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The visibility algorithm has been recently introduced as a mapping between time series and complex
networks. This procedure allows us to apply methods of complex network theory for characterizing time series.
In this work we present the horizontal visibility algorithm, a geometrically simpler and analytically solvable
version of our former algorithm, focusing on the mapping of random series �series of independent identically
distributed random variables�. After presenting some properties of the algorithm, we present exact results on
the topological properties of graphs associated with random series, namely, the degree distribution, the clus-
tering coefficient, and the mean path length. We show that the horizontal visibility algorithm stands as a simple
method to discriminate randomness in time series since any random series maps to a graph with an exponential
degree distribution of the shape P�k�= �1 /3��2 /3�k−2, independent of the probability distribution from which
the series was generated. Accordingly, visibility graphs with other P�k� are related to nonrandom series.
Numerical simulations confirm the accuracy of the theorems for finite series. In a second part, we show that the
method is able to distinguish chaotic series from independent and identically distributed �i.i.d.� theory, studying
the following situations: �i� noise-free low-dimensional chaotic series, �ii� low-dimensional noisy chaotic
series, even in the presence of large amounts of noise, and �iii� high-dimensional chaotic series �coupled map
lattice�, without needs for additional techniques such as surrogate data or noise reduction methods. Finally,
heuristic arguments are given to explain the topological properties of chaotic series, and several sequences that
are conjectured to be random are analyzed.
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I. INTRODUCTION

Recently, the visibility algorithm, a new tool for time se-
ries analysis, has been introduced �1�. The method, inspired
by the concept of visibility �2�, proceeds by mapping time
series into graphs according to a specific geometric criterion,
in order to make use of complex networks techniques �3–6�
to characterize time series �some other works based on a
similar philosophy can be found in �7,8��. In short, a visibil-
ity graph is obtained from the mapping of a time series into
a network according to the following visibility criterion: two
arbitrary data �ta ,ya� and �tb ,yb� in the time series have vis-
ibility, and consequently become two nodes in the associated
graph, if any other data �tc ,yc� such that ta� tc� tb fulfills

yc � ya + �yb − ya�
tc − ta

tb − ta
. �1�

It has been shown �1� that time series structure is inherited in
the associated graph, such that periodic, random, and fractal
series map into motiflike random exponential and scale-free
networks �9–11�, respectively. These findings suggest that
the visibility graph may capture the dynamical fingerprints of
the process that generated the series. Furthermore, it has
been recently pointed out that this algorithm stands as a
method for estimating the Hurst exponent H in fractional
Brownian series �12�, since a linear relation between H and
the exponent � of the power-law degree distribution in the
scale-free associated visibility graph exists �13�. While being

relatively new, some applications of the method to analyze
time series, in different contexts from fluid dynamics �14� or
atmospheric sciences �15� to finance �16�, have been pre-
sented so far.

What does the visibility algorithm stand for? In order to
deepen on the geometric interpretation of the visibility graph,
let us focus on a periodic series. It is straightforward that its
visibility graph is a concatenation of a motif: a repetition of
a pattern �see Fig. 1�. Now, what is the degree distribution
P�k� of this visibility graph? Since the graph is just a motif’s
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FIG. 1. Illustrative example of the visibility algorithm. In the
upper part we plot a periodic time series and in the bottom part we
represent the graph generated through the visibility algorithm. Each
datum in the series corresponds to a node in the graph, such that
two nodes are connected if their corresponding data heights fulfill
the visibility criterion of Eq. �1�. Note that the degree distribution of
the visibility graph is composed by a finite number of peaks, much
in the vein of the discrete Fourier transform of a periodic signal. We
can thus interpret the visibility algorithm as a geometric transform.
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repetition, the degree distribution will be formed by a finite
number of non-null values, with this number being related to
the period of the associated periodic series. This behavior
reminds us the discrete Fourier transform �DFT�, which for
periodic series is formed by a finite number of peaks �vibra-
tion modes�, related to the series period. Using this analogy,
we can understand the visibility algorithm as a geometric
�rather than integral� transform. Whereas a DFT decomposes
a signal in a sum of �eventually infinite� modes, the visibility
algorithm decomposes a signal in a concatenation of graph’s
motifs, and the degree distribution simply makes a histogram
of such “geometric modes.” While the time series is defined
in the time domain and the DFT is defined on the frequency
domain, the visibility graph is defined on the “visibility do-
main.” This is, of course, a hand-waving analogy and further
work should study its extent rigorously. For instance, this
transform is not, as presented, a reversible one. Reversibility
can however be easily obtained by weighting the links in the
visibility graph with the slope of the visibility line that links
the associated data heights. The weighted version of the al-
gorithm and its geometric transform nature will be addressed
elsewhere. At this point we can comment that, whereas a
generic DFT fails to capture the presence of nonlinear corre-
lations in time series �such as the presence of chaotic behav-
ior�, in the second part of this paper we will show that the
visibility algorithm can clearly distinguish between white
noise �i.e., a sequence of identically independent random
variables� and chaotic series.

