P1 be a pure automaton of Player 1, and denote by L0 the number
of pure automata P d

2 that P1 fools. Then |P1| ≥ L0k
3.

3.5.2 A BCC-Equilibrium

Let η < min{x∗1 − 1, x∗2 − 1}. In this section we argue that the pair of automata
(M1,M2), which was constructed in Sections 3.3 and 3.4, is a c-BCC-equilibrium,
provided k is sufficiently large and 12

k4
< c < η

4k3
. We only prove the claims for Player

2. The claims for Player 1 can be proven analogously. Below we denote the state of
an automaton of player i at stage t by qi(t).

Denote the pure automata in the support of M1 by P 1
1 , P

2
1 , . . . , P

k/4
1 . Let jl and

H l be respectively the parameters j and H of P d
1 , for d = 1, 2, . . . , k2. Let P2 be an

arbitrary pure automaton that implements a strategy of Player 2. We denote by ωl

the play that is generated under (P d
1 , P2).

9Or at most 2k2 + k + 1 stages, if deviation occurs during the babbling phase.
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Recall that the min-max value in pure strategies of both players is 1. Therefore,
min{x1 − 1, x2 − 1} > 0 is the minimal difference between the target payoff x and
the min-max value. We now prove that Player 2 cannot profit by deviating to an
automaton smaller than M2.

Lemma 16 Assume that k and c satisfy 24
k
< η

2
and c < η

2k3
. Let P ′2 be an automaton

for Player 2 with size smaller than k3 + 2k2 + k + 4. Then γ2(M1, P
′
2) − c|P ′2| ≤

γ2(M1,M2)− c|M2|.

Proof. Because the complexity of ω∗ w.r.t. Player 2 is k3 + 2k2 + k + 4, the play
under (P l

1, P
′
2) is not ω∗. By Lemma 13, and because the size of P2 is smaller than 2k3,

the automaton P ′2 can fool at most one of the automata (P d
1 )
k/4
d=1. Because it cannot

generate ω∗, any automaton that P2 does not fool restarts after at most k3 + 2k2 + k
stages, so that the average payoff is at most k3

k3+2k2+k
+ 4 2k2+k

k3+2k2+k
. It follows that the

expected payoff γ2(M1, P
′
2) is at most

4
1

k/4
+

k
4
− 1
k
4

(
k3

k3 + 2k2 + k
+ 4

2k2 + k

k3 + 2k2 + k

)
≤ 1 +

24

k
< 1 +

η

2
.

Because the size of the automaton M2 is k3 + 2k2 + k + 1, the gain of reducing the
size of automaton from |M2| to |P ′2| is at most c(k3 + 2k2 + k). So that Player 2 does
profit by this deviation, we need to require that

x∗2 ≥ 1 +
24

k
+ c(k3 + 2k2 + k),

and therefore it is enough to require that

x∗2 − 1 > η >
24

k
+ c(k3 + 2k2 + k).

The right-hand side inequality holds provided

c <
η − 24

k

k3 + 2k2 + k
,

so it is enough to require that c < η
4k3

.

We finally prove that Player 2 cannot profit by deviating to an automaton larger
than M2.

Lemma 17 Let P ′2 be a pure automaton such that γ2(M1, P
′
2) > x2. Then γ2(M1, P

′
2)−

c|P ′2| ≤ γ2(M1,M2)− c|M2|, provided c > 12
k4

.
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Proof. Let L0 be the number of pure automata (P d
1 )
k/4
d=1 that P2 fools. Because

γ2(M1, P
′
2) > x∗2 we have L0 ≥ 1. If P2 fools P d

1 , then Player 2’s long-run average
payoff is at most 4, the maximal payoff in the game. If P2 does not fool P d

1 , then
Player 1’s long-run average payoff is at most x∗2. The expected long-run average payoff
of Player 2 then satisfies

γ2(M1, P
′
2) ≤ 4

L0

k
4

+ x∗2

k
4
− L0

k
4

< x∗2 + 12
L0

k
.

By Theorem 15 we have |P ′2| ≥ L0k
3, and therefore

γ2(M1, P
′
2) < x∗2 + 12

L0

k
= x∗2 + 12

L0k
3

k4
≤ x∗2 + |P ′2| ×

12

k4
.

Therefore, as soon as c > 12
k4

Player 2 does not profit by this deviation.

To summarize, given the feasible and an individually rational payoff vector x∗, we
choose η ∈ (0,min{x∗1−1, x∗2−1}). For every c > 0 we define k = k(c) by the equality
c = η

k3.5
. Then 12

k4
< c < η

3k3
, provided c is small enough (so that k(c) is large enough).

The pair of automata (M1(k(c)),M2(k(c))) are then c-BCC equilibrium with payoff
x∗.

Let c > 0 be sufficiently small, and let k = kc satisfy 3
k3k2

< c < η
3k3

. Then the
automata (M1(k),M2(k)) form a c-BCC equilibrium. Since the size of the automata
M1(k) and M2(k) are k3 + 2k2 + 1 and k3 + 2k2 + k + 1, if for each k ≥ 1 we set
ĉk = 4

k3k2
, then 3

k3k2
< ĉk <

η
2k3

and ĉkM1(k) and ĉkM2(k) are both smaller than 10
k2

,
which goes to 0 as k goes to infinity (and ĉk goes to 0). It follows that x∗ is a BCC
equilibrium payoff.

3.6 The Complexity of a Sequence of Action Pairs

Let ω be a (finite or infinite) sequence of action pairs and let Pi be an automaton
of player i that is compatible with ω. Denote by compi(ω) the complexity of ω
w.r.t. player i. In the rest of this subsection we prove that the complexity of ω∗,
which is defined in (2), w.r.t. each of the players is at least the quantities given in
Lemma 7.

When ω = (ω(t))t is a (finite or infinite) sequence of action pairs, we denote by
ωi(t) player i’s action in time t at ω. Recall that qi(t) is the state of the automaton
Pi at time t.

