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ABSTRACT
A novel hypothesis to better understand the evolution of gigantism in active marine predators and the 
diversity of body sizes, feeding strategies and thermophysiologies of extinct and living aquatic vertebrates 
is proposed. Recent works suggest that some aspects of animal energetics can act as constraining factors 
for body size. Given that mass-specific metabolic rate decreases with body mass, the body size of active 
predators should be limited by the high metabolic demand of this feeding strategy. In this context, we 
propose that shifts towards higher metabolic levels can enable the same activity and feeding strategy 
to be maintained at bigger body sizes, offering a satisfactory explanation for the evolution of gigantism 
in active predators, including a vast quantity of fossil taxa. Therefore, assessing the metabolic ceilings of 
living aquatic vertebrates and the thermoregulatory strategies of certain key extinct groups is now crucial 
to define the energetic limits of predation and provide quantitative support for this model.
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Introduction

Body size is a key biological trait for all organisms, being a cru-
cial determinant of different physiological, anatomical, ecologi-
cal, and life history parameters (Peters 1983; Calder 1984). The 
influence of body size goes beyond the individual level, reaching 
multiple scales of organization and affecting the structure and 
dynamics of ecological networks (with implications for food 
web stability, the patterning of energy fluxes, and the responses 
to perturbations; see Woodward et al. 2005). For these reasons, 
the evolution of gigantism has long been a topic of considerable 
interest among biologists. As a consequence, numerous hypoth-
eses have been proposed to explain the mechanisms underlying 
this phenomenon (e.g. Cope’s rule, Bergman’s rule, Rensch’s rule, 
Island rule), as well as disentangling the constraining factors 
that limit maximum sizes in animals (Alexander 1998; Burness 
et al. 2001; Freedman & Noakes 2002; Hone & Benton 2005; 
Makarieva et al. 2005a, 2005b, 2006; Vermeij 2016).

Vertebrates hold the records for the biggest sizes within all 
the habitats and ecological niches that they occupied during the 
Phanerozoic (Alexander 1998; Vermeij 2016). Among gigantic 
vertebrates, those inhabiting marine environments achieve (or 
achieved in the past) the biggest sizes ever recorded (Alexander 
1998; McClain et al. 2015). Interestingly, there is a clear tendency 
for the largest swimming vertebrates to be slow filter feeders, 
whereas active predators are always notably smaller (Alexander 
1998; Cavin 2010; Friedman et al. 2010; note that this fact is also 
evident in invertebrates, e.g. Vinther et al. 2014; Klug et al. 2015). 
Some authors have tried to explain this pattern in terms of opti-
mal prey-size selection for enhancing capture rates (Webb & De 
Buffrénil 1990; Domenici 2001). However, such suggestions do 

not seem to offer a complete explanation since they are unable to 
elucidate the eventual evolution of gigantism in some predators, 
or to explain why this pattern occurs at a different size range for 
each metabolic level. Namely, the biggest endothermic predators 
are much bigger than their ectothermic counterparts, and the same 
can be said for slow filter feeders. Accordingly, among living taxa, 
the sperm whale (Physeter macrocephalus) and the Greenland 
shark (Somniosus microcephalus) are the biggest predatory verte-
brates with endothermic and ectothermic metabolism respectively. 
However, the first one is four times bigger than the second one 
(McClain et al. 2015). Similarly, the biggest endothermic filter-feed-
ing vertebrate, the blue whale (Balaenoptera musculus), exceeds in 
more than 10 m the maximum length of its ectothermic equivalent, 
the whale shark (Rhincodon typus) (McClain et al. 2015). Given 
this scenario, here we provide a novel view that entails a more 
comprehensive understanding of the diversity of body sizes, feed-
ing strategies and thermophysiologies of extinct and living aquatic 
vertebrates, considering that mass-specific metabolic rate can act as 
a constraining factor of the activity level and feeding strategy. From 
this perspective, we propose that shifts towards higher metabolic 
levels, promoted by different extrinsic or intrinsic factors, allow a 
similar activity and feeding strategy to be sustained at bigger body 
sizes, offering a satisfactory and more holistic explanation for the 
evolution of gigantism in active predators.

