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Abstract

This paper analyzes the impact of local and global interactions on individuals’ action choices.
Players are located in a network and interact with each other with perfect knowledge of their
neighborhood and probabilistic knowledge of the complete network topology. Each player
chooses an action, from some finite set, which imposes an externality on their neighbors as
well as an externality on the complete network. Players deal with two opposing forces: they
obtain utility from sharing their choices with their neighbors (positive local externality) but
suffer disutility from sharing the same choice with all members of the network (negative
global externality). Economic and social phenomena exhibiting these features are: the
adoption of cost-reducing innovations, clusters of firms, time schedule choices, the adoption
of subcultures and fads, among others.

We find the conditions for the existence of all symmetric Bayesian Nash equilibria and
translate them to a characterization in terms of the main properties of the network topol-
ogy. The balance between local satisfaction and global dissatisfaction partially explains the
equilibrium outcome. The players who finally decide on the type of equilibria are those
that are either highly connected (hubs) or poorly connected (peripherals) to the others. On
the one hand, hubs try to coordinate their action choices and on the other, peripherals are
only worried about congestion and play the least selected actions of the network. Some
examples illustrate our main results. As a by-product we also show the failure of symmetric
equilibrium existence for some congestion costs when the players’ types are finite.
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1. Introduction

Many social and economic activities exhibit local externalities but, at the same time,
suffer from the inability of agents to coordinate their actions which, in turn, is a source
of congestion in societies. For instance, individuals following the same schedule have the
opportunity to share common time with others, which is highly valuable for them: colleagues
in a firm can meet in their coffee break, friends can see each other after work to speak and
have a drink, relatives can get together in the evening on working days or at the weekend. But
these individuals access public services such as public transport, highways, sport facilities,
supermarkets, cinemas, airports, etc., which are usually congested at rush hours because
of the regularity of society’s schedules. As a result, individuals suffer the inconvenience of
sharing public services with many other people (global negative externality or congestion) in
order to share common time with colleagues, friends and relatives (positive local externality).
This effect has been called the tragedy of the commons in the analysis of air traffic congestion
(Mayer and Sinai [20]), but can be extended to many other contexts where there are multiple
agents who do not take into account the externality they create for others.

For example, firms often benefit when their business partners (suppliers, firms of com-
plement goods) adopt cost-reducing innovations if this set of partners is a small subset of
the total set of potential adopters of these innovations. But too many adopters (substitute
firms) may give rise to a negative externality. Similarly, firms’ choice of location may suffer
from the same coordination problem: firms may like to locate in clusters with other firms
in order to obtain increasing returns from sharing local indivisible facilities (or a common
local public good). However, too many firms in the same cluster may create a congestion
problem and reduce the initial advantage of being together.

The adoption of subcultures, social groups with particular behaviors or beliefs, by youth
can also be explained by our model. A young person will adopt a certain subculture if the
proportion of their friends following it is big enough. However, young people like belonging
to something unique and exclusive, thus the attractiveness of a subculture decreases with
the proportion of people in society following it. In like fashion, the adoption of fads where
the exclusivity is part of their attractiveness can also be approached by our model.

Coordination failure, or agents’ uncertainty about the action of other agents, may be
an important source of congestion in large decentralized societies. In the El Farol or Santa
Fe bar problem, Arthur [2] provides a simple paradigm for congestion and coordination
problems that may arise in societies. El Farol is a bar in Santa Fe (Argentina). The bar is
popular, but becomes overcrowded when more than sixty people over one hundred attend on
any given evening. Everyone enjoys themselves when fewer than sixty people go, but no one
has a good time when the bar is overcrowded. The El Farol problem emphasizes the difficulty
of coordinating the actions of independent agents without a centralized mechanism. Unlike
the standard public good framework, in this scenario fully informed optimizing agents will
not increase consumption of a publicly available resource until it experiences an inefficient
level of congestion. If agents could predict the behavior of other agents perfectly the bar
would never be crowded and all the patrons would have a good time. The only source of
congestion, at least in a deterministic framework, is the inability of agents to coordinate
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their actions. Although the El Farol problem initially explored the collective dynamics
of boundedly rational agents, it is also interesting as a simple model of congestion and
coordination behavior that occurs with shared resources like Internet bandwidth. Arthur
[2] believed that any solution to the El Farol problem would require heterogeneous agents,
that is, agents who pursue different strategies. A related problem is the one of Challet
and Zhang [8], who proposed an alternative version of the El Farol problem, known as the
Minority Game: An odd number of players have to choose simultaneously one of two rooms.
The players who choose the less crowded room receive a reward of one euro, the others
receive nothing. In general, this class of game is interesting when several agents must take
decentralized decisions on whether to access a scarce resource, knowing that at most a fixed
number of them will be able to enjoy its benefits. A minority game is basically a repeated
coordination game. Renault et al. [25] were the first to consider a minority game from
the traditional strategic viewpoint of repeated games with public monitoring. Renault et al.
[26] extend the analysis to public signals but private strategies, namely, they depend on the
public signal and on the private history of each player.

We analyze the above insights in a static model where individuals enjoy being at the bar
with their friends or relatives but suffer from the congestion created by all the agents in so-
ciety. We will assume that congestion is an increasing function on the number of individuals
choosing the same action, unlike the El Farol problem where there is only congestion when
the proportion of individuals in the bar is above a certain threshold. Thus, we consider that
the congestion cost is not an all or nothing concept but a non-linear continuous function on
the proportion of individuals making the same choice. Namely, when the number of players
choosing the same is small, then the addition of a new player with the same choice will
not increment the congestion cost substantially, while if the number of players following the
same action is large, then the new player will cause a large increment in the congestion.

The relationships between individuals are modeled as a network, where each node is an
individual and any (undirected) link between two nodes represents some kind of relationship
between them such as friendship, family ties, firms of complement goods, etc. Each individ-
ual only has a local knowledge of the network, namely, they know their neighbors (to whom
they are linked to) but they do not know who their neighbors’ neighbors are. This lack of
information about the network’s topology is modeled by considering it as an instance of a
random network where individuals know the degree probability distribution over the nodes
of the network.

Individuals simultaneously choose their actions from a finite set, which imposes an ex-
ternality on their neighbors as well as an externality on the complete network, and then
obtain an utility. The optimal (Bayesian Nash) decision taken by each individual depends
on the spread of their connections in the network (their degree), on the degree probability
distribution, and on the balance between the local and global externalities which impact on
their utility. It is assumed that each individual’s utility depends positively on the propor-
tion of neighbors choosing the same action (positive local externality) and negatively on the
proportion of the network members doing the same, because it creates congestion (negative
global externality).

Our contribution is twofold. We find first the conditions for the existence of all sym-
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metric Bayesian Nash equilibria and discus the existence failure when the support of the
players’ degrees is finite. Next, we translate the condition on equilibrium existence to an
equilibrium characterization in terms of the main properties of the network topology. The
balance between local satisfaction and global dissatisfaction partially explains the equilib-
rium outcome. The players who finally decide the type of equilibria are those that are either
highly connected (hubs) or poorly connected (peripherals) to the others. On the one hand,
hubs try to coordinate their action choices and choose the same action as long as congestion
is not very high. On the other, peripherals are only worried about congestion and play the
least selected actions of the network.

To motivate our analysis notice that a rough calculation would give us two possible
(Bayesian Nash) equilibrium solutions: one where all individuals choose the same action (ho-
mogeneous pure profile), and another where each individual chooses their actions randomly
giving all options the same probability (uniformly mixed profile). Intuitively, homogeneous
pure profiles could be equilibrium outcomes when the positive local externality dominates the
negative global externality, whereas uniformly mixed profiles would be equilibrium solutions
otherwise.

However, common intuition needs to be polished since both local and global network
properties play an important role in equilibrium choices. This comes from the observation
that the network topology defines two important features such as hub players (highly con-
nected nodes) and peripheral players (poorly connected nodes). Although each individual’s
value function will depend on both the average action profile followed by the network and
the average action profile of their neighbors, their relative weight will depend on the in-
dividual’s number of connections. Thus, the network average action profile is particularly
important for peripherals because, by definition, their number of neighbors is very small and
therefore their choice will mostly be driven by the network global topology. A peripheral
player is only worried about congestion and to reduce it as much as possible she choose the
least frequent action. Thus, when peripherals are frequent homogeneous pure equilibrium
profiles are impossible to sustain. On the contrary, the hubs or highly connected players’
choices will mainly depend on the average profile of their neighbors’ actions, i.e. on the
network local properties. It’s very likely that hubs will be linked to other hubs and try to
coordinate their choices to maximize their utility. Thus it is expected that peripherals play
mixed strategies while hubs choose pure strategies, that is a hybrid equilibrium. However,
when the maximum degree of the network is bounded and the proportion of hubs is too
high, then the congestion disutility may prevail and make it difficult to guarantee symmet-
ric equilibrium profiles. Therefore, Bayesian Nash Equilibria are expressed in terms of the
proportion of hubs and peripherals which, in turn, is given by the weight of the tails of the
degree probability distribution. To the best of our knowledge this is the first time that both
local and global effects are analyzed from the network perspective. We finish this section
with a review of related literature.

1.1. Related literature

Our paper is a contribution to network games, an active area of research over the last
few years. A complete review of this literature exceeds the intention of this section, so we
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refer readers to the extensive overview in Goyal [16], Jackson [18] and more recently Galeotti
et al. [13].

We assume that the network of relationships between individuals is fixed. When an indi-
vidual chooses their action they obtain utility from sharing their choice with their neighbors
but suffer the disutility of sharing the same choice with all members of the network. Thus,
an individual’s net utility depends both on their action as well as on other individuals’
actions, forcing them to play in a strategic way. The focus is on large networks, where a
change in the behavior of one individual could drastically modify their utility, while having
a marginal impact on other individuals’ utilities. Thus, we will consider that there are an
infinite number of individuals in the network as in Galeotti and Vega-Redondo [14] and
Morris and Shin [21]. This assumption makes the computations easier and does not have
any effect on the main results.

We consider a random network, where individuals do not know the complete topology of
the network but rather the degree distribution (which is fixed). Random networks were first
used in Newman [22]. An overview of this literature can be found in Newman et al. [23] and
some applications of these models to economic problems in Ioannides [17]. More recently
Galeotti and Vega-Redondo [14] use random networks to study how local externalities shape
agents’ strategic behavior when the underlying network is volatile and complex. Galeotti
et al. [13] and Sundararajan [28] analyze local networks, where each individual’s utility
depends on their own action as well as on their neighbors’ actions. The first paper provides
a framework with random networks to characterize the behavior and payoffs of individuals
according to different factors in the model. The second paper presents a model where
individuals value the adoption of a product by a heterogeneous subset of other individuals
in their neighborhood, and have incomplete information about the structure and strength
of adoption complementarities among all other individuals.