Of course the latter analogy is, so far, a simple metaphor
to help our intuition. Indeed, while some analytical results
have already been put forward within the visibility algorithm
�1,13� �typically making use of concepts borrowed from ex-
treme value theory�, no rigorous theory for the visibility al-
gorithms exists so far. Our goal in this work is to make steps
in that direction, providing results on the properties of the
visibility graphs associated with random series. In order to
derive exact results, we present here a slight modification of
the algorithm that we call the horizontal visibility algorithm,
which is essentially similar to the former yet having a geo-
metrically simpler visibility criterion. According to this latter
criterion, the generated horizontal visibility graph stands as a
subgraph of the visibility graph. We will prove that, surpris-
ingly, the horizontal visibility graph associated with any ran-
dom series is a small-world �10� random graph with a uni-
versal exponential degree distribution of the form P�k�
= �1 /3��2 /3�k−2, independent of the probability distribution
f�x� from which the series was generated. Accordingly, the
horizontal visibility algorithm stands as an extremely simple
test for randomness that, for instance, can easily distinguish
random series from chaotic ones. The remaining of this paper
goes as follows: in Sec. II we introduce the horizontal vis-
ibility algorithm, a geometrically simpler version of the vis-
ibility algorithm that allows analytical tractability, along with
some of its properties. In Sec. III we derive exact results for
the degree distribution P�k� of the associated graph to a ge-
neric random time series. In Sec. IV exact results on other
properties of horizontal visibility graphs are also derived,
concretely, �i� P�k �x�, the probability that a node associated
with a datum of height x has degree k, �ii� the clustering
distribution P�C�, �iii� the probability of long distance vis-

ibility P�n�, and �iv� an estimation of its mean path length
L�N� �Secs. III and IV contain technical proofs that the non-
interested reader can eventually skip�. In Sec. V we study the
reliability of the algorithm to discriminate chaotic series
from our theory. For this task we calculate the degree distri-
bution of visibility graphs associated with �i� low-
dimensional chaotic series �logistic and Hénon maps�, �ii�
noisy low-dimensional chaotic series �with amounts of noise
of 100% by amplitude�, and �iii� high-dimensional chaotic
series �coupled map lattice �CML��. In every case, the algo-
rithm easily distinguishes those series from a series of i.i.d.
random variables �white noise�. At this point we also conjec-
ture that the topological properties of graphs associated with
chaotic series are related to the statistics of Poincaré recur-
rence times �17�. In Sec. VI we make use of the method as a
randomness test and study some number theoretical se-
quences that are conjectured to be normal �decimal expan-
sion of normal numbers �18��. We finally provide some con-
cluding remarks in Sec. VII.