The following lemma lists several simple observations that we will use in the sequel.
The first property says that if the action that Pi plays in stage t1 differs from the
action it plays in stage t2, then in those stages it is in different states. The second
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property says that if Pi is in different states in stages t1 + 1 and t2 + 1, and if the
action pair played in stage t1 equals the action pair that is played in stage t2, then
Pi must have been in different states already in stages t1 and t2. The third property
is a generalization of the second property: if Pi is in different states in stages t1 +m
and t2 + m, and if the action pair played in stage t1 + l equals the action pair that
is played in stage t2 + l for l ∈ {0, 1, . . . ,m− 1}, then Pi must have been in different
states already in stages t1 and t2. The fourth property says that the complexity of a
finite sequence of action pair w.r.t. Player 1 is independent of the action that Player 2
plays in the last stage.

Lemma 18 Let Pi be a pure automaton of player i that is compatible with ω.

1. If ωi(t1) 6= ωi(t2) then qi(t1) 6= qi(t2).

2. If qi(t1 + 1) 6= qi(t2 + 1) and ω(t1) = ω(t2), then qi(t1) 6= qi(t2).

3. More generally, if qi(t1 + m) 6= qi(t2 + m) and ω(t1 + l) = ω(t2 + l) for every
l ∈ {0, 1, . . . ,m− 1}, then qi(t1) 6= qi(t2).

4. If ω = (ω(t))Tt=1 and ω′ = (ω′(t))Tt=1 are two finite sequences that differ only in
the action of Player 2 at stage T , that is, ωi(t) = ω′i(t) for every t ∈ {1, 2, . . . , T}
and every i ∈ {1, 2}, except of for t = T and i = 2, then the complexity of ω
w.r.t. Player 1 is equal to the complexity of ω′ w.r.t. Player 1.

Proof. The first claim holds since the automaton’s output is a function of the
automaton’s state. The second claim follows since the new state of the automaton is a
function of the current state and of both players’ actions. The third claim follows from
the second claim by induction. The fourth claim follows since for a finite sequence, the
action of Player 2 in the last stage T does not affect the evolution of the automaton
of Player 1 in the first T stages.

A (finite or infinite) sequence of action pairs ω = (ω(t))t is coordinated if ω1(t) =
ω1(t

′) if and only if ω2(t) = ω2(t
′), for every t 6= t′. The following result follows from

Neyman [12].

Lemma 19 Let ω = (ω(t))Tt=1 be a coordinated sequence of action pairs and let T0 ≤
T . If (ω(t))Tt=t2 is not a prefix of (ω(t))Tt=t1 for every t1 < t2 ≤ T0, then compi(ω) ≥ T0
for each player i.

Proof. Assume to the contrary that the condition of the lemma holds but there
is a pure automaton for player i with size less than T0 that is compatible with ω.
By the pigeon hole principle, there are t1 < t2 ≤ T0 such that qi(t1) = qi(t2). By
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Lemma 18(1) ωi(t1) = ωi(t2), and since ω is coordinated we have ω3−i(t1) = ω3−i(t2).
It follows by Lemma 18(2) that qi(t1 + 1) = qi(t2 + 1). Continuing inductively we
deduce that qi(t1 + l) = qi(t2 + l) for every l for which t2 + l ≤ T . This implies that
(ω(t))Tt=t2 is a prefix of (ω(t))Tt=t1 , a contradiction.

Corollary 20 comp1(ω
∗) ≥ k3 + 2k2 + k + 1.

Proof. The definition of the complexity of a sequence implies that the complexity
of a sequence cannot be lower than the complexity of any of its subsequences. Consider
then the prefix ω′ of length k3 + 2k2 + k+ 4 of ω∗, which involves only a coordinated
play. For this sequence the condition in Lemma 19 is satisfied for ω∗ with T0 =
k3 + 2k2 + k + 1, and therefore comp1(ω

′) ≥ k3 + 2k2 + k + 1, as desired.

Lemma 21 comp2(ω
∗) ≥ k3 + 2k2 + k + 4.

Proof. Consider the prefix ω′ of ω∗ of length k3 + 2k2 + k + 4. Let ω′′ be
the sequence ω′ after adding the action pair (D,D) at the end, and let ω′′′ be the
sequence ω′ after adding the action pair (C,D) at the end. Note that ω′′′ is a prefix
of ω∗, hence comp2(ω

∗) ≥ comp2(ω
′′′). By Lemma 18(4), comp2(ω

′′′) = comp2(ω
′′).

Apply Lemma 19 to the sequence ω′′ with T0 = k3 + 2k2 + k + 4 to deduce that
comp2(ω

′′) ≥ k3 + 2k2 + k + 4. The result follows.

4 Comments and Discussion

4.1 On the definition of BCC equilibria

The definition of the concept of BCC equilibrium is analogous to the definition of
the concept of Nash equilibrium; in both we ask whether a specific behavior (that
is, a pair of strategies) is stable. Thus, in a c-BCC equilibrium we assume that each
player already has an automaton with which she is going to play the game, and we
ask whether playing this automaton is the best response given the automaton that
the other player is going to use. As in the definition of Nash equilibrium, we do not
ask how the players arrive at these automata, and we do not restrict the sizes of these
automata (though the memory cost does bound the maximum size of automata that
the players will use). In principle, it may well be that some BCC equilibrium payoff
can be supported only with prohibitively large automata, which we would like to rule
out. That is, we may want to add the size of the automata that the players use to
the definition itself. In our construction (see the proof of Theorem 5), to support a
c-BCC equilibrium payoff that is close to some target payoff x we use two automata
of similar sizes; the size of each automaton is related to both c and to the level of
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approximation to the target payoff: as c gets closer to 0, and as the c-BCC equilibrium
payoff gets closer to x, we use larger automata.