Recently several authors have become interested in local networks, where a player’s payoff
depends only on their own actions and those of their neighbors. Galeotti et al. [13] provide
a general model and analyze how a given individual’s behavior is affected by their position
within the network and the nature of the game (strategic substitutes versus complements
and positive versus negative externalities, and the level of information.) Sundararajan [28]
presents a model of local effect for the analysis of an adoption game. Among other results,
these articles show the existence of equilibria in pure strategies and give some properties
that they verify. Our model differs in that we consider a payoff function which has both
local and global externalities, but we use specific functional forms close to the ones found
in Galeotti and Vega-Redondo [14] and Ballester et al. [3]. Those papers, however, analyze
local games and a continuum of players’ space of actions.

Following the above approach, Chen and Gostoli [9] embed the El Farol problem in a
social network connecting the agents and through which the agents can access the infor-
mation regarding their neighbors’ choices and strategies. In the original set up of Arthur
[2] the agents base their decisions on global information, represented by the bar aggregate
attendance, a feature that is likely to cause herding behavior, making it very difficult to
coordinate their activities. Chen and Gostoli go a step further and analyze whether coor-
dination will be improved if, instead, the agents make use of local information, represented
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by the attendance of their closest neighbors. They simulate the bar attendance dynamics
though cellular automata. Our set up could be seen as a static mixed majority/minority
game (see for example, Marsili [19], De Martino et al. [10] and Cannings [7]) where players,
instead of following a dynamic rule to choose actions, are embedded in a random social
network which determines their utility and hence their action choice. Hub players will play
the majority game and would like to coordinate in the same action as long as congestion
is not very high. Peripherals will play a minority game and would like to play the least
chosen action by the majority, even when congestion is moderate. The equilibrium that
results, either coordination in one action, mixed equilibrium or hybrid equilibrium where
some players choose the same action and the others play a mixed action will depend on both
the weight of the tales of the players’ degree probability distribution and on the balance
between the positive local externality and the negative global externality.

This paper is organized into seven sections. Section 2 provides the general framework.
Section 3 presents the main results on equilibrium existence and Section 4 characterizes
equilibria in terms of the network topology. Section 5 illustrates the results of Sections 4
in Scale free and Poisson random networks. Some comparative statics for two-type players’
examples are offered in Section 6. Finally, Section 7 concludes the paper.

2. The model

There is a countable infinity of agents (players) N , and A is a finite set of actions for
them. We assume that there are only two possible actions, 1 i.e. A = {m, e}. For each
player i ∈ N , we denote their action by ai ∈ A. What is relevant in the analysis is that if
only one individual changes their decision, then the other individuals’ payoffs do not change
(or change only marginally). Thus, the analysis could be carried out by considering a large
number of individuals and the main results will not be affected.

Non-directed graphs are used to model network relationships between individuals. In
such graphs the nodes correspond to the agents and the links correspond to the bilateral
relationships between them. Let g be such a network.

Each individual i ∈ N has a number of relationships with other agents in g that defines
their set of neighbors, Ni, and their degree, ki (the cardinality of Ni). Each agent knows
their degree but does not know the degree of the other nodes in the network. We assume
that players know the degree distribution that is fixed and characterized by the probability
distribution

p = {pk}k∈K (1)

where K, its support, is a subset (not necessarily finite) of the positive integer numbers,
K ⊆ N∗, and pk denotes the probability of finding a player in the network who has k
neighbors. We assume that the first moment of the random variable defined by p is finite,
thus let d be the average degree, i.e. d =

∑
l∈K lpl. Notice that isolated players are not

1This is a simplification. The model with a finite number of actions extends easily.
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allowed since we assume that each individual in society maintains at least one relationship
with another.

Players interact with each other as determined by g. The network is equiprobable chosen
from among all the possible networks that have a given degree distribution p. Thus, we are
assuming that no player knows their neighbors’ degree but all of them know the overall
degree distribution and the random network is fully characterized by it.

The influence of a player in the network is measured by their centrality. The simplest
measure of centrality is a player’s degree, which only uses local information and is invariant
with respect to the rest of the graph.2 An individual with high degree is a central player with
respect to a local portion of the graph and becomes a hub of the network, while another
individual with low degree is a peripheral in a local portion of the graph. Notice that
both hubs and peripherals are relative concepts: they depend on the degree probability
distribution of each network. Given a network, an individual’s degree should be considered
high or low with respect to the average degree of the network she belongs to. Thus, a relative
measure of centrality may be helpful to classify a node as either a hub or a peripheral.

Definition 1. [Relative degree] Given a network g and its degree distribution p = {pk}k∈K,
we define the relative degree of a node as the ratio between its degree and the network average
degree, i.e. given node i ∈ N , its relative degree is ki/d, where d =

∑
l∈K lpl.

Relative degree play a central role in the characterization of the equilibria. Nodes with
high relative degree will be considered as hubs and nodes with low relative degree will be
peripherals.

If a player chooses a neighbor randomly, then they will not know their degree but will
know that neighbor’s degree distribution. Assuming independence across neighbors’ degrees,
the probability of arriving at a node is proportional to its degree, and we can compute that

p̃k =
kpk∑
l∈K lpl

(2)

is the probability of a node having degree k when it is selected randomly from among a
player’s neighbors. Let this distribution be denoted by p̃ = {p̃k}k∈K .

Mixed strategies are allowed, so that the decision of any player is an element in ∆(A),
which is the set of all probability distributions over A. Given that A has two elements, we
can identify the 1-dimensional simplex ∆(A) with the interval [0, 1]. Therefore, player i’s
action is xi ∈ [0, 1], where xi is the probability of choosing action m, and then 1− xi is the
probability of choosing action e.

Prior to interaction each player i has to decide their action xi ∈ [0, 1] individually and
independently of the other players. This decision can only depend on their own degree and
the degree distribution on the other players’ degrees. Let {xi,x−i} be the profile of actions,

2Other concepts of centrality, such as Closeness, Betweenness and Bonacich’ measure, need to know the
complete topology of the network to be calculated. A description of these measures can be found in Jackson
[18]
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where xi is the action chosen by i and x−i those of the other players. Let (xj)j∈Ni be the
profile of actions of i’s neighbors. We assume that the net payoff function of player i has
two components, the gross payoff function, f , which measures local externalities, and the
congestion function, h, which measures global externalities:

ui[xi,x−i] = f [xi, (xj)j∈Ni ]− h[xi,x−i].

Assuming ex-ante symmetry across players, player i’s gross payoff depends on their action
and the actions of their neighbors,

f : ∆(A)×∆(A)Ni → R+,

while the congestion depends on the actions chosen by all the players in the network,

h : ∆(A)N → R+.

2.1. The Bayesian Game

The strategic situation is modeled as a classical Bayesian game, where each player’s type
is identified with their degree and all the players’ types are drawn independently according
to the prevailing degree distribution p. Therefore, the type space for every player is K
and their beliefs on the other types is the degree distribution p. Each player’s strategy is a
mapping from their type to set [0, 1]. In other words, under independence across degrees and
as in Galeotti and Vega-Redondo [14], we posit that each player chooses an action induced
only by their own degree, the degree distribution p and their prediction of the other players’
actions x = {xl}l∈N which specifies how every other player anticipates choosing their action,
depending on their degree. Thus, we analyze symmetric Bayesian strategies, i.e., all players
with the same degree choose the same strategy.

Denote by vk[x,x] the expected payoff function of a k-degree player who chooses action
x and expects the degree contingent strategy x = {xl}l∈K ,

vk[x,x] = Ep̃[f [x, (xkj)j∈Ni ]]− Ep[h[x, (xkj)j∈N ]].

We have defined an incomplete information game where the player’s degree defines their
type. The first objective of this paper is to study the strategy profiles (indexed by the
degree) that are symmetric Bayesian-Nash Equilibrium (BNE).

Definition 2. [Symmetric Bayesian-Nash Equilibrium] A strategy profile x∗ = {x∗k}k∈K is
a symmetric Bayesian-Nash Equilibrium (BNE) if it satisfies:

x∗k ∈ argmaxx∈[0,1]vk[x,x
∗] (3)

for all k ∈ K.

A strategy profile is a BNE if no player can deviate unilaterally and benefit from that
deviation.
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To provide a precise specification of function vk[xk,x] and characterize the BNE we have
to consider in detail the two functions that define the expected net payoff function.

2.2. Local externalities: the expected gross payoff function

The gross payoff function, f , measures the utility that a player, say i, obtains by the in-
teraction with their neighbors. We define the gross payoff function of a player as the expected
proportion of their neighbors choosing their same action. Therefore, the local interaction
component exhibits positive externalities since the player i’s gross payoff increases with the
proportion of neighbors choosing the same action than i.

The player i’s gross payoff function depends on two random variables, the proportion
of their neighbors choosing their same action, and their own action. The first random
variable has a distribution governed by p̃, and the second follows a Bernoulli distribution
with probability xki . However, by the law of total probability, the expected proportion
of their neighbors choosing their same action is given by the expected proportion of their
neighbors choosing action m times the probability of player i’s action to be m plus the
expected proportion of their neighbors choosing action e times the probability of player i’s
action to be e:

Ep̃f [xki , (xkj)j∈Ni ] = Ep̃f [m, (xkj)j∈Ni ]Prob(ai = m) + Ep̃f [e, (xkj)j∈Ni ]Prob(ai = e)

= Ep̃f [m, (xkj)j∈Ni ]xki + Ep̃f [e, (xkj)j∈Ni ](1− xki).