II. HORIZONTAL VISIBILITY ALGORITHM

The horizontal visibility algorithm maps time series into
graphs and it is defined as follows. Let �xi�i=1,. . .,N be a time
series of N data. The algorithm assigns each datum of the
series to a node in the horizontal visibility graph �graph from
now on�. Two nodes i and j in the graph are connected if one
can draw a horizontal line in the time series joining xi and xj
that does not intersect any intermediate data height �see Fig.
2 for a graphical illustration�. Hence, i and j are two con-
nected nodes if the following geometrical criterion is ful-
filled within the time series:

xi,xj � xn for all n such that i � n � j . �2�

This algorithm is a simplification of the so-called visibility
algorithm �1� that has been recently introduced. As a matter
of fact, notice that, given a time series, its horizontal visibil-
ity graph is always a subgraph of its associated visibility

FIG. 2. �Color online� Illustrative example of the horizontal vis-
ibility algorithm. In the upper part we plot a time series and in the
bottom part we represent the graph generated through the horizontal
visibility algorithm. Each datum in the series corresponds to a node
in the graph, such that two nodes are connected if their correspond-
ing data heights are larger than all the data heights between them.
The data values �heights� are made explicit in the top.
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graph. Accordingly, as in the former case, the horizontal vis-
ibility graph associated with a time series is always:

�i� Connected: each node sees at least its nearest neigh-
bors �left-hand and right-hand sides�.

�ii� Invariant under affine transformations of the series
data: the visibility criterion is invariant under rescaling of
both horizontal and vertical axes, as well as under horizontal
and vertical translations.

Some other properties can be stated, namely,
�iii� Reversible and irreversible characters of the map-

ping: note that some information regarding the time series is
inevitably lost in the mapping from the fact that the network
structure is completely determined in the �binary� adjacency
matrix. For instance, two periodic series with the same pe-
riod as T1= . . . ,3 ,1 ,3 ,1 , . . . and T2= . . . ,3 ,2 ,3 ,2 , . . . would
have the same visibility graph, albeit being quantitatively
different. Although the spirit of the visibility graph is to fo-
cus on time series structural properties �periodicity, fractality,
etc.�, the method can be trivially generalized by making use
of weighted networks �where the adjacency matrix is not
binary and the weights determine the height difference of the
associated data� if we eventually need to quantitatively dis-
tinguish time series such as T1 and T2, for instance. Using
weighted networks, the algorithm trivially converts to a re-
versible one.

�iv� Undirected and directed characters of the mapping:
although this algorithm generates undirected graphs, note
that one could also extract a directed graph �related to the
temporal axis direction� in such a way that for a given node
one should distinguish two different degrees: an ingoing de-
gree kin, related to how many nodes see a given node i, and
an outgoing degree kout that is the number nodes that node i
sees. In that situation, if the direct visibility graph extracted
from a given time series is not invariant under time reversion
�that is, if P�kin�� P�kout��, one could assert that the process
that generated the series is not conservative. In a first ap-
proximation we have studied the undirected version, and the
directed one will be eventually addressed in further work.
While the undirected choice seems to violate causality, note
that the same “causality violation” is likely to take place
when performing the DFT of a time series, for instance.

�vi� Comparison between geometric criteria: note that the
geometric criterion defined for the horizontal visibility algo-
rithm is more “visibility restrictive” than its analogous for
the general case. That is to say, the nodes within the horizon-
tal visibility graph will have “less visibility” than their coun-
terparts within the visibility graph. While this fact does not
have an impact on the qualitative features of the graphs,
quantitatively speaking, horizontal visibility graphs will have
typically “less statistics.” For instance, it has been shown
that the degree distribution P�k� of the visibility graph asso-
ciated with a fractal series is a power law P�k��k−�, such
that the Hurst exponent H of the series is linearly related to �
�13�. Now, for practical purposes it is more recommendable
to make use of the visibility algorithm �in detriment of the
horizontal version� when measuring the Hurst exponent of a
fractal series, since a good estimation of � requires at least
two decades of statistics in P�k�, something which is more
likely within the visibility algorithm. In what follows we will
show that the simplicity of the horizontal version of the

algorithm—which is computationally faster than the
original—allows analytical tractability and, nonetheless, this
latter method is well fitted to distinguish different degrees of
chaos from a sequence of uncorrelated random variables.

