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Feigenbaum graphs: a complex network perspective of chaos
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Dept. Matemática Aplicada y Estad́ıstica
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We expose a remarkable relationship between nonlin-
ear dynamical systems and complex networks by means
of the horizontal visibility (HV) algorithm1,2 that trans-
forms time series into graphs. In low-dimensional dis-
sipative systems chaotic motion develops out of regular
motion in a few number of ways or routes, amongst
which the period-doubling bifurcation cascade or Feigen-
baum scenario is perhaps the better known and most
famous mechanism. This route to chaos appears in-
finitely many times amongst the family of attractors
spawned by unimodal maps within the so-called periodic
windows that interrupt stretches of chaotic attractors.
In opposition, a route out of chaos accompanies each
period-doubling cascade by a chaotic band-splitting cas-
cade, and their shared bifurcation accumulation points
form transitions between order and chaos that are known
to possess universal properties. Low-dimensional maps
have been extensively studied from a purely theoretical
perspective, but systems with many degrees of free-
dom used to study diverse problems in physics, biology,
chemistry, engineering, and social science, are known to
display low-dimensional dynamics.

The horizontal visibility (HV) algorithm converts the
information stored in a time series into a network, set-
ting the nature of the dynamical system into a differ-
ent context that requires complex network tools to ex-
tract its properties. Relevant information can be ob-
tained through this methodology, including the charac-
terization of fractal behavior3 or the discrimination be-
tween random and chaotic series1,4, and it finds increas-
ing applications in separate fields, from geophysics5, to
finance6 or physiology7. Here we offer a distinct view
of the Feigenbaum scenario through the HV formalism,
making a complete study of the HV graphs associated
to orbits extracted from unimodal maps, which in this
context we will call Feigenbaum graphs. We first char-
acterize their topology via order-of-visit and self-affinity
properties of the maps. Additionally, a matching renor-
malization group (RG) procedure leads via its flows to or
away from network fixed-points to a comprehensive view
of the entire family of attractors. Furthermore, the opti-
mization of the entropy obtained from the degree distri-
bution coincides with the RG fixed points and reproduces
the essential features of the map’s Lyapunov exponent in-
dependently of its sign. A general observation is that the
visibility algorithm extracts only universal elements of
the dynamics, free of peculiarities of the individual uni-
modal map, but also of universality classes characterized
by the degree of nonlinearity.

Figura 1. Feigenbaum diagram of the Logistic map
xt+1 = μxt(1 − xt), indicating a transition from periodic to
chaotic behavior at μ∞ = 3.569946... through period-dou-
bling bifurcations. For μ ≥ μ∞ the map shows a chaotic
mirror image of the period-doubling tree, where aperiodic be-
havior appears interrupted by periodic windows. Surrounding
the central figure, for several values of μ we show time series
and their associated Feigenbaum graphs. Inset: Numerical
values of the mean normalized distance d̄ as a function of
mean degree k̄ of the Feigenbaum graphs for 3 < μ < 4 (as-
sociated to time series of 1500 data after a transient, and a
step δμ = 0.05), in good agreement with the theoretical linear
relation: d̄(k̄) = 1

6
(4 − k̄).
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