The expression Ep̃f [m, (xkj)j∈Ni ] is the expected value of a random variable, the pro-
portion of neighbors choosing action m. One way to obtain an explicit specification of this
expected value is to make explicit the support of the random variable, compute the prob-
ability mass of each element in the support and calculate the expectation.3 An alternative
way is to realize that the expected value of f [m, (xkj)j∈Ni ] is equal to the probability that
a randomly chosen player i’s neighbor has played action m, and compute this probability
using, again, the law of total probability:

Ep̃f [m, (xkj)j∈Ni ] = Prob(Randomly chosen neighbor (r.c.n.) plays m)

=
∑
l∈K

Prob(r.c.n. plays m|r.c.n. has degree l)Prob(r.c.n. has degree l])

=
∑
l∈K

xlp̃l

3This is the way followed in Galeotti and Vega-Redondo [14] to compute a close expression. The support
of the random variable is the set of all possible distributions of the degrees of player i’s neighbors, i.e., the
set of all vectors of integer components such that the sum of the components is equal to ki. The random
variable follows a multinomial distribution. This framework has to assume that players’ degrees have a
bound from above.
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Notice that the last term does not depend on the identity of the player but depends
on the player’s action which is degree contingent. Let us define the average proportion of
neighbors following action m in terms of the distribution of the neighbors’ degree as

x̃ =
∑
l∈K

xlp̃l. (4)

Similarly, we obtain that Ep̃f [e, (xj)j∈Ni ] = 1 − x̃. Thus, the expected gross payoff
function of a player with degree k can be written as,

Ep̃f [xk,x] = xkx̃+ (1− xk)(1− x̃) (5)

that is independent of the player’s identity. Therefore, the expected gross payoff of k-type
player depends on its own action and on the average proportion of neighbors choosing the
same action in terms of the distribution of the neighbors’ degree.

2.3. Global externalities: the expected congestion function

The congestion function, h, measures a player’s dissatisfaction from, for example, the
use of a public service simultaneously with individuals in the network that have chosen
their same action. Thus, this is a global interaction and exhibits negative externalities, as
a player’s payoff will be decreasing on the number of players choosing the same action as
theirs.

We propose a congestion function that is quadratic on the expected proportion of players
choosing the same action as that player. This relationship reflects what is commonly seen in
real life. When the number of players choosing the same action is small, then the addition
of a new player with the same action will not increment congestion substantially, while if
the number of players following the same action is large, then the new player will cause a
large increment in congestion. This fact is reflected through the quadratic dependence of
the congestion on the number of subjects choosing the same action as theirs.

Let us consider a player i with degree k. Similar reasoning as the above for the gross
payoff function allows us to write the expected congestion function, Ep[h[xki , (xkj)j∈N ]], as,

Eph[xki , (xkj)j∈N ] =
(
Eph[m, (xkj)j∈N ]

)2
Prob(ai = m) +

(
Eph[e, (xkj)j∈N ]

)2
Prob(ai = e)

=
(
Eph[m, (xkj)j∈N ]

)2
xki +

(
Eph[e, (xkj)j∈N ]

)2
(1− xki).

However, the expected proportion of players choosing actionm, Eph[m, (xkj)j∈N ], is equal
to the probability that a randomly chosen player has played action m. This probability is
straightforwardly computed as,
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Eph[m, (xkj)j∈N ] = Prob(Randomly chosen player (r.c.p.) plays m)

=
∑
l∈K

Prob(r.c.p. plays m|r.c.p. has degree l)Prob(r.c.p. has degree l])

=
∑
l∈K

xlpl

Let x be the average proportion of the choices of all the network types,

x =
∑
l∈K

xlpl, (6)

then the expected congestion function of a player of degree k, Ep[h[xk,x]], can be written
as,

Ep[h[xk,x]] =
c

2

[
xkx

2 + (1− xk)(1− x)2
]
, (7)

where c is a parameter bigger than zero.
As the expected gross payoff function, the expected congestion cost is independent of the

player’s identity and depends on the player’s own action, which is degree contingent, and
on the expected choice of all the network players.

2.4. The expected net payoff function

Combining the two components of the value function, the expected net payoff function
can be written as:

vk[xk,x] = xkx̃+ (1− xk)(1− x̃)− c

2

[
xkx

2 + (1− xk)(1− x)2
]
. (8)

The structure of the expected net payoff function, where both gross payoffs and conges-
tion are quadratic, can be found in other studies which analyze the effect of local externalities
on players’ decisions (see e.g. Galeotti and Vega-Redondo [14] or Ballester et al. [3]). Here,
in contrast, we take into account both local and global externalities.

Then vk[xk,x] can be expressed as a quadratic function of xk,

vk[xk,x] = αkkx
2
k +

( ∑
l∈K\k

αklxl + βk

)
xk + γk({xl}l 6=k) (9)

where,
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αkk = 2p̃k − cpk(
1

2
pk + 1), (10)

αkl = 2p̃l − cpl(pk + 1), for all l 6= k, (11)

βk = cpk − 1 +
c

2
− p̃k, and (12)

γk({xl}l 6=k) = (1− c

2
)−

∑
l 6=k

xlp̃l +
c

2

[∑
l 6=k

xlpl(2−
∑
l 6=k

xlpl)
]

(13)

Function vk[xk,x] depends on the weighted aggregation of the choices of all other player
types in the network, i. e.

∑
l 6=k αklxl. Each weight αkl measures the joint expected contri-

bution of an l-degree player to the marginal payoffs of a k-degree player both as a neighbor
and as a member of the whole network.

Notice that αkk, the coefficient of the quadratic term, depending on the congestion cost
can be either positive or negative and, therefore, the net payoff function can be either convex
or concave. It is useful to know that from (10) to (13) the coefficients of type k’s expected
net payoff function verifies the following property,

αkk + βk +
1

2

∑
l 6=k

αkl = 0. (14)

3. Existence of symmetric Bayesian Nash Equilibria

As it is well known a Bayesian Nash equilibrium always exists, possibly in mixed strate-
gies, whenever functions vk[xk,x] are concave in xk (αkk < 0), for all k ∈ K, and each
strategy space is compact (as is in our case where xk ∈ [0, 1]). However, by (10) above,
concavity of all vk’s functions only results when c is sufficiently high.

When the congestion cost parameter c is small enough functions vk[xk,x] are convex
in xk (αkk > 0) in the interval [0, 1], then best replies need not be continuous and have a
discontinuity. This is so even for intermediate values of c, when some functions vk[xk,x]
may still remain convex while others have already turned to be concave.4 We need then to
borrow results from supermodular games and monotone best responses (Vives [29]).

Function vk[xk,x] depends on xk and on the choices of all other player types in the
network, x−k. Theorem 4.2 in Vives (Vives [29]) states that a Bayesian Nash equilibrium
exists if, for all k ∈ K, the set of strategies is a lattice compact, vk is supermodular on [0, 1]
and/or has increasing differences in (xk,x−k). Moreover, vk is supermodular if and only if
∂2vk/∂xk∂xl ≥ 0 for all l 6= k. Given that ∂2vk/∂xk∂xl = αkl, supermodularity is guaranteed
if and only if αkl ≥ 0 for all k, l ∈ K, l 6= k. On the other hand, vk has increasing differences
in (xk,x−k) if vk[xk,x−k]− vk[xk,x′−k] is increasing in xk, for all x−k ≥ x′−k (x−k 6= x′−k).

4Since for αkk = 0, the value function is linear and we are only interested in quadratic value functions,
then we disregard the linear case.
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By (9) above,

vk[xk,x−k]− vk[xk,x′−k] = xk
∑
l 6=k

αkl(xl − x′l) + (γk(x−k)− γk(x′−k)).

If x−k ≥ x′−k, then vk has increasing differences if and only if αkl ≥ 0 for all k, l ∈ K,
l 6= k, i.e., the same condition guarantees both supermodularity and increasing differences
of vk. Let Ψk(x−k) be the best response of type k to x−k, if vk is either supermodular
or has increasing differences and the strategy sets are lattices (sets [0,1]), then Ψk(x−k) is
increasing in x−k, the composite best response is also increasing and (by Topkins’ Theorem)
a Bayesian Nash equilibrium exists (Vives [29]). Thus, if each player considers each of the
other players’ action as a strategic complement (αkl ≥ 0 for all l, k ∈ K, l 6= k), then
Bayesian Nash equilibria will exist. Therefore we have two general sufficient conditions
under which a Bayesian Nash equilibrium exists:

a) Either all the functions vk are concave in xk in the interval [0, 1], or
b) Players are pairwise strategic complements (αkl ≥ 0, for all l 6= k).

Let us define homogeneous pure strategies as the profiles where all types play the same
pure action either m or e, i.e., the profiles x0 = (0, 0, . . . , 0) and x1 = (1, 1, . . . , 1); hetero-
geneous pure strategies as those profiles where all types play a pure action, not necessarily
the same, i.e., those profiles x such that xk ∈ {0, 1} for all k ∈ K; mixed strategies as
the profiles where all types play a mixed action (xk ∈ (0, 1) for all k ∈ K); and finally
hybrid strategies as those profiles where some players choose a pure strategy and others a
mixed strategy. Condition a) above is mainly concerned with the existence of mixed strategy
Bayesian Nash equilibria but condition b) is a monotonicity condition which applies mainly
to pure strategy and hybrid strategy Bayesian Nash equilibrium. In the following we relax
condition b) and give conditions for the existence of the above different equilibrium profiles,
which depend on both the concavity/convexity of the payoff functions and the aggregate
strategic complementarity/substitution relationship between players’ actions. Recall that
we are only concerned with symmetric equilibria, i.e., the same type of players (players with
the same k) will choose the same action.

3.1. Homogeneous pure strategy symmetric Bayesian Nash equilibria

Suppose firstly that all the vk functions are convex in [0, 1], then each Ψk(x−k) ∈ {0, 1}
and consider the two Bayesian Nash equilibria in homogeneous pure strategies, x0 and x1.
In fact, from (9) it is easily seen that vk[x1] = vk[x0] and that for x−k = (1

2
, 1

2
, 1

2
. . . 1

2
),

then both xk = 1 and xk = 0 belong to Ψk(x−k), so that best responses have at most a
discontinuity. In this setting, we can notice by (9) and (14) that, for all k,

vk[1,x−k] ≥ vk[0,x−k] ⇐⇒
∑
l 6=k

(xl −
1

2
)αkl ≥ 0. (15)

Thus, if x−k is either a vector of 1’s or of 0’s, then whenever
∑

l 6=k αkl≥ 0, the best
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response of each player of type k, for all k ∈ K, is a non-decreasing function of the aggregate
of the other players’ strategies, being xk = 1 as a best reply to a profile of 1’s and a xk = 0 to
a profile of 0’s. Hence, the equilibrium profiles are homogeneous sequences of either all 1’s or
all 0’s. Thus, when functions vk are all convex in [0, 1], all we need to guarantee homogeneous
pure strategy Bayesian Nash equilibria is that for any player, the other players’ actions are
strategic complements in the aggregate, i.e.,

∑
l 6=k αkl≥0.