Even though the definition of a BCC equilibrium is theoretically appealing, to
prove the folk theorem we use outrageously large automata. For example, the au-
tomata that we construct to approximate a target payoff vector by 0.01 is about
(100)3.

4.2 BCC equilibria and Nash equilibria

As mentioned before, Theorem 5 does not rule out the possibility that there is a payoff
vector that is not strictly individually rational and yet is a BCC equilibrium; that is,
a BCC equilibrium payoff need not be a Nash equilibrium payoff. The theorem also
does not rule out the possibility that some payoff vector that is individually rational
w.r.t. the min-max value in mixed strategies, but not individually rational w.r.t. the
min-max value in pure strategies, would not be a BCC equilibrium payoff, so that a
Nash equilibrium payoff need not be a BCC equilibrium payoff.

Moreover, in zero-sum games it is not clear whether there is a unique BCC equi-
librium payoff. If in zero-sum games there is always a unique BCC equilibrium payoff,
then this quantity can be called the BCC value of the game. However, it is possible
that in zero-sum games there will be more than one BCC equilibrium payoff, in which
case even in this class of games, the outcome will crucially depend on the relative
computational power of the players.

4.3 The discounted game

When two pure automata play against each other, the play enters a cycle, and there-
fore the sequence of stage payoffs is eventually periodic. For such sequences, the limit
of the discounted sum is equal to the long-run average payoff. The definition of a
c-BCC equilibrium is changed to take into account the discount factor.

Given c > 0 and a discount factor λ ∈ (0, 1), a pair of mixed automata (M1,M2)
is a (c, λ)-BCC equilibrium payoff if it is a Nash equilibrium for the utility functions
U c,λ
i (M1,M2) = γλi (M1,M2)−c|Mi| for i = 1, 2, where γλi (M1,M2) is the λ-discounted

payoff of player i when the players use the automata (M1,M2). A vector x ∈ R2 is
a BCC equilibrium payoff if it is the limit, as c goes to 0 and λ goes to 1, of payoffs
that correspond to (c, λ)-BCC equilibria. That is, there is a sequence (cn)n∈N and
(λn)n∈N that converge to 0 and 1, respectively, and for each n there is a (cn, λn)-
BCC equilibrium (M cn,λn

1 ,M cn,λn
2 ), such that limn→∞ γ

λ(M cn,λn
1 ,M cn,λn

2 ) = x and
limn→∞ cn|M cn,λn

i | = 0 for i = 1, 2.
Our folk theorem holds for this concept, with the same construction.
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4.4 A more general definition of a BCC equilibrium

The definition of the concept of c-BCC equilibrium assumes that the utility of each
player is additive, and that the memory cost is linear in the memory size. There are
applications where the utility function Ui has a different form.

• Players may disregard the memory cost, but be bounded by the size of memory
that they use.

Ui(M1,M2) =

{
γi(M1,M2) |Mi| ≤ ki,
−∞ |Mi| > ki.

This situation occurs, e.g., when players are willing to invest huge amounts of
money even if the profit is low, but the available technology does not allow them
to increase their memory size beyond some limit. Such a situation may occur,
e.g., in the area of code breaking, where countries invest large sums of money
to be able to increase the number of other countries’ codes that they break, yet
they are bounded by technological advances.

• Memory is costly, yet players do not save money by reducing their memory
size. That is, a pair of mixed automata (M1,M2) is a c-BCC equilibrium if for
each i ∈ {1, 2} and for every pure automaton Pi ∈ Mi one has γi(Mi,M3−i) ≥
γi(Pi,M3−i), and, if Pi > Mi, one has γi(Mi,M3−i) ≥ γi(Pi,M3−i) − c(|Pi| −
|Mi|). This situation occurs, e.g., when the players are organizations whose size
cannot be reduced.

It may be of interest to study the set of equilibrium payoffs for various utility
functions Ui, and to see whether and how this set depends on the shape of this
function.

4.5 More than two players

The concept of BCC equilibrium payoff is valid for games with any number of players.
However, Theorem 5 holds only for two-player games. One crucial point in our con-
struction is that if a deviation is detected, a player is punished for a long (yet finite)
period of time by a punishing action. When there are more than two players, the
punishing action of, say, Player 1 against Player 2 may be different that the punishing
action of Player 1 against player 3. It is not clear how to construct an automaton that
can punish each of the other players, if necessary, and such that all these memory
cells will be used on the equilibrium path.
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4.6 BCC equilibria in one-shot games

The concept of BCC equilibrium that we presented here applies to repeated games.
The concept can be naturally adapted to one-shot games as well.10 For example,
consider the following game, that appears in Halpern and Pass [7]. Player 1 chooses
an integer n and tells it to Player 2; Player 2 has to decide whether n is a prime
number or not, winning 1 if she is correct, losing 1 if she is incorrect. Plainly the
value of this game for Player 2 is 1: Player 2 can check whether the choice of Player
1 is a prime number. However, as there is no efficient algorithm to check whether
an integer is a prime number, it is not clear whether in practice risk-neutral people
would be willing to participate in this game as Player 2.

The concept of BCC equilibrium can be adapted to such situations, and one can
study the set of BCC equilibrium payoffs, and how this set depends on the relative
memory cost of the two players.

In the context of the Computer Science literature one could conceive of an analog
solution concept, where automata are replaced by Turing machines, and the memory
size is replaced by the length of the machine’s tape.
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A Proof of Theorem 5

This section is devoted to the proof of Theorem 5. To keep consistency with Section
3 we denote the min-max action of each player by D. Assume w.l.o.g. that payoffs
are bounded by 1, and let x ∈ F ∩ V satisfy xi > vi for each i = 1, 2. Fix η <
min{x1 − v1, x2 − v2}. To rule out trivial cases, assume that each player has at least
two actions.