III. DEGREE DISTRIBUTION OF THE VISIBILITY
GRAPH ASSOCIATED WITH A RANDOM TIME SERIES

Consider a bi-infinite time series created from a random
variable X with probability distribution f�x� with x� �0,1�
and let us construct its associated horizontal visibility graph
�note that if the distribution’s support is a generic interval
x� �a ,b�, we can rescale to �0,1� without loss of generality
since the associated graph remains invariant, and this also
applies to unbounded supports�. For convenience, we will
label a generic datum x0 as the “seed” datum from now on.
In order to derive the degree distribution P�k� �9� of the
associated graph, we need to calculate the probability that an
arbitrary datum with value x0 has visibility of exactly k other
data. If x0 has visibility of k data, there always will exist two
“bounding data:” one on the right-hand side of x0 and an-
other one on its left-hand side, such that the k−2 remaining
visible data will be located inside that window �in fact, k
=2 is the minimum possible degree�. As these “inner” data
should appear sorted by size, there are exactly k−1 different
possible configurations �Ci�i=0,. . .,k−2, where the index i deter-
mines the number of inner data on the left-hand side of x0
�see Fig. 3 for an illustration of the possible configurations
and a labeling recipe of the data in the case k=4�. Accord-
ingly, Ci corresponds to the configuration for which i inner
data are placed at the left-hand side of x0, and k−2− i inner
data are placed at its right-hand side. Each of these possible
configurations have an associated probability pi	 p�Ci� that
will contribute to P�k� such that

P�k� = 

i=0

k−2

pi. �3�

Before trying to find a general relation for P�k� and for il-
lustrative purposes, let us study some particular cases. The
first and simplest case is P�k=2�, that is, the probability that
the seed data have two and only two visible data, the mini-
mum degree. These obviously will be the bounding data that
we will label x−1 and x1 for left-hand and right-hand sides of
the seed, respectively. The probability that x0 sees k�2 is 1
by construction, since the horizontal visibility algorithm as-
sures that any data will always have visibility of its first
neighbors. Now, in order to assure that k=2, we have to
impose that the bounding data neighbors have a larger height
than the seed, that is, x−1�x0 and x1�x0. Then,

P�k = 2� = Prob�x−1,x1 � 0�

= �
0

1

f�x0�dx0�
x0

1

f�x1�dx1�
x0

1

f�x−1�dx−1. �4�

Now, the cumulative probability distribution function F�x� of
any probability distribution f�x� is defined as
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F�x� = �
0

x

f�x��dx�, �5�

where dF�x� /dx= f�x�, F�0�=0, and F�1�=1. In particular,
the following relation between f and F holds:

f�x�Fn−1�x� =
1

n

dFn�x�
dx

. �6�

We can accordingly rewrite and compute Eq. �4� as

P�k = 2� = �
0

1

f�x0��1 − F�x0��2dx0 =
1

3
, �7�

independent of the shape of the probability distribution f�x�.
Let us proceed by tackling the case P�k=3�, that is, the

probability that the seed has three and only three visible data.
Two different configurations arise: C0, in which x0 has two
bounding visible data �x−1 and x2, respectively� and a right-
hand side inner data �x1�, and the same for C1 but with the
inner data being place at the left-hand side of the seed; so

P�k = 3� = p�C0� + p�C1� 	 p0 + p1.

Notice at this point that an arbitrary number r of hidden data
n1 ,n2 , . . . ,nr can eventually be located between the inner and

the bounding data, and this fact needs to be taken into ac-
count in the probability calculation. The geometrical restric-
tions for the nj hidden data are nj �x1 �j=1, . . . ,r� for C0 and
mj �x−1 �j=1, . . . ,s� for C1. Then,

p0 = Prob��x−1,x2 � x0� � �x1 � x0� � ��nj � x1� j=1,. . .,r�� ,

p1 = Prob��x−2,x1 � x0� � �x−1 � x0� � ��mj � x−1� j=1,. . .,s�� .