Similarly, suppose now that all the functions vk were concave then,

Ψk(x−k) =
βk +

∑
l 6=k αklxl

−2αkk
. (16)

By concavity αkk < 0, homogeneous pure strategy equilibria would exist whenever βk ≤ 0
(corner solutions). In fact, by (14), this implies that

∑
l 6=k αkl≥0 and hence each player’s

best response function is non-decreasing in the aggregate of the other players’ strategies.5

These results can be extended to any mix of convex and concave payoff functions provided
that for any player, the other players’ actions are strategic complements in the aggregate,
since in this case each player’s best reply is a non-decreasing function of the aggregate of
the other players’ strategies. Thus,

Proposition 1. The two homogeneous pure strategy symmetric BNE, x0 and x1, will exist
if for any player, the other players’ actions are strategic complements in the aggregate: for
all k ∈ K,

∑
l 6=k αkl≥0. (If vk is concave, then βk ≤ 0 will be sufficient to guarantee that

condition).

The above Proposition gives a weaker condition for the existence of homogeneous pure
strategy BNE than supermodularity or increasing difference of functions vk, where pairwise
strategic complementarity is required.

Also notice that under the above conditions no heterogeneous pure strategy BNE will
exist. However, these strategy equilibria may also exist under different conditions, as the
following example shows.

Example 1. Let K = {15, 16, 17} with pk = 1/3 for all k ∈ K. Then, p̃15 = 15/48, p̃16

= 16/48 and p̃17 = 17/48.

Here, functions vk specify to (the terms not depending on xk are not included):

5Alternatively, by (14) and (16) the condition for Ψk(x−k) ≥ 1 is that
∑

l 6=k αkl(xl− 1) ≥ βk and then if
x−k is a vector of 1’s all we need is that βk ≤ 0. Similarly as above, the condition for Ψk(x−k) ≤ 0 is that∑

l 6=k αklxl ≤ −βk, and then if x−k is a vector of 0’s, the result follows.
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v15[x15, (x16, x17)] = α15,15 x
2
15 + [α15,16 x16 + α15,17 x17 + β15]x15

= (5/8− (7/18)c)x2
15 +

[
(2/3− (4/9)c)x16 + (17/24− (4/9)c)x17 + ((5/6)c− 21/16)

]
x15

v16[x16, (x15, x17)] = α16,16 x
2
16 + [α16,15 x15 + α16,17 x17 + β16]x16

= (2/3− (7/18)c)x2
16 +

[
(5/8− (4/9)c)x15 + (17/24− (4/9)c)x17 + ((5/6)c− 4/3)

]
x16

v17[x17, (x15, x16)] = α17,17 x
2
17 + [α17,15 x15 + α17,16 x16 + β17]x17

= (17/24− (7/18)c)x2
17 +

[
(5/8− (4/9)c)x15 + (2/3− (4/9)c)x16 + ((5/6)c− 65/48)

]
x17

All vk functions are convex and
∑

l 6=k αkl>0, whenever c ≤ 93/64 ≈ 1.45, for all k ∈
{15, 16, 17}. Then by Proposition 1, the unique symmetric BNE’s are the two homogeneous
pure strategy profiles x0 and x1.

However, for 99/64 ≤ c < 45/28, (aprox. 1.55 ≤ c < 1.61), all vk functions are convex
with αkl < 0, for all l 6= k, so that

∑
l 6=k αkl < 0. Since α16,17 ≥ α16,15 and α17,16 ≥ α17,15, the

unique BNE’s are the two heterogeneous pure strategy profiles x = (0, 1, 1) and x′ = (1, 0, 0).
Notice that, interestingly enough, no symmetric equilibria will exist in the interval

93/64 < c < 99/64. For instance, suppose that c = 95/64, then αkk > 0 for all k ∈
{15, 16, 17}, with

∑
l 6=k α15,l > 0,

∑
l 6=k α16,l > 0 and

∑
l 6=k α17,l < 0. It can be checked that

homogeneous pure strategy equilibria do not exist. Neither do heterogeneous pure strategy
equilibria. To see that, consider, as an example, the profile x = (0, 1, 1) as the proposed
equilibrium. Type k = 15 will deviate and play x15 = 1 because

∑
l 6=k α15,l > 0 and then

v15(1, 1, 1) > v15(0, 1, 1). But for (1, 1, 1) type k = 17 will deviate and play x17 = 0 because∑
l 6=k α17,l < 0 and then v17(1, 1, 0) > v17(1, 1, 1) and so on. Similar arguments apply for

other heterogeneous profiles.

3.2. Heterogeneous pure strategy symmetric Bayesian Nash equilibria

Let K0 be the set of types such that xk = 0 and let K1 be the set of types with
xk = 1, with K0∪ K1 = K. First we analyze the conditions that characterize heterogeneous
pure strategy equilibria when all functions vk are convex. By (15), those conditions are∑

l∈K1\k αkl ≥
∑

l∈K0
αkl, for all k ∈ K1 and

∑
l∈K1

αkl ≤
∑

l∈K0\k αkl, for all k ∈ K0.
Notice that a sufficient condition for existence is that for all k ∈ K1, the actions of the
other players in K1 are strategic complements in the aggregate, while those of the players
in K0 are strategic substitutes in the aggregate (i.e.,

∑
l∈K1\k αkl ≥ 0 ≥

∑
l∈K0

αkl); and

equivalently for all k ∈ K0,
∑

l∈K0\k αkl ≥ 0 ≥
∑

l∈K1
αkl.

Similarly, assume now that all functions vk are concave, then by the best reply function
(see 16) and property (14), for all k ∈ K1

Ψk(x−k) =
βk +

∑
l 6=k αklxl

−2αkk
=
βk +

∑
l∈K1\k αkl

2βk +
∑

l 6=k αkl
,
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and Ψk(x−k) ≥ 1 translates to condition
∑

l∈K0
αkl ≤ −βk. Equivalently, for all k ∈ K0 since

Ψk(x−k) ≤ 0, then
∑

l∈K1
αkl ≤ −βk. If these conditions are satisfied an heterogeneous pure

strategy equilibrium exists. Notice that by concavity and property (14) these two conditions
imply that

∑
l∈K0

αkl ≤
∑

l∈K1\k αkl, for all k ∈ K1 and
∑

l∈K1
αkl ≤

∑
l∈K0\k αkl, for all

k ∈ K0. These findings are summarized in next Proposition.

Proposition 2. Let K0 be the set of types such that xk = 0 and let K1 be the set of types
with xk = 1, with K0∪ K1 = K, then heterogeneous pure strategy symmetric BNE exists
whenever,

1. Functions vk are all convex,
∑

l∈K1, l 6=k αkl ≥
∑

l∈K0
αkl for all k ∈ K1, and

∑
l∈K1

αkl ≤∑
l∈K0, l 6=k αkl for all k ∈ K0.

2. Functions vk are all concave,
∑

l∈K0
αkl ≤ −βk for all k ∈ K1, and

∑
l∈K1

αkl ≤ −βk
for all k ∈ K0.

We do not further proceed with the conditions for heterogeneous pure strategy symmetric
equilibria when some functions are concave and some others convex.

3.3. Mixed strategy symmetric Bayesian Nash equilibria

As already mentioned, when functions vk[xk,x] are concave in xk (αkk < 0), for all k ∈ K,
and since each strategy space is compact a Bayesian Nash Equilibrium, possibly in mixed
strategies, will always exit. Let us define the uniformly mixed strategy profile as the one
where all players choose randomly between actions, giving each action the same probability
of being chosen, i.e., the profile x∗ such that x∗k = 1/2 for all k ∈ K. If all payoff functions
are concave, then the uniformly mixed strategy profile is a BNE. By (16),

Ψk(x
∗) =

βk + 1
2

∑
l 6=k αkl

−2αkk

and by property (14), −2αkk = 2(βk + 1
2

∑
l 6=k αkl), then Ψk(x

∗) = 1/2.

Proposition 3. The uniformly mixed strategy symmetric BNE exists whenever all payoff
functions are concave.

3.4. Hybrid symmetric Bayesian Nash equilibria

It remains to show the existence of hybrid symmetric BNE where some players choose
a pure strategy and the others a mixed one. Given the difficulty of dealing with hybrid
strategies, we restrict the analysis to those where players choosing a pure strategy select the
same pure one. These equilibria can only take place when some vk functions are convex and
others are concave.

Let Kv be the set of types with concave payoff functions and let Kx be the one with
convex payoff functions. Proceeding as above, the necessary and sufficient conditions in
order a profile x = ((xn)n∈Kv , (xk)k∈Kx) with xk = 1 for all k ∈ Kx and xn ∈ [1

2
, 1] for all

n ∈ Kv with at least one n0 ∈ Kv such that xn0 < 1 to be hybrid BNE are:
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1. 1
2

∑
l∈Kx\k αkl+

∑
l∈Kv(xl−

1
2
)αkl ≥ 0, for all k∈Kx, which guarantees that the players

with convex function play action 1.
2. 1

2

∑
l∈Kx αnl+

∑
l∈Kv\n(xl− 1

2
)αnl ≥ 0, for all n∈Kv, which guarantees that the players

with concave function play action xn ∈ [1
2
, 1].

3. There is at least an n0 ∈ Kv such that βn0+
∑

l∈Kv\n0
(1−xl)αn0l > 0, which guarantees

that the n0-player type with concave function plays an action xn0 < 1.

The above necessary and sufficient conditions 6 translate to the set of sufficient conditions
in terms of players strategic complementarity: all the players with convex functions satisfy
that

∑
l∈Kx\k αkl ≥ 0 and αkn ≥ 0 for all k ∈ Kx and n ∈ Kv; and the players with concave

function satisfy that
∑

l∈Kx αnl ≥ 0, and αnl ≥ 0 for all n, l ∈ Kv, n 6= l; and there is at least
an n0 ∈ Kv such that βn0 > 0. Strategic complementarity guarantee that all the players’
best replies are non-decreasing and hence the composite best response is non-decreasing and
(hybrid) equilibria exist.