By Carathéodory’s Theorem, the vector x is a convex combination of three entries
in the payoff matrix, say {(a11, a12), (a21, a22), (a31, a32)}. Moreover, one of the three vectors
can be arbitrarily chosen. We will assume that a11 = D and a12 = D are the punishment
actions of the two players. Write

x =
3∑
i=1

αiu(ai1, a
i
2),

where (αi)i∈{1,2,3} are non-negative numbers summing to 1. Fix ε > 0, a natural
number k0 >

1
3ε

, and a natural number k > (k0 + 1)3. Let k1, k2, k3 be three positive

integers such that (a)
∑3

i=1 ki = k0, and (b) |ki − αik0| ≤ 1 for i ∈ {1, 2, 3}.
The action pairs (a21, a

2
2) and (a31, a

3
2) can have various configurations. The Bab-

bling Phase differs among these configurations, and therefore the equilibrium play
differs as well. However, no new ideas are necessary for the construction. Below we
will list all possible configurations, write down the equilibrium path that corresponds
to each such configuration, and describe the pure and mixed automata that the play-
ers use. We could have provided one construction that takes care of all configurations
simultaneously, but the proof would be much more complicated and would requires
new ideas, so we prefer to handle each configuration separately.

Denoting the (two or three) actions of each player that take part in the convex
combination by D (which is the punishment action) and C (and if necessary, B), the
possible configurations of the three entries in the matrix that take part in the convex
combination of x are (up to symmetries):

C1) Coordinated play: (D,D), (C,C), and (B,B).
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C2) (D,D), (C,C), and (C,D).

C3) (D,D), (D,C), and (C,D).

C4) (D,D), (D,C), and (D,B).

C5) (D,D), (D,C), and (C,B).

C6) (D,D), (C,C), and (C,B).

A.1 The Three Phases of the Equilibrium Play

To save repetitions, we provide here some definitions that will be used in all configu-
rations. As in Section 3, the equilibrium play will be divided into three phases. The
Punishment Phase will be

P ∗ = k3 × (D,D). (11)

In Configuration (C1) the play is coordinated, and there is no need to use a Babbling
Phase. In Configurations (C2) and (C3) the Babbling Phase will be similar to that
in Section 3:

B∗ :=
k∑

n=1

(
k × (C,C) + k × (D,D)

)
+ (k + 1)× (C,C). (12)

In Configurations (C4)–(C6) we will append to the Babbling Phase an additional
block, to incorporate the third action of Player 2 on the equilibrium path. As in
Section 3, the base of the Regular Phase will be

R∗ =
3∑
i=1

ki × (ai1, a
i
2).

Since payoffs are bounded by 1, the average payoff along R∗ is within ε of x.
The set of states of the automaton will always be denoted by Q = {1, 2, . . . , |Q|}.

The sets QP , QC , and QD of the states that implement the Punishment Phase, the
C-blocks, and the D-blocks, respectively, are defined as in Step 1 in Section 3.3.

The initial state will always be

q∗ = 1.

As in Section 3, the constructions that we provide below define only some of the
transitions. All transitions that are not define lead to state 1, thereby initiate a long
Punishment Phase.
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A.2 Configuration C1: (D,D), (C,C), and (B,B).

Here the equilibrium path is coordinated, and one can use the construction of Abreu
and Rubinstein [1], which does not use a Babbling Phase. That is, consider the
following play path:

ω∗ = P ∗ +
∞∑
n=1

R∗

= k3 × (D,D) +
∞∑
n=1

(k1 × (D,D) + k2 × (C,C) + k3 × (B,B)) .

The play path ω∗ is coordinated, and by Lemma 19 its complexity w.r.t. each player
is at least k3 + k0. Define the following pure automaton P1 with k3 + k0 states, which
implements the play path ω∗ in a naive way.

f(q) = D, q ∈ {1, 2, . . . , k3 + k1},
f(q) = C, q ∈ {k3 + k1 + 1, k3 + k1 + 2, · · · , k3 + k1 + k2},
f(q) = B, q ∈ {k3 + k1 + k2 + 1, k3 + k1 + k2 + 2, · · · , k3 + k1 + k2 + k3},

g(q, f(q)) = q + 1, q ∈ {1, 2, . . . , k3 + k0 − 1},
g(k3 + k0, f(k3 + k0)) = k3 + 1.

Let P2 = P1; that is, the automaton P2 is identical to the automaton P1.
The automata P1 and P2 are compatible with ω∗ for Players 1 and 2 respectively,

and the pair (P1, P2) forms a c-BCC equilibrium for every c > 0 sufficiently small.
This implies that the automata (P1, P2) also form a Nash equilibrium, that is, a
c-BCC equilibrium for c = 0.

A.3 Configuration C2: (D,D), (C,C), and (C,D).

This configuration generalizes the one we handled in Section 3. The Punishment
Phase and Babbling Phase are given in Eqs. (11) and (12), and the base of the
Regular Phase is

R∗ := k1 × (D,D) + k2 × (C,C) + k3 × (C,D).

By Lemma 19 the complexity of ω∗ w.r.t. Player 1 satisfies comp1(ω
∗) ≥ k3+2k2+k+1,

and the complexity of ω∗ w.r.t. Player 2 satisfies comp2(ω
∗) ≥ k3 + 2k2 + k + 1 + k1.

We now explain the construction of a pure automata for Player 1 that is compatible
with ω∗. Let j1 ∈ {1, 2, . . . , k − 1} and let H1 = {h1, · · · , hk3} be a set of distinct
elements from the set {1, 2, . . . , k} satisfying h1 = k2 + 1. The index j1 determines
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the C-block that will be reused to implement the part k3 × (C,D) of the Regular
Phase, and the set H1 will indicate the states in this block that are reused.

Define the following pure automaton P j1,H1

1 with k3 + 2k2 + k + 1 states.

• The output function is given by

f(q) = D, q ∈ QP ∪QD,

f(q) = C, q ∈ QC .