Unravelling the relationship between body size, 
feeding strategy and thermophysiology in aquatic 
vertebrates

Recently, Makarieva et al. (2005a, 2005b, 2006) assessed the 
effects of metabolic rate on body size providing new clues 
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1(A)). Given that the mass-specific metabolic rate decreases with 
increasing body size, larger size is not physiologically sustainable 
once this limit has been reached (Makarieva et al. 2005a, 2005b). 
Interestingly, higher metabolic levels, promoted for example by 
high ambient temperatures or high oxygen concentrations, imply 
bigger potential body sizes as this critical minimum value is 
reached at larger body mass (compare the two hypothetical taxa 
of case A in Figure 1(B)) (Makarieva et al. 2005a, 2005b). Based 
on their ideas, we make some other predictions considering that 
concrete values of metabolic rate act also as a limiting factor for 
the activity level and feeding strategy in animals (Peterson et 
al. 1990; Hammond & Diamond 1997). These are: (1) activity 
will decrease when body size increases within each metabolic 
level (case B in Figure 1(B)); (2) when comparing similar-sized 
individuals, those with higher metabolic levels will display more 
active lifestyles (case C in Figure 1(B)); and (3) when comparing 
organisms with similar activity levels, those with higher meta-
bolic levels will reach larger body sizes (case D in Figure 1(B)).

In this context, the diversity of body sizes, feeding strategies 
and thermophysiologies of extinct and living aquatic verte-
brates can be much better explained (Figure 2). The high ener-
getic requirements derived from an active predatory lifestyle 
could account for the notorious body size differences between 
aquatic predators and filter-feeders of the same metabolic level. 
According to prediction (1) outlined above, it is expected that 
as body mass increases past some threshold value, the energetic 
costs of a predatory lifestyle become too high and only less active 
lifestyles (i.e. filter feeding) are physiologically possible (Figure 
3(A)). Similarly, differences in metabolic level may also satis-
factorily explain why endothermic predators and endothermic 

that could shed some light on the above mentioned scenario. 
Physiological viability of living taxa is limited by a critical min-
imum value of mass-specific metabolic rate, which is extremely 
similar for all living organisms (Makarieva et al. 2006) (Figure 

Figure 1. (a) Explanatory diagram showing the relationship between body mass (X 
axis), metabolic rate (≈ activity level) (Y axis) and metabolic level (with bluish and 
reddish tones in the online version representing lower and higher metabolic levels, 
respectively). (B) relative positions and possible movements within this theoretical 
space implying changes in body mass, activity and metabolic levels.

Figure 2. Diversity of body masses, feeding and thermoregulatory strategies of living and extinct aquatic vertebrates (ed, endotherm; ec, ectotherm; me, mesotherm; 
cross sign denotes an extinct taxon). the existence of active predatory and fast-swimming lifestyles among different extinct groups of gigantic chondrichthyans (e.g. 
symmoriidae, cladoselachidae, Eugeneodontiformes or otodontidae; outlines 14–16 and 26), osteichthyans (e.g. Xiphactinidae; outline 22) and placoderms (e.g. 
Dunkleosteidae; outline 23) might be indicative of high metabolic levels and is compatible with the existence of meso/endothermy.
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filter-feeders are bigger than their ectothermic analogues. Taking 
into account our prediction (3) outlined above, this could be 
because endothermic animals have higher metabolic levels than 
ectothermic animals of the same size, allowing them to afford 
the energetic costs of a given feeding strategy at bigger body 
sizes (Figure 3(A)).

A common nexus for the main promoting factors of 
big body sizes in active predators

The gigantism of many extinct and living predators has been 
related to different extrinsic and intrinsic factors.

Among extrinsic factors, the presence of comparatively high 
oxygen levels has been proposed several times as the promoter of 
the big body sizes of some extinct predatory animals (e.g. Graham 
et al. 1995; Chown & Gaston 2010 and references therein). The 
mid-Palaeozoic (Carboniferous and Devonian) oxygenation 
event has been linked with the gigantism of various marine inver-
tebrate groups, such as the orthoceratids or eurypterids (Klug 
et al. 2015) (but also foraminifers; Graham et al. 1995; Payne  
et al. 2012), as well as terrestrial flying and non-flying arthropods 
(Graham et al. 1995; Dudley 1998, 2000; Harrison et al. 2010). 
In a similar way, another peak in atmospheric oxygen during 
the Cretaceous has been suggested as the trigger of gigantism 
in some other insect groups (Dudley 1998). Interestingly, body 
size of living insects is constrained by oxygen availability (Peck & 
Maddrell 2005; Harrison et al. 2006, 2010; Kaiser et al. 2007). In 
this sense, several works (Harrison et al. 2006; Kaiser et al. 2007; 
Klok & Harrison 2009; Zhao et al. 2010) have recently provided 
empirical evidence supporting the idea that hyperoxia enables 
bigger body sizes in different extant arthropods (although see 
Woods et al. 2009). Dahl and Hammarlund (2011) suggested that 

