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Abstract

Random Boolean networks are among the best-known systems used to model genetic networks.
They show an on–o1 dynamics and it is easy to obtain analytical results with them. Unfortunately
very few genes are strictly on–o1 switched. On the other hand, continuous methods are in
principle more suitable to capture the real behavior of the genome, but have di4culties when
trying to obtain analytical results. In this work, we introduce a new model of random discrete
network: random walk networks, where the state of each gene is changed by small discrete
variations, being thus a natural bridge between discrete and continuous models.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Random Boolean networks (RBN) are a classical discrete approach in complex
systems to gene networks [1,2]. In RBN, each gene have only two states (on/o1)
with a dynamic based in Boolean functions. Nevertheless, very few genes are strictly
on–o1 switched, rather they have continuous behavior [3]. In order to handle this
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continuous behavior, models of many-genes activity based on di1erential equations have
been developed, although they have evident computational and analytical problems. In
Ref. [4], it is proposed a continuous-discrete hybrid set of piece-wise linear di1erential
equations in order to get round this problem. Unfortunately, it is di4cult to obtain
analytical results in such continuous or semi-continuous models.
In this paper, we introduce random walk networks (RWN). These networks work

with small variations in the gene states, being in this way a discrete approach to dif-
ferential equations. RWN are formed by N automata, each one connected with another
K automata in a random manner. Each automaton can be in a number s of possible
states ranging from 1 to s and the changes among states occur in discrete steps of
{+1;−1}. The dynamics of each automaton is constrained by two reEecting states: 1
and s. These extreme states represent null activity and saturation activity respectively,
and they act as barriers for the automaton. A function rule table of K variables, gen-
erated in a random manner, is associated with each automaton. This function has as
input the state values of the K input automata.
In contrast with RBN, the output of this function does not deFne the new value of

the automaton, but a variation +1 or −1 in its value, and hence its link with di1erential
equations. These variations modify the state of a given automaton producing (in the
chaotic case) a random walk-like behavior of its value, which gives the name to these
networks. For example, let us suppose K = 2 and s = 4 and the automaton i with
state in time t, xti = 2. Let us also suppose that its two automata input have states
xti1 = 1 and xti2 = 3 in time t. We search the input combination (1,3) in the rule
table for the automaton i and Fnd +1 as output. Then the value xti = 2 is updated
as xt+1

i = 2 + 1 = 3 in time t + 1. In the case xti = 4 (saturation state) the update
would be xt+1

i = 4. Similarly, if the automaton has a value of xti = 1 (null activity)
and the output is −1 the update will be xt+1

i = 1. That is, the extreme values act as
barriers. As in RBN, the evolution of the system is updated synchronously and we can
deFne a new parameter p, the bias [5], but here it is the probability of having +1 as
the output value in the rule tables (and having −1 with probability (1−p)) when we
generate in a random manner all the rule tables at the beginning of the deFnition of the
network. Note that connections and rule tables are generated in a random manner at the
beginning of the deFnition of each network but afterwards are maintained (quenched)
in time.
RWN present complex dynamical behavior and similar order–disorder transition as

RBN [5], random threshold networks [6] or asymmetric neural networks [7], for exam-
ple. For a Fxed number s of states, two well-deFned phases appear in RWN, separated
by a critical line in the space p− K :

(1) an ordered phase when the value of the bias p is far away from 0.5 and/or the
connectivity K is low, in which the networks freeze in a pattern after a short
transient. In this phase, almost all of the automata remain in a completely frozen
state, and

(2) a disordered phase, in the contrary case for p and K , where all patterns are lost
and the automata appear to be in a completely disordered state, switching from
one state to another seemingly at random.
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Fig. 1. Up: dynamics of a RWN with N = 100 automata, K = 2, p = 0:79 and s = 10. The horizontal axis
represents time steps and the vertical axis shows the 100 automata. Di1erent gray intensities indicate di1erent
states for each automaton, ranging from 1 (white) to 10 (black). Down: evolution of the automata states
(automata values) in time for the same RWN. For simplicity we only show automata number 33 (broken
line), 53 (dotted line) and 88 (solid line). The positions of these automata are marked in the vertical axis
of the upper Fgure.

We can observe that RWN reduces to RBN when s = 2. In this sense, RWN are
a generalization of RBN. Fig. 1 shows the time evolution of an example RWN with
N = 100, K = 2, p= 0:79 and s= 10.

2. Annealed and quenched model

Following Ref. [8], we can obtain the boundaries separating order and disorder for
the RWN annealed model. For the annealed model, in contrast with quenched RWN,
we deFne the automata inputs and the functions of each automaton each time step in
order to avoid correlations or system memory. This is strictly true for other systems,
as RBN, but for annealed RWN the memory dependence is not totally avoided. Here,
the state values xti have inEuence in the values xt+1

i . Nevertheless, the RWN annealed
system shows an ordered–disordered transition and we can compute it as a mean Feld
of the quenched RWN.
The behavior of each automaton is constrained by the reEecting states 1 and s.

For a given network automata, we deFne Pn as the probability of being in state
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n∈ {1; 2; : : : ; s}, that is, having value n. If we assume absence of correlations, we
can write the evolution of the probabilities as




P1(t + 1) = (1 − p)(P1(t) + P2(t))
...