• The Punishment and Babbling Phases are implemented naively:

g(q, f(q)) = q + 1, q ∈ {1, 2, . . . , k3 + 2k2 + k}.

• To implement the part k1 × (D,D) of the Regular Phase we reuse states from
the j1’th D-block:

g(k3 + 2k2 + k + 1, C) = k3 + 2j1k − k1 + 1.

• To implement the part k2 × (C,C) + k3 × (C,D) from the Regular Phase we
reuse states from the (j1 + 1)’th C-block:

g(k3 + 2j1k + hl, D) = k3 + 2j1k + hl+1, l ∈ {1, 2, . . . , k3 − 1}.

• After implementing R∗ the automaton moves back to the reused states that
implements the first pair of k1 × (D,D):

g(k3 + 2j1k + hk3 , D) = k3 + 2j1k − k1 + 1.

One can verify that this automaton is compatible with ω∗ for Player 1.
We now describe how to define the mixed automaton M1 for Player 1. The number

L of pure automata in the support of M1 is denoted by L and given by L = dk1/3e.
Let (jd1)Ld=1 be a set of distinct integers from {1, 2, . . . , k − 1}, and let (Hd

1 )Ld=1 be a
collection of sets, where Hd

1 = {hd1, hd2, · · · , hdk3}, which satisfies the following condi-
tions:

(E1) For each d ∈ {1, 2, . . . , L} we have Hd
1 ⊂ {1, 2, . . . , k} with hd1 = k2 + 1.

(E2) For each two distinct indices d, d′ ∈ {1, 2, . . . , L} we have (Hd
1 \ {hd1}) ∩ (Hd′

1 \
{hd′1 }) = ∅.

(E3) For each two distinct indices d, d′ ∈ {1, 2, . . . , L} and each 1 ≤ l < l′ ≤ k3 we
have hdl′ − hdl 6= hd

′

l′ − hd
′

l .
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We now exhibit one way to define (jd1)Ld=1 and (Hd
1 )Ld=1. Let p1, p2, · · · , pL be the

first L prime numbers that are larger than L. By the Prime Number Theorem,
and since L = dk1/3e, we have pL < k

L
, provided k is sufficiently large. For every

d ∈ {1, 2, . . . , L} set jd1 = d and hdl = k2+1+(l−1)pd for each l ∈ {1, 2, . . . , k3}. Since
k > (k0 + 1)3 it follows that L > k3, and therefore (jd1)Ld=1 and (Hd

1 )Ld=1 satisfy (E1)–
(E3). Note that the largest element of (Hd

1 )Ld=1 is hLk3 , which is k2 +1+(k3−1)pL < k.
We let M1 be the mixed automaton for Player 1 that chooses one of the automata

(P
jd1 ,H

d
1

1 )Ld=1 according to the uniform distribution.
We now define a pure automaton for player 2 with k3 +2k2 +k+1+k1 states that

is compatible with ω∗; the last k1 states of the automaton will implement the part
k1× (D,D). Let j2 ∈ {1, 2, . . . , k− 1} and let H2 = {h1, · · · , hk3} be a set of distinct
elements from the set {1, 2, . . . , k} satisfying h1 = 1. The index j2 determines the
D-block that will be reused to implement the part k3 × (C,D) of the Regular Phase,
and the set H2 will indicate the states in this block that are reused.

Define the following pure automaton P j2,H2

2 .

• The first k3 + 2k2 + k + 1 implement naively the Punishment and Babbling
Phases, and the last k1 states implement the part k1 × (D,D) of the Regular
Phase:

f(q) = D, q ∈ QP ∪QD,

f(q) = C, q ∈ QC ,

f(q) = D, k3 + 2k2 + k + 2 ≤ q ≤ k2 + 2k2 + k + 1 + k1,

g(q, f(q)) = q + 1, k ∈ {1, 2, . . . , k3 + 2k2 + k + k1}.

• To implement the part k2 × (C,C) the automaton moves to the j2’th C-block.

g(k3 + 2k2 + k + 1 + k1, D) = k3 + 2(j2 − 1)k + k − k2 + 1.

• The implementation of the part k3 × (C,D) is done in the j2’th D-block,

g(k3 +2(j2−1)k+k+hl, C) = k3 +2(j2−1)k+k+hl+1, l ∈ {1, 2, . . . , k3−1}.

• After completing one period of the Regular Phase the automaton moves to the
state that implemented the beginning of the Regular Phase:

g(k3 + 2(j2 − 1)k + k + hk3 , C) = k3 + 2k2 + k + 2.

One can verify that this automaton is compatible with ω∗ for Player 2. We define a
mixed automaton M2 for Player 2 analogously to the definition of M1.

Lemma 16 holds, and with the same proof, provided that η
2
> 8

k
+ 4

L
and c < η

4k3
.

Lemma 17 holds, and with the same proof, provided that c > 3
Lk3

. In particular, it
follows that x∗ is indeed a BCC-equilibrium payoff.
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A.4 Configuration C3: (D,D), (D,C), and (C,D).

In this case the Punishment Phase and Babbling Phase are given in Eqs. (11) and (12),
and the base of the Regular Phase is

R∗ = k1 × (D,D) + k2 × (D,C) + k3 × (C,D).

By Lemma 19 the complexity of ω∗ w.r.t. Player 1 satisfies comp1(ω
∗) ≥ k3 + 2k2 + 1

and its complexity w.r.t. Player 2 satisfies comp2(ω
∗) ≥ k3 + 2k2 + k + 1.

We now construct a pure automaton for Player 1 with k3 + 2k2 + 1 states that
is compatible with ω∗. The automaton depends on an integer j1 ∈ {1, 2, . . . , k − 1},
which determines the blocks of the reused states, and two sets of distinct indices,
H1 = {h1, · · · , hk2} and Ĥ1 = {ĥ1, · · · , ĥk3}, all in the range {1, 2, . . . , k}. The set
H1 indicates the states in the j1’th D-block that are reused to implement the part
k2 × (D,C); we require that h1 = k1 + 1. The set Ĥ1 indicates the states in the
(j1 + 1)’th C-block that are reused to implement the part k3 × (C,D).