�8�

Now, we need to consider every possible hidden data con-
figuration �C0 without hidden data, C0 with a single hidden
data, C0 with two hidden data, and so on, and the same for
C1�. With a little calculus we come to

p0 = �
0

1

f�x0�dx0�
x0

1

f�x−1�dx−1�
x0

1

f�x2�dx2�
0

x0

f�x1�dx1

+ 

r=1

� �
0

1

f�x0�dx0�
x0

1

f�x−1�dx−1�
x0

1

f�x2�dx2�
0

x0

f�x1�dx1

��
j=1

r �
0

x1

f�nj�dnj ,

where the first term corresponds the contribution of a con-
figuration with no hidden data and the second sums up the
contributions of r hidden data. By making use of the proper-
ties of the cumulative distribution F�x�, we arrive at

p0 = �
0

1

f�x0�dx0�
x0

1

f�x−1�dx−1�
x0

1

f�x2�dx2�
0

x0 f�x1�
1 − F�x1�

dx1,

�9�

where we also have made use of the sum of a geometric
series. We can find an identical result for p1, since the last
integral in Eq. �9� only depends on x0 and consequently the
configuration provided by C1 is symmetrical to the one pro-
vided by C0. We finally have

P�k = 3� = 2p0 = − 2�
0

1

f�x0��1 − F�x0��2ln�1 − F�x0��dx0

=
2

9
, �10�

where the last calculation also involves the change of vari-
able z=1−F�x�. Again, the result is independent of f�x�.

Hitherto, we can deduce that a given configuration Ci con-
tributes to P�k� with a product of integrals according to the
following rules:

�i� The seed data provide a contribution of 0
1f�x0�dx0 �S�.

�ii� Each boundary data provide a contribution of
x0

1 f�x�dx �B�.
�iii� An inner data provide a contribution xj

x0 f�x�dx
1−F�x� �I�.

These diagrammaticlike rules allow us to schematize in a
formal way the probability associated with each configura-
tion. For instance in the case k=2, P�k� has a single contri-
bution p0 represented by the formal diagram B-S-B, while
for k=3, P�k�= p0+ p1 where p0’s diagram is B-S-I-B and
p1’s is B-I-S-B. It seems quite straightforward to derive a

FIG. 3. Set of possible configurations for a seed data x0 with
k=4. Observe that the sign of the subindex in xi indicates if the data
are located whether at the left-hand side of x0 �sign minus� or at
right-hand side. Accordingly, the bounding’s data subindex directly
indicates the amount of data located in that side. For instance, C0 is
the configuration where none of the k−2=2 inner data are located
in the left-hand side of x0, and therefore the left bounding data are
labeled as x−1 and the right bounding data are labeled as x3. C1 is
the configuration for which inner data are located in the left-hand
side of x0 and another inner data are located in its right-hand side.
Finally, C2 is the configuration for which both inner data are located
in the left-hand side of the seed. Notice that an arbitrary number of
hidden data can be eventually located among the inner data, which
is schematically represented in the figure as a row of vertical lines.
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general expression for P�k�, just by applying the preceding
rules for the contribution of each Ci. However, there is still a
subtle point to address that will become evident for the case
P�k=4�= p0+ p1+ p2 �see Fig. 3�. While in this case C1 leads
to essentially the same expression as for both configurations
in k=3 �and in this sense one only needs to apply the pre-
ceding rules to derive p1�, C0 and C2 are geometrically dif-
ferent configurations. These latter ones are configurations
formed by a seed, two bounding, and two concatenated inner
data, and concatenated data lead to concatenated integrals.
For instance, applying the same formalism as for k=3, one
come to the conclusion that, for k=4,

p0 = �
0

1

f�x0�dx0�
0

x0 f�x1�dx1

1 − F�x1��x1

x0 f�x2�dx2

1 − F�x2��x0

1

f�x3�dx3

��
x0

1

f�x−1�dx−1. �11�

While for the case k=3 every integral only depended on x0
�and consequently we could integrate independently every
term until reaching the dependence on x0�, having two con-
catenated inner data on this configuration generates a depen-
dence on the integrals and hence on the probabilities. For this
reason, each configuration is not equiprobable in the general
case, and thus will not provide the same contribution to the
probability P�k� �k=3 was an exception for symmetry rea-
sons�. In order to weight appropriately the effect of these
concatenated contributions, we can make use of the defini-
tion of pi. Since P�k� is formed by k−1 contributions labeled
C0 ,C1 , . . . ,Ck−2 where the index denotes the number of inner
data present at the left-hand side of the seed, we deduce that
in general the k−2 inner data have the following effective
contribution to P�k�:

�i� p0 has k−2 concatenated integrals �right-hand side of
the seed�.