A natural question to ask is whether profiles x = ((xn)n∈Kv , (xk)k∈Kx) with xk = 1 for
all k ∈ Kx, and xn ∈ [0, 1

2
] for all n ∈ Kv at least one n0 ∈ Kv such that xn0 > 0 can be

supported as hybrid BNE.7 To answer this question, suppose that all the payoff functions
are concave but one, say vk, this one being convex, and that the player with convex function
consider as pairwise strategic substitutes the action of each other player (with concave
function), i.e., αkn ≤ 0, for all n ∈ Kv and that those with concave functions also exhibit
αnk ≤ 0, for all n ∈ Kv. The idea of the proof relies on the fact that the system with concave
functions has two solutions, parameterized by xk ∈ {0, 1} (since the vn are concave and the
strategy space is compact), which are non-increasing in xk because αnk ≤ 0 for all n. Let
x∗−k(1) = {x∗n(1)}n6=k and x∗−k(0) = {x∗n(0)}n 6=k, be such solutions. Since αkn ≤ 0, for all
n ∈ Kv, then the best reply xk ∈ {0, 1} is also non-increasing in each solution and hence the
composite best response is then non-decreasing and an equilibrium exists. More precisely,
the necessary and sufficient conditions are:

1.
∑

l∈Kv(xl −
1
2
)αkl ≥ 0, for k, which guarantees that the player with a convex function

plays action 1.
2. 1

2
αnk +

∑
l∈Kv\n(xl− 1

2
)αnl ≤ 0 for all n ∈ Kv, which guarantees that the players with

concave function play action xn ∈ [0, 1
2
].

3. There is at least an n0 ∈ Kv such that βn0 +
∑

l∈Kv\n0
αn0lxl + αn0k > 0, which

guarantees that at least a player with concave function plays an action bigger than 0.
Given that αkn ≤ 0, for all n ∈ Kv, a sufficient condition for 1, i.e., that the player with

the convex function plays action 1 is that xn ∈ [0, 1
2
], for all n ∈ Kv. Conversely, the players

with concave functions will play xn ∈ [0, 1
2
], whenever −1

2
αnk ≥

∑
l∈Kv\n(xl − 1

2
)αnl. Notice

that if αnk ≤ 0, then this condition is trivially satisfied whenever αnl ≥ 0 for all l, n ∈ Kv,

6Notice that if x is a BNE, then it is also the complementary profile 1− x, and the same set of conditions
guarantee both as BNE. Therefore, the conditions 1 to 3 are also necessary and sufficient in order a profile
x = ((xn)n∈Kv

, (xk)k∈Kx
) with xk = 0 for all k ∈ Kx and xn ∈ [0, 12 ] for all n ∈ Kv with at least one

n0 ∈ Kv such that xn0 > 0 to be hybrid BNE.
7Or equivalently profiles x = ((xn)n∈Kv

, (xk)k∈Kx
) with xk = 0 for all k ∈ Kx, and xn ∈ [ 12 , 1] for all

n ∈ Kv at least one n0 ∈ Kv such that xn0
< 1. See footnote 6.
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n 6= l. Finally, to guarantee that at least one player with a concave function plays a mixed
strategy (instead of the pure strategy opposite to the one played by the convex player) it is
necessary that condition 3, which translates to require that βn ≥ −αnk ≥ 0 for at least an
n ∈ Kv.

Proposition 4. Hybrid symmetric BNE (with homogeneous pure strategies) exist whenever
some functions are convex and some others concave, and each player considers as strategic
complements in the aggregate the convex function players’ actions; each player considers
as pairwise strategic complements the concave function players’ actions; and βn > 0 for at
least a player with concave function. Let us denote as Type 1 the equilibria verifying these
conditions.

Consider that all functions are concave but one being convex, vk and that each player
with a concave function considers as pairwise strategic substitutes the convex players’ actions
and vice versa. Then, a Type 2 hybrid symmetric BNE exists when either i) the players with
concave value functions exhibit pairwise strategic complementarity, i.e., each αnl ≥ 0 for all
l, n ∈ Kv, n 6= l or ii) the players with concave value functions exhibit pairwise strategic
substitution, i.e., αnl ≤ 0 for all l, n ∈ Kv, n 6= l and the parametrized vector of solutions
x∗−k(1) and x∗−k(0) are sufficiently close to 1/2.

3.5. Symmetric equilibrium may fail to exist when set K is finite.

The above Propositions give us conditions which are sufficient to guarantee the existence
of a different kind of symmetric BNE. However, there still remains the question of whether
symmetric equilibrium may fail to exist. The original game has a countable infinite number
of players, whose pure strategy sets are compacts and their payoff functions are continuous.
Therefore, as Salonen states (Salonen [27]) a Nash equilibrium in mixed strategies must
exist. The existence failure may come from the fact that in symmetric equilibria the play-
ers’ strategy profiles are indexed by the players’ degree, so that the original game (with a
countable infinite number of players) translates to a new game where the number of players
is set K. Thus, when K is finite it would be as if the underlying game we are dealing with
had a finite set of players. In this situation, the existence of symmetric Nash equilibria need
not be guaranteed when some best response functions are increasing while some other ones
decreasing, thus possibly missing the equilibrium. Notice also that all of our results are
under the assumption of independence between neighbors’s degree and individual degree,
and we are not sure about what affiliation between players’ degrees may add to the analysis.

The following example with three type of players illustrates the non-existence problem
as well as the above Propositions.

Example 2. Let g be a network where individuals are unformly distributed in degrees 2,3
and 4. Then K = {2, 3, 4} and pk = 1/3, for all k ∈ K.

Here, functions vk specify to (the terms not depending on xk are not included):
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v2[x2, (x3, x4)] = (4/9− (7/18)c)x2
2 + [(2/3− (4/9)c)x3 + (8/9− (4/9)c)x4 + ((5/6)c− 11/9)]x2

v3[x3, (x2, x4)] = (2/3− (7/18)c)x2
3 + [(4/9− (4/9)c)x2 + (8/9− (4/9)c)x4 + ((5/6)c− 4/3)]x3

v4[x4, (x2, x3)] = (8/9− (7/18)c)x2
4 + [(4/9− (4/9)c)x2 + (2/3− (4/9)c)x3 + ((5/6)c− 13/9)]x4

Notice that v2 is convex for c ≤ 8/7 ≈ 1.14, v3 is convex for c ≤ 12/7 ≈ 1.714 and v4 is
convex for c ≤ 16/7 ≈ 2.29.8

For c < 1.14, we find two symmetric BNE in homogeneous pure strategies, where condi-
tions of Proposition 1 are fulfilled, i.e., all the vk functions are convex with

∑
l 6=k αkl>0, for

k ∈ K, i.e., actions of the players are strategic complements in the aggregate.
For c > 1.14 function v2 turns to be concave while v3 and v4 still remain convex. Never-

theless, in the interval 1.14 < c ≤ 1.25,
∑

l 6=k αkl ≥ 0, for k ∈ K (with β2 < 0), the conditions
of Proposition 1 still are satisfied and we find that the unique symmetric equilibria are the
two equilibria in homogeneous pure strategies.

As above, in the interval 1.25 < c < 1.71, both functions v3 and v4 are still convex and
v2 concave but symmetric BNE fail to exist. In particular, in the interval 1.25 < c < 1.50,
where

∑
j 6=2 α2j > 0,

∑
j 6=3 α3j > 0, but

∑
j 6=4 α4j < 0. The reason is the failure of type k = 4

to consider the other players’ actions as strategic complements in the aggregate; similarly,
in the interval 1.50 < c < 1.71,

∑
j 6=2 α2j > 0 but

∑
j 6=3 α3j < 0 and

∑
j 6=4 α4j < 0, and thus

players’ actions are neither strategic complement nor strategic substitutes in the aggregate.
The same argument applies to the interval 1.71 < c < 2, where both v2 and v3 are now
concave while v4 remains convex, with

∑
j 6=2 α2j > 0 but

∑
j 6=3 α3j < 0 and

∑
j 6=4 α4j < 0.

For c ≥ 2, the equilibrium is restored. In the interval 2 ≤ c < 2.29, v4 is convex and
v2 and v3 are concave with αkl < 0 for all k 6= l, so that actions are all pairwise strategic
substitutes. For instance, for c = 2.2, the two hybrid BNE are {x∗2 = 0.51, x∗3 = 0.60, x∗4 = 0}
and {x∗2 = 0.49, x∗3 = 0.40, x∗4 = 1} (see Type 2 hybrid symmetric BNE, ii) in Proposition
4.)9

Finally, for c > 2.29, all the vk functions, are concave. The unique symmetric BNE is
the uniformly mixed strategy profile {x∗2 = 0.5, x∗3 = 0.5, x∗4 = 0.5} (see Proposition 3).

The equilibrium configuration is displayed in Figure 1. In this example, the existence
failure of symmetric Bayesian Nash equilibrium, for some values of the congestion parameter,
comes from the fact that K is finite and for this range of c, players’ actions are neither
strategic substitutes nor strategic complements.10

8Also notice that for c < 1, αkl > 0, for k, l = 2, 3, 4 and k 6= l. For 1 ≤ c ≤ 1.25,
∑

l 6=4 α4l ≥ 0

(although α42 < 0), for 1 ≤ c ≤ 1.5,
∑

l 6=3 α3l ≥ 0 (although α32 < 0) and for 1 ≤ c ≤ 1.75,∑
l 6=2 α2l ≥ 0 (although α23 < 0 for c ≥ 1.5).
9Notice that α24 = −0.0888, α23 = −0.311, α22 = −0.411 and β2 = 0.613 ;α34 = −0.0888,

α32 = −0.533, α33 = −0.1888 and β3 = 0.499. Hence, βn > −αn4 > 0, (or αnn > −1
2αn4) for

n ∈ {2, 3} and x∗2(0) = 0.51, x∗3(0) = 0.60, and x∗2(1) = 0.49, x∗3(1) = 0.40 are sufficiently close to
1/2 such that αnl(xl(1)− 1

2) + 1
2αn4 < 0, and αnl(xl(0)− 1

2)− 1
2αn4 > 0 for n ∈ {2, 3}, l 6= n.

10If we removed the restriction of equilibrium symmetry, then we could search for the Bayesian
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Fig. 1. Equilibrium configuration for Example 2 as a function of the congestion parameter.

4. Network characterization of Bayesian Nash Equilibria

As we have seen BNE profiles depend on both the degree distribution p of the network
and the congestion parameter c. Intuition suggests that if congestion is high enough, the
unique BNE profile is the one in which players’ choice of actions are as heterogeneous as
possible. Only for low congestion will the players choose the same action.