Pi(t + 1) = (1 − p)Pi+1(t) + pPi−1(t)

...

Ps(t + 1) = p(Ps−1(t) + Ps(t))

(1)

with i = 2; 3; : : : ; s− 1.
Following the annealed model [8], we need to compute the overlap between two

annealed replicas, with initial state conditions randomly chosen. The overlap in time t:
a(t)∈ [0; 1] is deFned as the normalized number Na(t) of elements with common states
in two annealed replicas. The time evolution of the overlap in the annealed model is
given by

a(t + 1) = a(t)[aK (t) + (1 − aK (t))(p2 + (1 − p)2)]

+
2(1 − a(t))
1 − ∑s

n=1 P
2
n

[
aK (t)(pPs−1Ps + (1 − p)P1P2)

+ (1 − aK (t)) (p2Ps−1Ps + (1 − p)2P1P2

+p(1 − p)
s−1∑
n=2

Pn−1Pn+1

]
: (2)

This equation has as Fxed point, the value a∗ = 1 and a stability analysis leads to the
following critical surface separating the ordered and disordered phases for annealed
RWN:

K

(
1 − ∑s

n=1 P
2
n

)
1=pP2

s + 1=(1 − p)P2
1
= 1 ; (3)

where now Pn are the stationary values of Pn(t) calculated from Eq. (1) in the limit
when t → ∞:

Pn =
1
z

(
p

1 − p
)n−1

(4)

being z =
1−(

p
1−p )s

1−p=(1−p) the normalization constant.
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Fig. 2. Evolution of the overlap a(t) as a function of the number of states s. Left: Evolution of the overlap
a(t) for annealed RWN for K = 2, p = 0:65 and di1erent values of s. In all of them we have taken as
initial conditions a(0) = 1=s. Each point represents the average of 100 di1erent networks, with N = 10000
automata each one. Solid lines represent the theoretical evolution using Eqs. (1) and (2). Right: Evolution
of the overlap a(t) for quenched RWN for the same parameter values and initial conditions than left. Again,
each point represents the average of 100 di1erent networks, with N = 10000 automata each one.

As expected, using s = 2 in the critical surface equation (Eq. (3)) this value leads
to the well-known critical curve for RBN [5]:

K2p(1 − p) = 1 : (5)

3. Numerical simulations

Fig. 2 shows the results in the evolution of the overlap a(t) between two given
conFgurations of the same system. Solid lines in Fig. 2 left are the theoretical predic-
tions of the evolution for the annealed RWN from Eqs. (1) and (2), meanwhile points
(circles, squares, diamonds and triangles) are the simulation results for the annealed
RWN. K and p have a Fxed value and it shows the e1ect of the variations in s. As can
be seen, the agreement between theory (continuous line) from Eqs. (1) and (2) and
simulation is complete. Compare it with Fig. 2 right, corresponding to the quenched
RWN. It is clear how the values of the overlap a(t) in the annealed RWN (left) are
always smaller than the values in the quenched RWN (right). Thus, due to the strong
correlations of the quenched system, the annealed model underestimates the quenched
one and the critical surface obtained for the annealed model is not applicable to the
quenched model (unlike RBN).
Fig. 3 shows the dependence with p and s of the stationary value of the overlap,

a∗, i.e.: a(t) when t tends to inFnity. As can be seen in these Fgures, 1 − a∗ acts
as order parameter, having order when 1 − a∗ = 0 and disorder otherwise. Fig. 3 left
corresponds to the theoretical annealed RWN from Eqs. (1) and (2) when t → ∞, and
Fig. 3 right to the quenched model. As can be seen, both cases show a clear transition
from order to disorder, although the annealed model predicts a critical p bigger than
the quenched one.
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Fig. 3. Behavior of the stationary value of the overlap, a∗, as a function of the bias p. We plot 1 − a∗,
which acts as an order parameter, versus p. Left: Theoretical representation of 1 − a∗ as a function of p
for the annealed RWN. Each curve corresponds from the bottom to the top to s = 3; 4; 5; 6; 7; 8; 9. Right:
Numerical simulations of 1 − a∗ as a function of p for the quenched system. Each point in the curves
has been obtained by averaging 100 simulations. Each curve corresponds from the bottom to the top to
s = 3; 4; 5; 6; 7; 8; 9, for quenched RWN with N = 10000 and K = 2.

4. Summary

The RBN was one of the Frst ways proposed to statistically study genome global
properties. Unfortunately, this is a model of all–nothing behavior where the state of
a given gene is completely determined by the input genes and where smooth varia-
tions of state are not allowed, in contrast with the real genome. On the other hand,
systems of di1erential equations, which in principle should give a better understanding
of such continuous behavior, are di4cult to solve and it is hard to obtain analytical
results. In this paper, we have proposed RWN, a new simple random network model
which has great resemblances with real genetic networks. RWN are a natural link
between discrete all–nothing models (like RBN) and continuous systems of di1erential
equations, as RWN allow small, almost continuous variations in the behavior of the
genome. RWN have a clear order–disorder transition and allow analytical treatment.
In this paper, we have deduced the critical frontier for the annealed model, although
due to the memory of the system, the annealed solution does not coincide with the
quenched critical frontier.
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