low atmospheric oxygen pressure could act as an evolutionary 
barrier for big body sizes in early vertebrates, and they linked 
the gigantism of some armoured fishes (placoderms) with the 
high oxygen levels of the Devonian.

The rise of ambient temperatures has also been proposed as a 
possible extrinsic reason for the gigantism of some extinct ver-
tebrate predators including snakes (e.g. the python Titanoboa 
(Head et al. 2009)) and lizards (Head et al. 2013). In addition, 
temperature could have played a major role in the giganstism 
of other vertebrates that lived in the tropics during greenhouse 
periods, such as some Cretaceous or Miocene crocodylomorphs 
(Sereno et al. 2001; Aguilera et al. 2006). The effect of ambi-
ent temperature on increasing body size have recently been 
examined in a considerable number of living taxa, including 
arthropods, annelids, molluscs and vertebrates (Makarieva et al. 
2005b). However, increases in body sizes due to higher ambient 
temperatures are only expected to occur in terrestrial poikilo-
therms (Makarieva et al. 2005a, 2005b).

Regarding intrinsic factors, the evolution of mechanisms 
that allow highly efficient respiration has also been linked to the 
gigantism of some air-breathing predatory vertebrates. Thus, 
one of the most representative examples in this sense could be 
the evolution of avian-like respiratory systems in pterosaurs 
(Claessens et al. 2009; Ruxton 2014) and saurischian dinosaurs 
(O’Connor & Claessens 2005; Sander et al. 2011). The recent 
description of unidirectional airflow in crocodilians suggests 
that this might have been another relevant factor involved in 
the gigantism of some crocodylomorphs (see above). In fact, 
the high similarity between bird and crocodilian respiratory 
systems supports the idea that unidirectional airflow is the 
ancestral condition for all archosaurs (Schachner et al. 2013; 
Farmer 2015a), a group that comprises numerous examples 
of gigantic predators other than non-avian dinosaurs, pter-
osaurs or crocodylomorphs (including for example several 
basal forms, Turner & Nesbitt 2013; or the more derived ‘terror 
birds’, Alvarenga et al. 2011). Differences in body size between 
mammals and dinosaurs during the Mesozoic have also been 
attributed to differences in their respiratory efficiency, and it 
has been suggested that non-unidirectional airflow system of 
mammals could have been a competitive disadvantage (Farmer 
2015b). Similarly, Ruxton (2011) proposed that the higher 
respiratory efficiency of air-breathing aquatic vertebrates over 
water-breathing taxa could explain the body size differences 
between marine mammals and fishes.

Finally, the evolution of anatomical structures and physio-
logical mechanisms that allow heat generation and/or retention 
can be considered as another intrinsic factor that promotes big-
ger potential body sizes (Vermeij 2016). Supporting this idea, 
the biggest living fishes with an active predatory lifestyle are 
mesotherms (Dickson & Graham 2004). This factor could be 
involved in the gigantism of some extinct vertebrate predators 
where endothermy or mesothermy has recently been confirmed, 
including dinosaurs (Amiot et al. 2006; Pontzer et al. 2009; Eagle 
et al. 2011), ichthyosaurs, plesiosaurs and mosasaurs (Bernard 
et al. 2010; Harrell et al. 2016). The big sizes and active lifestyles 
presupposed for a considerable number of extinct aquatic verte-
brates suggest that the occurrence of endothermy or mesothermy 
could have been more common in the past than expected (see 
fossil taxa with question marks in Figure 2).

Figure 3.  (a) Diagram showing how endothermic aquatic vertebrates, situated 
in higher metabolic levels, can reach bigger potential body sizes than their 
ectothermic analogues. (B) Visual explanation of how shifts towards higher 
metabolic levels, mediated by different factors, contribute to maintaining a 
predatory lifestyle at bigger body sizes.
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