However, intuition has to be polished since the network global topology plays an important
role in the equilibrium characterization. To appreciate this notice that the degree distribution
defines two important network features such as hub and peripheral players. Although each
individual’s value function depends on both the average action profile followed by all the
individuals of the network and the average profile of their neighbors, their relative weight will
depend on the individual’s number of connections. Thus, the network average action profile
is particularly important for peripherals because, by definition, their number of neighbors is
very small and therefore their choices will mostly be driven by the network global topology.
On the contrary, the hubs choices will mainly depend on their neighbors average action
profile, i.e. on the network’s local properties. Therefore both local and global properties
determine the equilibrium choices. The proportion of hubs and peripherals depends on the
weight of the tails of the degree distribution and as a consequence so does the equilibrium
characterization.

The next results characterize the BNE profiles of Section 3: mixed strategy profiles, ho-
mogeneous pure strategy profiles and hybrid equilibrium profiles, in terms of the network

Nash equilibria of the original game, where each player chooses individually their action. In this
framework, the existence of equilibrium is restored: it can be checked that the profile with all
players playing the same pure strategy is a Bayesian Nash equilibrium whenever c ≤ 2. Given a
player, say i, if all the other players choose the same pure action, say m –i.e., xj = 1 for all j 6= i–
then the player i’s gross payoff is xi (because the average action of their neighbors is 1), and the
player i’s cost is c

2xi (because the average action of the network is also 1). Then, player i’s net
payoff is xi − c

2xi, and their best response is x1 = 1 if c ≤ 2, and xi = 0 otherwise.
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topology. First, Proposition 3 can be expressed as,

Proposition 5. Let g be a network with a degree distribution of p = {pk}k∈K . The unique mixed

strategy BNE is the uniformly mixed strategy profile. Moreover, the uniformly mixed strategy will

be a BNE if and only if the network relative degree k
d is bounded from above: k

d <
c
4(2 + pk) for all

k ∈ K.

The first statement in Proposition 5 says that if x is a mixed strategy BNE, i.e. xk ∈ (0, 1)
for all k ∈ K, then it cannot be otherwise unless xk = 1/2. The second one gives a necessary
and sufficient condition, concavity of the vk functions, for all k ∈ K, in order that the
uniformly mixed strategy profile is a BNE. Given a congestion function parameter, concavity
imposes an upper bound on the maximum relative degree of the considered network. This
means that the right tail of the degree distribution tells us whether a uniformly mixed
strategy BNE exists. Therefore, uniformly mixed BNE profiles are very difficult to achieve
in networks with players with high relative degree (hubs) unless the congestion cost parameter
is very high. This is so even when there is only one such a player. In fact, when the maximum
degree k is not bounded, then mixed strategy equilibrium will not exist. (Some examples are
in the next Section.)

Let us give some intuition. Hubs always have an incentive to coordinate their actions and select

the same pure strategy. Suppose that all players with different degrees from k choose the uniformly

mixed strategy. If k is big enough, then kp̃k will be also big enough, which means that the k-degree

players will have many k-degree neighbors. Thus, if these players chose a pure strategy, say action

e, their increase in the gross payoff would be high and would compensate for the increase in their

congestion cost. More precisely, if all players chose the uniformly mixed strategy their utility

function, according to (8), would be 1
2 −

c
8 . Now, if the k-degree players changed their strategy

and all of them choose action e, their value function would be 1
2(1 + p̃k)− c

8(1 + pk)
2. Notice that

now both the gross payoff and the congestion cost are higher than before. This deviation is not

profitable as long as 1
2 −

c
8 >

1
2(1 + p̃k)− c

8(1 +pk)
2, which implies that c

4pk + c
8p

2
k >

1
2 p̃k. Recalling

that p̃k = kpk/d, this inequality is equivalent to the condition of the above Proposition.

An alternative interpretation would arise if the inequality of Proposition 5 was re-written in

terms of a threshold on the congestion cost. Thus, the uniformly mixed strategy BNE will exist if

and only if c > maxk∈K
4k

d(2+pk) . Hence, uniformly mixed profiles will appear whenever there are

no hubs in the network or congestion is very high.

Next, we characterize the existence conditions of homogeneous pure strategy BNE’s. The

following Proposition translates Proposition 1 to conditions on the network degree distribution.

Proposition 6. Let g be a network with a degree distribution of p = {pk}k∈K . An homogeneous
pure strategy will be a BNE if one of the following conditions is satisfied, either

c

4
(2 + pk) ≤

k

d
≤ 1

pk
(1− c

2
+
c

2
p2
k) (17)

for all value of k, or (17) is satisfied for some values of k and
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1

pk
(cpk − 1 +

c

2
) ≤ k

d
<
c

4
(2 + pk) (18)

for the other values of k.

The left hand side inequality in condition (17) implies that vk is convex, and the the right hand

side inequality implies that
∑

l 6=k αkl ≥ 0. With respect to condition (18), the right hand side

inequality implies that vk is concave and the left hand side that βk ≤ 0 (and
∑

l 6=k αkl ≥ 0). Let

us interpret the above results in terms of hubs, peripherals and the congestion cost parameter.

The convexity of the vk functions is trivially satisfied for low values of c and the right hand side

inequality of (17) puts a constraint on the degree probability distribution: namely, this inequality

is satisfied whenever pk ≤ 1−c/2
k/d for all k > d. Therefore, given a low congestion cost parameter,

the existence of a homogeneous pure strategy BNE imposes an upper bound on the weight of the

right-tail of the degree distribution p, i.e. in the accumulative probability of hubs. Notice that now

there is not an upper bound in the maximum relative degree (as was necessary for the uniformly

mixed strategy BNE, see Proposition 5), but instead hubs have to be quite unlikely. The reason

is the following: let us assume that all players, except the k-degree ones, choose action m. If the

expected number of k- degree neighbors of a k-degree players, kp̃k, is high enough, then it will be

very likely that these players will be linked to other k-degree players. If k-degree players choose the

other pure action, e, then their reduction on the gross payoff will be low and may be offset by the

reduction in their congestion cost. To avoid this deviation, kp̃k must be low enough. Therefore,

when k is (relatively) high, as it is for hubs, pk must be low enough.

When c takes intermediate values, relatively high values of k/d have to satisfy condition (17)

and relatively low ones condition (18). The left hand side inequality of (18) can be expressed

as pk ≤ 1−c/2
c−k/d , a bound on the left-tail of the degree distribution p. Thus, the proportion of

peripherals has to be low in order an homogeneous pure strategy BNE to exist. The reason is the

following: peripherals only suffer congestion costs and receive hardly any gross payoffs. Thus, if all

players choose action m, then peripherals will have incentives to switch to action e because their

gross payoff will not change but their congestion cost will be drastically reduced. Therefore, for

moderate values of the congestion cost, condition (17) implies that hubs have to be unlikely and

condition (18) says that peripherals have to be so as well. Under high values of the congestion

parameter homogeneous pure strategy profiles cannot be BNE. If c is high enough, then neither

the left hand side inequality in (17) nor the left hand side inequality in (18) will be satisfied by

any value of the relative degree.

To sum up, homogeneous pure strategy BNE will exist if hubs are quite unlikely whenever the

congestion parameter is low enough; if the congestion parameter takes intermediate values, then

the existence of homogeneous pure strategy equilibrium profiles will be ensured as long as both

hubs and peripherals remain unlikely; finally, there will not be an homogeneous pure strategy BNE

if the congestion parameter is high. Notice that since the choice of peripherals is mainly driven

by the global network topology, while that of hubs is determined instead by the local network

topology, both local and global externalities play a role in the existence of homogeneous pure

strategy equilibrium choices.
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Finally, notice that the conditions for existence of hybrid equilibria given in Proposition 4

are more complex and demanding over the (pairwise) relationship between players. This new

requirements put additional bounds on the network maximum relative degree. The translation of

Proposition 4 to the network topology is as follows.

Proposition 7. Let g be a network with a degree distribution of p = {pk}k∈K . A hybrid sym-

metric Bayesian Nash equilibrium will exist of either type 1 or type 2 if:
Type 1: For all type k with a convex function and n with a concave function, i.e. for all k∈ Kk

and for all n ∈ Kv

c

4
(2 + pk) ≤

k

d
(19)

max
l∈K\n

{ c
2

(1 + pl)} ≤
n

d
≤ c

4
(2 + pn) (20)

with at least one n0 ∈ Kv such that n0
d < 1

pn0

[
c
2(2pn0 + 1)− 1

]
; and

dx,k ≥ c

2
d(1 + pk) (21)

dx ≥ c

2
dmax
l∈Kv
{(1 + pl)} (22)

where dx is the average degree of all the players with convex value function and dx,k is the av-

erage degree of all the players with convex value function except those with degree k, i.e., dx =∑
l∈Kx lpl/

∑
l∈Kx pl and dx =

∑
l∈Kx\k lpl/

∑
l∈Kx\k pl; or

Type 2: For the unique type k with a convex function, and for all n ∈ Kv,

c

4
(2 + pk) ≤

k

d
≤ c

2
(pn + 1) (23)

n

d
≤ min{ c

2
(pk + 1),

c

4
(pn + 2)} (24)

with at least one n0 ∈ Kv playing a mixed strategy.

As in Proposition 6, the inequality in condition (19) and the right hand side inequality in

condition (20) imply that vk is convex and vn is concave, respectively. Moreover, the left hand side

inequality in (20) implies that all players’ actions are pairwise strategic complements with those

of players with concave functions, i.e., αln ≥ 0 for all l ∈ K and all n ∈ Kv. Finally, conditions

(21) and (22) imply that each player considers as strategic complements in the average the convex

function players’ actions, i.e.,
∑

l∈Kx\k αkl ≥ 0 and
∑

l∈Kx αnl ≥ 0.

With respect to the second set of conditions: the left hand side inequality in (23) and the right

hand side inequality in (24) imply that vk is convex and vn is concave, respectively; the right hand

side inequalities in both (23) and (24) imply that the convex function players’ actions are pairwise

strategic substitutes with those of the concave function players, and vice versa.
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The first set of conditions does not impose either a constraint on the existence of both hubs

and peripherals or a constraint on their likelihood. However, the left hand side inequality in (20) is

only verified when the number of the concave function players is bounded from above. Moreover,

the average degree of the players with convex value functions is bounded from below, and this

bound increases proportionally with the network average degree. This translates to requiring that

hubs must be likely enough.

The second set of conditions implies that there are no hubs in the network. Even more, the

players with the highest degree should be very unlikely with respect to the peripherals’ likelihood.