�ii� p1 has k−3 concatenated integrals �right-hand side of
the seed� and an independent inner data contribution �left-
hand side of the seed�.

�iii� p2 has k−4 concatenated integrals �right-hand side of
the seed� and another two concatenated integrals �left-hand
side of the seed�.

�iv� . . .
�v� pk−2 has k−2 concatenated integrals �left-hand side of

the seed�.
Observe that pi is symmetric with respect to the seed.

Including this modification in the diagrammatic rules, we are
now ready to calculate a general expression for P�k�. For-
mally,

P�k� = 

j=0

k−2

�S��B�2�I� j�I�k−2−j , �12�

where the sum extends to each of the k−1 configurations, the
superindex denotes exponentiation and the subindex denotes
concatenation �this latter expression can be straightforwardly
proved by induction�. In order to solve it, one needs to first
calculate the concatenation of n inner data integrals �I�n
	 I�n�, that is,

I�n� = �
0

x0 f�x1�dx1

1 − F�x1��j=1

n−1 �
xj

x0 f�xj+1�dxj+1

1 − F�xj+1�
. �13�

The calculation of I�n� is easy but quite tedious. One pro-
ceeds to integrate Eq. �13� step by step �first n=1, then n
=2, and so on�, and a recurrence quickly becomes evident.
One can easily prove by induction that

I�n� =
�− 1�n

n!
�ln�1 − F�x0���n. �14�

According to the formal solution �12� and to Eq. �14�, we
finally have

P�k� = 

j=0

k−2
�− 1�k−2

j ! �k − 2 − j�!�0

1

f�x0��1 − F�x0��2

��ln�1 − F�x0���k−2dx0 = 31−k

j=0

k−2
�k − 2�!

j ! �k − 2 − j�!

=
1

3
�2

3
�k−2

. �15�

Surprisingly, we can conclude that, for every probability dis-
tribution f�x�, the degree distribution P�k� of the associated
horizontal visibility graph has the same exponential form.

In order to check further the accuracy of our analytical
results for the case of finite time series, we have performed
several numerical simulations. We have generated random
series of 106 data from different distributions f�x� and have
generated their associated horizontal visibility graphs. In Fig.
4 we have plotted the degree distribution of the resulting
graphs �triangles correspond to a series extracted from a uni-
form distribution, while circles and squares correspond to
one extracted from a Gaussian and a power-law distribution
f�x��x−2, respectively�. The solid line corresponds to the

k
5 10 15 20 25 30 35

10-6

10-5

10-4

10-3

10-2

10-1

P(k)

uniform

Gaussian

power law

theoretical

FIG. 4. Semilogarithmic plot of the degree distribution of a
horizontal visibility graph associated with random series of 106 data
extracted from a uniform distribution f�x�=U�0,1� �triangles�, a
Gaussian distribution �circles�, and a power-law distribution f�x�
�x−2 �squares�. Solid line corresponds to Eq. �14�.
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theoretical equation �15�, showing a perfect agreement with
the numerics.

IV. SOME OTHER TOPOLOGICAL PROPERTIES
OF THE VISIBILITY GRAPH

A. Degree versus height

An interesting aspect worth exploring is the relation be-
tween data height and the node degree, that is, to study
whether a functional relation between the height of a datum
and the degree of its associated node holds. In this sense, let
us define P�k �x� as the conditional probability that a given
node has degree k provided that it has height x. Observe that
P�k �x� can be easily deduced from Eq. �15�, such that

P�k�x� = 

j=0

k−2
�− 1�k−2

j ! �k − 2 − j�!
�1 − F�x��2�ln�1 − F�x���k−2.