The pure automaton P j1,H1,Ĥ1

1 for Player 1 contains k3 + 2k2 + 1 states and is
constructed as follows.

• The k3 + 2k2 + 1 states of the automaton implement naively the Punishment
Phase and the Babbling Phase, except of its last k stages.

• The automaton then moves to the beginning of the j1’th C-block, which is
reused to implement the last k stages of the Babbling Phase:

g(k3 + 2k2 + 1, C) = k3 + 2(j1 − 1)k + 1.

• The j1’th D-block is reused to implement the part k1× (D,D) + k2× (D,C) of
the Regular Phase:

g(k3 + 2(j1 − 1)k + k + hl, C) = k3 + 2(j1 − 1)k + k + hl+1, ∀l ∈ {1, 2, . . . , k2 − 1}.

• States Ĥ1 of the (j1+1)’th C-block are reused to implement the part k3×(C,D)
of the Regular Phase:

g(k3 + 2(j1 − 1)k + k + hk2 , C) = k3 + 2j1k + ĥ1,

g(k3 + 2j1k + ĥl, D) = k3 + 2j1k + ĥl+1, ∀l ∈ {1, . . . , k3 − 1}.

• After implementing k3 × (C,D) the automaton moves to the beginning of the
j1’th D-block, where we implemented the part k1 × (D,D):

g(k3 + 2j1k + ĥk3 , D) = k3 + 2(j1 − 1)k + k + 1.
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To define the mixed automatonM1 we let (jd1 , H
d
1 , Ĥ

d
1 )Ld=1 be a collection of triplets,

where (a) L = dk1/3e, (b) (jd1)Ld=1 are distinct integers from {1, 2, . . . , k − 1}, and (c)

each of the collections (Hd
1 )Ld=1 and (Ĥd

1 )Ld=1 satisfies (E2)–(E3). The mixed automa-

ton M1 chooses one of the pure automata (P
jd1 ,H

d
1 ,Ĥ

d
1

1 )Ld=1 according to the uniform
distribution.

We now turn to the definition of the pure automaton P j2,H2,Ĥ2

2 for Player 2 that is
compatible with ω∗, where j2 ∈ {1, 2, . . . , k − 1}, H2 = {h1, · · · , hk2} ⊆ {1, 2, . . . , k},
h1 = 1, and Ĥ2 = {ĥ1, · · · , ĥk3} ⊆ {1, 2, . . . , k}. The automaton P j2,H2,Ĥ2

2 has k3 +
2k2 + k + 1 states and is defined as follows.

• The k3 +2k2 +k+1 states of the automaton implement naively the Punishment
Phase and the Babbling Phase.

• At the end of this implementation, the automaton moves to the j2’th D-block,
to implement the part k1 × (D,D) of the Regular Phase:

g(k3 + 2k2 + k + 1, C) = k3 + 2j2k − k1 + 1.

• The (j2 + 1)’th C-block is reused to implement the part k2 × (D,C) of the
Regular Phase:

g(k3 + 2j2k + hl, D) = k3 + 2j2k + hl+1 ∀l ∈ {1, 2, . . . , k2 − 1}.

• The (j2 + 1)’th D-block is reused to implement the part k3 × (C,D) of the
Regular Phase:

g(k3 + 2j2k + hk2 , D) = k3 + 2j2k + k + ĥ1,

g(k3 + 2j2k + k + ĥl, C) = k3 + 2j2k + k + ĥl+1, ∀l ∈ {1, 2, . . . , k3 − 1}.

• After one period of the Regular Phase ends the automaton moves to the state
in the j2’th D-block where the part k1 × (D,D) starts:

g(k3 + 2j2k + k + ĥk3 , C) = k3 + 2j2k − k1 + 1.

The definition of the mixed automaton M2 is analogous to that of M1 in the current
configuration. The rest of the proof remains as for Configuration (C2).
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A.5 Configuration C4: (D,D), (D,C), and (D,B).

This configuration is different from the previous three configurations in an important
aspect: whereas so far on the equilibrium path both players used the same number of
actions, now the number of actions each player plays is different. If Player 1’s action
set contains at least three actions, say D, C, and B, then as in Configurations (C2)
and (C3) we could still implement a Babbling Phase in which the players repeatedly
play three types of blocks, namely, D-blocks, C-blocks, and B-blocks. This cannot
be done if |A1| = 2. Here we show how to adapt the construction in this case.

We augment the Babbling Phase so that it contains a part in which Player 2 plays
the action B:

B∗ :=
k∑

n=1

(
k × (C,C) + k × (D,D)

)
+ (k + 1)× (C,C) + k3 × (D,B).

The length of the last part in the Babbling Phase is k3, so its length suffices to
implement the last part of the base of the Regular Phase. The base of the Regular
Phase is

R∗ := k1 × (D,D) + k2 × (D,C) + k3 × (D,B).

By Lemma 19, the complexity of ω∗ w.r.t. Player 1 satisfies comp1(ω
∗) ≥ k3 + 2k2 + 1

and its complexity w.r.t. Player 2 satisfies comp2(ω
∗) ≥ k3 + 2k2 + k + 1 + k3.

We now describe a pure automaton of Player 1 that is compatible with ω∗. Let
j1 ∈ {1, 2, . . . , k − 1} and let H1 = {h1, · · · , hk2} and Ĥ1 = {ĥ1, · · · , ĥk3} be two

sets of integers in the range {1, 2, . . . , k} that satisfy h1 = k1 + 1 and ĥ1 = 1. The
set H1 indicates the states in the (j1 + 1)’th D-block that are reused to implement

the part k2 × (D,C). The set Ĥ1 indicates the states in the j1’th D-block that are
reused to implement the part k3×(D,B) of both the Babbling Phase and the Regular

Phase. The pure automaton P j1,H1,Ĥ1

1 for Player 1 contains k3 + 2k2 + 1 states and is
constructed as follows.