In type 1 equilibria both hubs and peripherals should be very likely, so that the formers choose

the same pure action to benefit from their interaction within them. On the contrary, peripherals,

who are very frequent, prefer a mixed action as a way to reduce their congestion cost. In type 2

equilibria instead, where there are no hubs (set K must be finite), the best peripherals’ strategy is

to play a mixed strategy in order to reduce congestion cost as much as possible (see Example 2).

5. Equilibrium analysis in some random networks

The equilibrium analysis of two common degree probability distributions of random networks

illustrates the above results. Empirical analysis of social networks and theoretical models on

the dynamic of network formation conclude that the most common random networks are the

Poisson network and the Scale-free network, where the former can be translated to a Poisson

degree distribution and the latter to a Scale-free degree distribution, also referred as the power-law

degree distribution (Newman [22], Albert and Barabasi [1] and Jackson [18]). Both distributions

have fat tails, but that of a Scale-free distribution is fatter than the one with a Poisson distribution.

That is, the proportion of nodes with both low and large degrees are higher than could be expected

if the links were formed completely independently as occurs in Poisson random networks (see the

left graph in Figure 2). In our terminology, peripherals and hubs are unlikely in Poisson random

networks in comparison with Scale-free random networks, where both are more frequent. As set K

is countably infinite under both distributions, Bayesian Nash equilibria always exist. In addition,

since the maximum degree is not bounded, uniformly mixed Bayesian equilibrium will not exit,

by proposition 5. All equilibria can be found are the pure strategy and hybrid Bayesian Nash

equilibria.

The relationship between the congestion parameter and the different kind of BNE under Poisson

networks exhibits a complex behavior, which depends on the network average degree. The right

graph in Figure 2 displays the equilibrium strategies for a Poisson degree distribution with average

degree equal to 3 and for three congestion cost parameters, namely 1, 3 and 10 (solid, dashed and

dotted lines respectively). For the lowest congestion parameter, c = 1, all type of players choose

the same pure strategy (xk = 1 for all k ∈ K); when the congestion parameter is higher, c = 3,

the players with a degree lower than 5 play a mixed strategy, since these player value functions

have turned to be concave; and the remaining players, with still convex value functions, choose the

same pure strategy (x1 = 0.56, x2 = 0.47, x3 = 0.45, x4 = 0.63, xk = 1 for k ≥ 5). For the highest

congestion parameter, c = 10, more player value functions turn to be concave and thus players

with a degree lower than 13 play a mixed strategy and players with a bigger degree play the pure
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Fig. 2. Left: Probability mass of a Poisson distribution (solid line) and a Scale Free distribution (dotted

line) both with an average degree of 3. Center: Equilibrium strategies under a Scale-Free distribution as a

function of the players’ degree, for congestion parameters equal to 1, 3 and 10. Right: Equilibrium strategies

under a Poisson distribution as a function of the players’ degree, for congestion parameters equal to 1, 3

and 10.

strategy xk = 1, for k ≥ 13).11 Recall that since k is unbounded there are no mixed equilibria (see

Proposition 5).

In general, let us consider a Poisson random network with an average degree equal to d = λ+1,

i.e., pk = e−λλk−1/(k − 1)! Under Proposition 6 homogeneous symmetric BNE conditions exist

when either all value functions are convex (see condition (17)) or both convex and concave value

functions coexist (see condition (18)). In a Poisson random network condition (17) translates to

requiring c ≤ 4
(λ+1)(2+e−λ)

, which implies that all the vk functions are convex and players’ actions

are strategic complements in the aggregate; similarly condition (18) translates to requiring that

c ≤ 4k0
(λ+1)(2+pk0 ) where k0 approaches the average degree, λ + 1, from below.12 In term hybrid

strategies are the only possible BNE whenever the congestion parameter is big enough or vk is

concave for some k greater than the average degree, λ + 1. Notice that hybrid symmetric BNE

is of type 1 since the there are always a countable infinite number of convex functions. As above

mentioned no mixed BNE exist as k is unbounded.

In Table 1 we relate the network average connectivity with homogeneous symmetric BNE. More

preciselly, we show the congestion parameter’s range for homogeneous symmetric BNE both with

all value functions being convex and with some value functions being concave. The c-range is

provided for a sample of network average degrees. For example, if the Poisson network average

degree is 10, and c < 0.20 then all value functions are convex and homogeneous symmetric BNE

exist; this result is extended to .20 < c < 1.76 but the players with lower degree have a concave

11Nevertheless, if the network average degree is high enough, new equilibrium could be observed
where both peripherals and hubs play the same pure strategy and the players with a degree suffi-
ciently close to the network average degree play a mixed strategy.

12More preciely, k0 is the maximum degree such that 4(k0−1)
(λ+1)(2+pk0−1) ≤ mink≤k0−1 2 1+p̃k

1+2pk
.
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value function. Notice that the higher the average degree the lower the c-range for convex value

functions and the higher the c-range for concave ones. In the limit, the upper bound of c that

guarantees the existence of homogeneous symmetric BNE is 2.

Scale-free random networks show a simpler relationship between the congestion cost parameter

and the different symmetric BNE than Poisson random networks do. The graph in the center of

Figure 2 displays the symmetric equilibrium strategies of a Scale-Free random network with average

degree equal to 3 and for the same congestion parameters than before. For a congestion parameter

equal to 1, all type of players choose the same pure strategy; when the congestion parameter is

equal to 3, the players with degree 1 and 2 play the mixed strategy x1 = 0.45, x2 = 0.94 and the

remaining players choose the pure strategy xk = 1, k ≥ 3; for c = 10, the players with a degree

lower than 6 play the a mixed strategy, and those with a bigger degree play the pure strategy

xk = 1, k ≥ 6.

Let us consider a Scale-free random network: pk = (γ − 1)B(k, γ), for all k ≥ 1, 2 < γ ≤ 3 and

where B(a, b) is the Legendre beta-function.13 Then the average degree is d = (γ − 1)/(γ − 2).

For homogeneous symmetric BNE condition (17) in Proposition 6 translates to requiring that

c ≤ 4γ(γ−2)
(γ−1)(3γ−1) , while condition (18) requires c ≤ 4(γ−1)

3γ−2 . Whenever vk is concave for k greater

than half the average degree or the congestion cost parameter is big enough type 1 hybrid strategies

are the only possible symmetric BNE.

As we know by Proposition 7, type 1 hybrid BNE exists even when both peripherals and

hubs are very likely, as under Poisson and Scale-free distributions. However in both distributions,

contrary to Proposition 7, the number of concave function players is not bounded from above (this

is so because this Proposition only states sufficient but not necessary conditions).

By Proposition 6, since Scale-free tales are fatter than those of Poisson we should expect both

a smaller range of congestion costs and a more reduced number of concave value functions in the

former than in the latter under which homogeneous symmetric BNE exist. Table 1 confirms these

results. In the Scale-free distribution we observe the same pattern as in Poisson distribution: the

higher the average degree the lower the c-range for which all functions are convex and the higher

the c-range for which concave and convex functions co-exit. However, independently of the network

average degree, the c-range in Poisson random networks is always higher than the one in Scale-free

networks.

6. Some comparative statics for the two-type player case

Propositions 5, 6 and 7 relate the different kind of Bayesian Nash equilibria with the proportion

of hubs in the network and their probability distribution, for given congestion costs. As we have seen

it is very complex to undertake a general comparative static analysis. However, for a population

with two-types of players something more definite can be said. We display here the graphical results

of two examples which clearly illustrate the above Propositions. Namely, how the equilibrium

configuration changes under the presence of hubs and under the increase in their probability.

13In other words B(a, b) = Γ(a)Γ(b)
Γ(a+b) ., where Γ is the Gamma function
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Table 1. c-range for homogeneous BNE under Poisson and Scale-free distributions.

Network Average
degree, d

Poisson Scale free

All convex Concave/Convex All convex Concave/Convex

3 0− 0.6244 0.6244− 1.5317 0− 0.5128 0.5128− 1.0910
5 0− 0.3964 0.3964− 1.6629 0− 0.3130 0.3130− 1.0526
8 0− 0.2499 0.2499− 1.7362 0− 0.1974 0.1974− 1.0323
10 0− 0.2000 0.2000− 1.7639 0− 0.1583 0.1583− 1.0256
20 0− 0.1000 0.1000− 1.8319 0− 0.0796 0.0796− 1.0127
50 0− 0.0400 0.0400− 1.8921 0− 0.0319 0.0319− 1.0050
100 0− 0.0200 0.0200− 1.9229 0− 0.0160 0.0160− 1.0025
∞ 0− 0.0000 0.0000− 2.0000 0− 0.0000 0.0000− 1.0000

Consider first how equilibria changes under the presence of hubs and peripheral, keeping the

degree probability distribution constant. Suppose that K = {3, 4} with p3 = p4 = 0.5 as opposed

to K = {3, 40} with p3 = p40 = 0.5. Thus, the first example illustrates the situation where there

are neither peripherals nor hubs in the population, while in the second example the average degree

is equal to 21.5, a half of the population (the 3-degree players) consists of peripherals and the

other half (the 40-degree players) is composed by hubs. Figure 3 displays the symmetric BNE as

a function of the congestion parameter. The left hand side of Figure 3 corresponds to the first

example while the right hand side displays the second one. Graphs are scaled to enable comparison

of the range of existence of the different symmetric BNE.14

When K = {3, 4} -neither peripherals no hubs-, the two homogeneous pure strategy
BNE (either (0, 0) or (1, 1)) exist up to a congestion cost of 1.14. Then, there is a congestion
parameter interval –from c = 1.14 to c = 1.52– for which there is no equilibrium. (It can be
checked that the best response functions of the underline two type player game do not cross
each other at any point). For values of the parameter from 1.52 to 1.83 we find two hybrid
BNE with the 4-degree player choosing a pure strategy (either 1 or 0) and the 3-degree
player the corresponding mixed one. Finally, for high congestion cost, the uniformly mixed
BNE is the unique equilibrium.