• The k3 + 2k2 + 1 states of the automaton implement naively the Punishment
Phase and the Babbling Phase, except of its last k + k3 stages.

• The automaton now moves to the beginning of the j1’th C-block, which is reused
to implement the last k stages of the Babbling Phase:

g(k3 + 2k2 + 1, C) = k3 + 2(j1 − 1)k + 1.

• The automaton now implements the part k3 × (D,B) by reusing states in the

j1’th D-block, as indicated by the set Ĥ1:

g(k3 + 2(j1 − 1)k + k + ĥl, B) = k3 + 2(j1 − 1)k + k + ĥl ∀l ∈ {1, 2, . . . , k3 − 1}
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• The first k1 stages of the (j1 + 1)’th D-block are reused to implement the part
k1 × (D,D) of the Regular Phase:

g(k3 + 2(j1 − 1)k + k + ĥk3 , B) = k3 + 2j1k + k + 1.

• States H1 of the (j1+1)’th D-block are reused to implement the part k2×(D,C)
of the Regular Phase:

g(k3 + 2j1k + k + hl, C) = k3 + 2j1k + k + hl+1, ∀l ∈ {1, . . . , k2 − 1}.

• Finally the automaton moves to the state that implements the first pair of
k3 × (D,B):

g(k3 + 2j1k + hk2 , C) = k3 + 2(j1 − 1)k + k + ĥ1.

We now describe the construction of a pure automaton of Player 2 that is com-
patible with ω∗. Let j2 ∈ {1, 2, . . . , k − 1} and let H2 = {h1, · · · , hk2} ⊂ {1, 2, . . . , k}
with h1 = 1. The set H2 indicates the states in the (j2+1)’th C-block that are reused
to implement the part k2× (D,C). The pure automaton P j2,H2

2 for Player 2 contains
k3 + 2k2 + k + 1 + k3 states and is constructed as follows.

• The k3 + 2k2 + k + 1 + k3 states of the automaton implement naively the
Punishment Phase and the Babbling Phase.

• The last k1 stages of the j2’th D-block are reused to implement the part k1 ×
(D,D) of the Regular Phase.

g(k3 + 2k2 + k + 1 + k3, D) = k3 + 2j2k − k1 + 1.

• States H1 of the (j2+1)’th C-block are reused to implement the part k2×(D,C)
of the Regular Phase:

g(k3 + 2j2k + hl, D) = k3 + 2j2k + hl+1, ∀l ∈ {1, 2, . . . , k2 − 1}.

• The last k3 × (D,B) of the Regular Phase is reused to implement the part
k3 × (D,B) of the Regular Play

g(k3 + 2j2k + hk2 , D) = k3 + 2k2 + k + 2.

The mixed automaton M2 is defined as in Configuration (C2). The rest of the
proof is similar to that for Configuration (C3).
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A.6 Configuration C5: (D,D), (D,C), and (C,B).

The Babbling Phase changes to

B∗ :=
k∑

n=1

(
k × (C,C) + k × (D,D)

)
+ (k + 1)× (C,C) + k3 × (C,B).

and the base of the Regular Phase is

R∗ := k1 × (D,D) + k2 × (D,C) + k3 × (C,B).

By Lemma 19 the complexity of ω∗ w.r.t. Player 1 satisfies comp1(ω
∗) ≥ k3 + 2k2 + 2

and the complexity of ω∗ w.r.t. Player 2 satisfies comp2(ω
∗) ≥ k3 + 2k2 + k + 1 + k3.

We now explain the construction of a pure automaton of Player 1 that is com-
patible with ω∗. Let j1 ∈ {1, 2, . . . , k − 1} and let H1 = {h1, · · · , hk2} and Ĥ1 =

{ĥ2, ĥ3, · · · , ĥk3} be two sets of indices in the range {1, 2, . . . , k}. The index j1 will
determine the blocks of the reused states. The set H1 will indicate the states in the
j1’th D-block that are reused to implement the part k2 × (D,C); we require that

h1 = k1 + 1. The set Ĥ1 will indicate the states in the (j1 + 1)’th C-block that
are reused to implement both the part k3 × (C,B) of the Babbling and the Regular
Phases.

The pure automaton P j1,H1,Ĥ1

1 for Player 1 contains k3 + 2k2 + 2 states and is
constructed as follows.

• The k3 + 2k2 + 2 states of the automaton implement naively the Punishment
Phase and the Babbling Phase, except of its last k − 1 + k3 stages.

• The automaton now moves to the beginning of the j1’th C-block, which is reused
to implement the part (k − 1)× (C,C) + 1× (C,B) of the Babbling Phase:

g(k3 + 2k2 + 2, C) = k3 + 2(j1 − 1)k + 1.

• States Ĥ1 of the (j1 +1)’th C-block are reused to implement the part (k3−1)×
(C,B) of the Babbling Phase:

g(k3 + 2(j1 − 1)k + k − 1, B) = k3 + 2j1k + ĥ2,

g(k3 + 2j1k + ĥl, B) = k3 + 2(j1 − 1)k + ĥl+1, ∀l ∈ {2, . . . , k3 − 1}.

• The automaton now moves to the beginning of the j1’th D-block to implement
the part k1 × (D,D):

g(k3 + 2j1k + ĥk3 , B) = k3 + 2(j1 − 1)k + k + 1.
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• States H1 of the j1’th D-block are reused to implement the part k2 × (D,C) of
the Regular Phase:

g(k3 + 2(j1 − 1)k + k + hl, C) = k3 + 2(j1 − 1)k + k + hl+1, ∀l ∈ {1, 2, . . . , k2 − 1}.

• Finally the automaton moves to the last state in the j1’th C-block to implement
the part k3 × (C,B):

g(k3 + 2(j1 − 1)k + k + hk2 , C) = k3 + 2(j1 − 1)k + k − 1.

We now describe a pure automaton of Player 2 that is compatible with ω∗. Let
j2 ∈ {1, 2, . . . , k − 1} and let H2 = {h1, · · · , hk2} be a set of distinct elements from
the set {1, 2, . . . , k} satisfying h1 = 1. Define the following pure automaton P j2,H2

2

with k3 + 2k2 + k + 1 + k3 states as follows.

• The k3 + 2k2 + k + 1 + k3 states of the automaton implement naively the
Punishment Phase and the Babbling Phase.

• After the Babbling Phase ends, the automaton reuses states in the j2’th D-block
to implement the part k1 × (D,D) of the Regular Phase:

g(k3 + 2k2 + k + 1 + k3, C) = k3 + 2j2k − k1 + 1.

• States in the (j2 + 1)’th C-block are used to implement the part k2 × (D,C)
of the Regular Phase, and the last reused state in this C-block points to state
k3 + 2k2 + k + 2, where the unique B-block starts.

g(k3 + 2j2k + hl, D) = k3 + 2j2k + hl+1, l ∈ {1, 2, . . . , k3 − 1},
g(k3 + 2j2k + hk3 , D) = k3 + 2k2 + k + 2.

The rest of the proof is similar to that for Configuration (C4).

A.7 Configuration C6: (D,D), (C,C), and (C,B).

The Babbling Phase is similar to that in Configuration (C5) and the base of the
Regular Phase is

R∗ := k1 × (D,D) + k2 × (C,C) + k3 × (C,B).

By Lemma 19 the complexity of ω∗ w.r.t. Player 1 satisfies comp1(ω
∗) ≥ k3+2k2+k+2

and its complexity w.r.t. Player 2 satisfies comp2(ω
∗) ≥ k3 + 2k2 + k + 1 + k3 + k1.
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We now describe a pure automaton for Player 1 that is compatible with ω∗. Let
j1 ∈ {1, 2, . . . , k−1} and let H1 = {h1, · · · , hk3} be a set of distinct elements from the
set {1, 2, . . . , k} satisfying h1 = k2 + 1. The index j1 determines the blocks that will
be reused to implement the Regular Phase, and the set H1 will indicate the states
that will be reused to implement the part k3 × (C,B). Define the following pure
automaton P j1,H1

1 with k3 + 2k2 + k + 2 states.

• The Punishment and Babbling Phases (except the last k − 1 + k3 pairs) are
implemented naively.

• To implement the next k action pairs, which are (k − 1)× (C,C) + 1× (C,B),
the automaton moves to the beginning of the j1’th C-block:

g(k3 + 2k2 + k + 2, C) = k3 + 2(j1 − 1)k + 1.

• To implement the last part of the Babbling Phase (k3−1)×(C,B) the automaton
reuses states H1 of the (j1 + 1)’th C-block:

g(k3 + 2(j1 − 1)k + k,B) = k3 + 2j1k + h2,

g(k3 + 2j1k + hl, B) = k3 + 2j1k + hl+1, l ∈ {2, 3, . . . , k3 − 1}.

• To implement the part k1 × (D,D) of the Regular Phase we reuse states from
the j1’th D-block:

g(k3 + 2j1k + hk3 , B) = k3 + 2j1k − k1 + 1.

• The first k2 states in the (j1 + 1)’th C-block implement the part k2 × (C,C).
Since the (j1 + 1)’th C-block also implemented the part (k3 − 1) × (C,B), to
be able to implement the last part of the Regular Play, k3× (C,B), we need to
add to this block another state that implements the action pair (C,B). We use
the (k2 + 1)’th state for this purpose, where the automaton is at the end of the
part k2 × (C,C):

g(k3 + 2j1k + h1, B) = k3 + 2j1k + h2.

Note that the first pair the part k3× (C,B) in the Babbling Phase is implemented at
the last state of the j1’th C-block, while first pair the part k3× (C,B) in the Regular
Phase is implemented at state h1 of the (j1 + 1)’th C-block. The rest of the k3 − 1
action pairs are implemented in the same states.

In this configuration, Player 2 does not need to reuse states and therefore he uses a
pure automaton, rather than a mixed automaton as he did in previous configurations.
The automaton P2 of Player 2 contains k3+2k2+k+1+k3+k1 states and is constructed
as follows.
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• The Punishment and Babbling Phases are implemented naively, as well as the
part k1 × (D,D) of the Regular Phase:

f(q) = D, q ∈ QP ∪QD,

f(q) = C, q ∈ QC ,

f(q) = B, k3 + 2k2 + k + 2 ≤ q ≤ k2 + 2k2 + k + 1 + k3,

f(q) = D, k3 + 2k2 + k + 1 + k3 + 1 ≤ q ≤ k3 + 2k2 + k + 1 + k3 + k1,

g(q, f(q)) = q + 1, q ∈ {1, 2, . . . , k3 + 2k2 + 1},
g(q, C) = q + 1, q ∈ {k3 + 2k2 + 2, k3 + 2k2 + 3, · · · , k3 + 2k2 + 1 + k3},
g(q,D) = q + 1, q ∈ {k3 + 2k2 + 1 + k3 + 1, · · · , k3 + 2k2 + 1 + k3 + k1 − 1},

• From the last state the automaton moves to the last C-block, to complete the
implementation of the Regular Phase:

g(k3 + 2k2 + k + 1 + k3 + 1, D) = k3 + 2k2 + k + 1− k2 + 1.

The rest of the proof for Player 2 is similar to that for Configuration (C3). Because
Player 2 uses a pure automaton, the fact that the complexity of ω∗ for Player 1 is the
size of his automaton ensures that he cannot gain by deviating to a smaller or larger
automaton.
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