14The reader can check that when K = {3, 4}, the players’ expected payoff functions are

v3(x3, x4) = (c− 10/7)x3 + (6/7− 5c/8)x2
3 + (8/7− 3c/4)x3x4 + γ3

v4(x4, x3) = (c− 11/7)x4 + (8/7− 5c/8)x2
4 + (6/7− 3c/4)x4x3 + γ4

while these functions are when K = {3, 40},

v3(x3, x40) = (c− 46/43)x3 + (6/43− 5c/8)x2
3 + (80/43− 3c/4)x3x40 + γ3

v40(x40, x3) = (c− 83/43)x40 + (80/43− 5c/8)x2
40 + (6/43− 3c/4)x40x3 + γ40
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K = {3, 4}, p3 = p4 = 0.5 K = {3, 40}, p3 = p40 = 0.5

Fig. 3. Symmetric BNE of two-type players as a function of the congestion parameter, under degree

configurations with and without hubs. The solid lines indicate that both players play the same strategy,

either homogeneous pure profiles or uniformly mixed profiles; dashed lines together with solid lines mean

that each player plays a different strategy (hybrid equilibria). In this case, the dashed lines are one of the

possible hybrid equilibrium and the solid lines are the other one.

When K = {3, 40}, both peripherals and hubs are present. By Propositions 5, 6 and
7 this implies with respect to the previous case: i) a decrease in the range of existence of
homogeneous pure strategy equilibria (the upper bound of c is now 0.19); ii) a decrease in
the existence of uniformly mixed BNE (the lower bound of c is now 2.98); iii) an increment
in the range of non-existence, being now from c = 0.19 to c = 2.48; iv) and an approach
to 1/2 of the mixed strategy of the 3-degree players in the hybrid equilibria. Hence, the
presence of both peripherals and hubs reduces the range of congestion cost where either pure
or mixed equilibrium profiles exist.

However, as above mentioned, the degree probability distribution also plays a key role in
both the equilibrium configuration and its existence. To illustrate this point, consider again
the above two-type player networks with either K = {3, 4} or K = {3, 40} and the three
probability distributions, p3 = 0.25, p3 = 0.50 and p3 = 0.75. Figure 4 displays the change
in the BNE’s configurations when both the probability distribution and the ratio between
degrees change. In the top of Figure 4 the two type of players have similar degree, K = {3, 4}
and in the bottom there are peripherals and hubs, K = {3, 40}. In addition, in the two
graphs on the left hand side of the Figure p3 = 0.25, the middle hand side p3 = 0.50 and
finally, on the right hand side p3 = 0.75. In other words, the probability of hubs decreases
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as we move to the right.15

If p3 = 0.5 and p4 = 0.5, then see footnote 14.
If p3 = 0.75 and p4 = 0.25, then

v3(x3, x4) = (5c/4− 22/13)x3 + (18/13− 33c/32)x2
3 + (8/13− 7c/16)x3x4 + γ3

v4(x4, x3) = (3c/4− 17/13)x4 + (8/13− 9c/32)x2
4 + (18/13− 15c/16)x4x3 + γ4.

For K = {3, 40}, if p3 = 0.25 and p4 = 0.75, the players’ expected payoffs are

v3(x3, x40) = (3c/4− 42/41)x3 + (2/41− 9c/32)x2
3 + (80/41− 15c/16)x3x40 + γ3

v40(x40, x3) = (5c/4− 81/41)x40 + (80/41− 33c/32)x2
40 + (2/41− 7c/16)x40x3 + γ40.

If p3 = 0.5 and p4 = 0.5, then see footnote 14.

If p3 = 0.75 and p4 = 0.25, then

v3(x3, x40) = (5c/4− 58/49)x3 + (18/49− 33c/32)x2
3 + (80/49− 7c/16)x3x40 + γ3

v40(x40, x3) = (3c/4− 89/49)x40 + (80/49− 9c/32)x2
40 + (18/49− 15c/16)x40x3 + γ40.

Inspection of Figure 4 reveals some facts related with the degree probability distribution.
When the probability of hubs decreases three general facts are observed. First, the range
of congestion costs where there exists homogeneous pure symmetric BNE increases (see
Proposition 6). In the three top graphs, this range moves from c in (0, : 0.91) to c in
(0, 1.34); in the bottom graphs the change is less relevant, being now from c in (0, 0.11)
to c in (0, 0.36). Second, the range of congestion costs where uniformly mixed symmetric
BNE exist decreases (see Proposition 5). Again, in the three top graphs, the lower bound
of the congestion cost for which there are uniformly mixed BNE moves from 1.55 to 2.19,
and in the bottom graphs it moves from 1.89 to 5.80. And third, the range of congestion
costs for which there are hybrid symmetric BNE increases: for instance, consider the bottom
graphs, on the left hand side there is not any hybrid BNE, while in the middle hand side,
hybrid BNE exist in the interval c ∈ (2.48, 2.98), and in the right hand side they exist for
c ∈ (3.73, 5.80).

However, since K is finite there is always an interval of the congestion parameter where
symmetric BNE fail to exist. The length of this interval depends on both the degree prob-
ability distribution and the ratio between degrees, showing however a complex behavior.
To see this observe that if players have similar degree and the probability of the maximum
degree players decreases, then the length of this interval will also decrease. This is the case

15For K = {3, 4}, if p3 = 0.25 and p4 = 0.75, the players’ expected payoffs are

v3(x3, x4) = (3c/4− 6/5)x3 + (2/5− 9c/32)x23 + (8/5− 15c/16)x3x4 + γ3

v4(x4, x3) = (5c/4− 9/5)x4 + (8/5− 33c/32)x24 + (2/5− 7c/16)x4x3 + γ4.
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displayed in the three top graphs, where the length of the interval of c precluding the equi-
librium existence is reduced from a measure of 0.64 to one of 0.08. While, if players’ degree
are far apart, then this length will increase as the probability of the maximum degree players
decreases. In the three bottom graphs, the length of the interval of c where the BNEs fail
to exist increases from a measure of 1.78 to one of 3.37.

We can extend the above example results to a general two type player case. Denote
by k and l the two type player degrees with k > l and let p = pl. We show the following
results that explain and generalize the examples.16 Firstly, as k increases, vk is convex for
more values of c while vl is convex for fewer values of c. Secondly, if k > 2l, then as p
increases (the probability of peripherals increases) both functions vk and vl will be convex
for more values of c. However, when k < 2l (no hubs), vl will be convex for fewer values
of c. Thirdly, as k increases the values of c for which type k considers the action of type l
as a strategic complement will be reduced. The opposite results takes place for type l with
respect to type k. Combining these last results with the first one above it can be said that,
with p fixed, as k increases the range of values of c for which homogeneous symmetric BNE
exist will decrease. This is so because vk is convex for more values of c, but vl is convex for
fewer values of c, the range of values of c for which type k considers the action of type l as
a strategic complement is smaller, but the range of values of c for which type l considers
the action of type k as a strategic complement is bigger. These opposite effects translate
to a lack of players’ coordination and thus to a bigger interval of non-existence results, as
displayed in Figure 3. Finally, for any two type degrees k and l such that k > l(1+2p)

2p
(the

case with hubs) as the probability of peripheral increases the range of c for which type k
(type l) considers the action of type l (k) as a strategic complement will increase as well.
Therefore, with k and l fixed and k sufficiently high (hubs) as p increases the range of values
of c for which homogeneous symmetric BNE exist will increase (see the bottom graphs in

Figure 4). When k < l(1+2p)
2p

(no hubs), as p increases type l will turn to consider the type k’s
action as a strategic substitute for lower values of c, thus resulting in an increase of hybrid
symmetric BNE for more values of c as p increases, as shown in the top of Figure 4. Hence,
with k and l fixed and k sufficiently low (no hubs) as p increases the range of values of c for
which hybrid symmetric BNE exist will increase.

To illustrate the complex behavior between the degree probability distribution and the
ratio between degrees and the non-existence of symmetric BNE we display Figure 5. This
figure shows for specific values of the ratio l/k (from 0.1 to 0.9) the length of the congestion
parameter interval where symmetric BNE fail to exist (exe OY) as a function of the p (exe
OX). For example, when l/k = 3/30 and p = .20 corresponds to .20 in exe OX and line .1, so
that the length c is around 1.7. Notice that if the ratio l/k is small enough (there are hubs),
then as p increases the non-existence range of c will increases as well. On the contrary, for
higher values of l/k (no hubs), the relationship is more complex, with a non-existence range
decreasing in p at the beginning and increasing latter on. The opposite behavior is observed
for intermediate values of the ratio l/k.

16We do not include the cumbersome calculation which are a tedious verification of the existence
propositions. These calculations are available from the authors upon request.
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Fig. 5. The measure of the range of c for the two type player non-existence problem. In the OX exe the

probability of the lower degree type p, and in the OY exes the range of congestion costs with non-existence

of symmetric BNE. Each line corresponds to a different ratio between the lower degree type and that of the

higher degree type l/k, from 0.1 (top) to 0.9 (bottom).
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7. Conclusions

This paper analyzes the impact of local and global interaction on individuals’ choices.
Players are located in a network and interact with each other with perfect knowledge of
their own neighborhood and probabilistic knowledge of the complete network topology.

Individuals simultaneously choose their actions from a finite set, which imposes an ex-
ternality on their neighbors as well as an externality on the complete network, and then
obtain a utility. Namely, players obtain utility from sharing their choices with their neigh-
bors (positive local externality) but suffer disutility from sharing that choice with all the
members of the network (negative global externality). A variety of economic and social phe-
nomena exhibit these features such as the adoption of cost-reducing innovations, clusters
of firms, the choice of time-schedules, etc. The optimal (Bayesian Nash) decision taken by
each individual depends on three factors: the spread of their connections in the network
(their degree), their knowledge about the network’s topology, and the exact nature of the
externalities which impact on their utility.

Our main contribution is to show that both local and global network properties play an
important role in equilibrium choices. This is so because the network topology defines two
important features such as hubs (highly connected nodes) and peripherals (poorly connected
nodes). Although each individual’s value function will depend on both the average action
profile followed by the network and the average action profile of their neighbors, their relative
weight will depend on the individual’s number of connections. Thus, the network average
action profile is particularly important for peripherals because, by definition, their number
of neighbors is very small and therefore their choice will mostly be driven by the network
global topology. On the contrary, the hubs or highly connected players’ action choices will
mainly depend on the average profile of their neighbors’ actions, i.e. on the network local
properties. Therefore, our symmetric Bayesian Nash Equilibrium is expressed in terms of
the ratio between hubs and peripherals which, in turn, comes from both the asymmetry of
the degree probability distribution (its skewness) and the weight of its tails.

Finally and as a by-product of our analysis, we have also found that if the set of degrees
is finite, a non-existence problem may appear when dealing with symmetric equilibrium.
The measure of the congestion parameter for which the equilibrium does not exist depends
on both the hub existence and their probability, but this dependence is not monotonic and
rather complex.
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