�16�

Notice that probabilities are well normalized and that

k=2

� P�k �x�=1, independent of x. Now, we can define an av-
erage value of the degree of a node associated with a datum
of height x, K�x�, in the following way:

K�x� = 

k−2

�

kP�k�x� = 2 − 2 ln�1 − F�x�� . �17�

Since F�x�� �0,1� and ln�x� are monotonically increasing
functions, K�x� will also be monotonically increasing. We
can thus conclude that graph hubs �that is, the most con-
nected nodes� are the data with largest values, that is, the
extreme events of the series.

In order to check the accuracy of the theoretical predic-
tion within finite series, in Fig. 5 we have plotted �circles�

the numerical values of K�x� within a random series of 106

data extracted from a uniform distribution with F�x�=x. The
line corresponds to Eq. �17�, showing a perfect agreement.

B. Local clustering coefficient distribution

The local clustering coefficient C �3–6,9� of a horizontal
visibility graph associated with a random series can be easy
deduced by means of geometrical arguments. For a given
node i, C denotes the rate of nodes connected to i that are
connected between each other �observe that in this section, C
denotes clustering: do not mistake this with the “C” �con-
figuration� of Sec. III�. In other words, we have to calculate
from a given node i how many nodes from those visible to i
have mutual visibility �triangles�, normalized with the set of
possible triangles � k

2 �. In a first step, if a generic node i has
degree k=2, these nodes are straightforwardly two bounding
data, hence having mutual visibility. Thus, in this situation
there exists one triangle and C�k=2�=1. Now if a generic
node i has degree k=3, one of its neighbors will be an inner
datum, which will only have visibility of one of the bounding
data �by construction�. We conclude that in this situation we
can only form two triangles out of six possible ones, thereby
C�k=3�=2 /6. In general, for a degree k we can form k−1
triangles out of � k

2 � possibilities, and then �19�

C�k� =
k − 1

�k

2
� =

2

k
, �18�

what indicates a so called hierarchical structure �20�. This
relation between k and C allows us to deduce the local clus-
tering coefficient distribution P�C� as follows:

P�k� =
1

3
�2

3
�k−2

= P�2/C� ,

P�C� =
1

3
�2

3
�2/C−2

. �19�

To check the validity of this latter relation within finite se-
ries, in Fig. 6 we depict the clustering distribution of a hori-
zontal visibility graph associated with a random series of 106

data �dots� obtained numerically. The solid line corresponds
to the theoretical prediction �Eq. �19��, in excellent agree-
ment with the numerics.

C. Long distance visibility, mean degree, and mean path
length

In order to derive the scaling of the mean path length �9�,
let us first calculate the probability P�n� that two data sepa-
rated by n intermediate data be two connected nodes in the
graph. Consider again a time series extracted from a random
variable X with probability distribution f�x� and x� �0,1�,
and let us construct its associated horizontal visibility graph.
An arbitrary value x0 from this series will “see” xn �and
consequently will be connected to node xn in the graph� if
and only if xi�min�x0 ,xn� for all xi �i=1,2 , . . . ,n−1�. Then
P�n� can be expressed as

x
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k

FIG. 5. Average degree of a node, as a function of the associated
datum’s height: �circles� numeric results from a random series of
106 data extracted from a uniform distribution f�x�=U�0,1�. The
solid line corresponds to the theoretical prediction �17�, showing a
perfect agreement. It comes evident that the hubs stand for the
nodes associated with the data with larger values �extreme events�.
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P�n� = �
0

1 �
0

1

f�x0�f�xn�dx0dxn

��
0

min�x0,xn�

¯�
0

min�x0,xn�

f�x1� ¯ f�xn−1�dx1 ¯ dxn−1

�20�

Since the integration limits are independent, rewriting x
	min�x0 ,xn� we have

P�n� = �
0

1 �
0

1

f�x0�f�xn�Fn−1�x�dx0dxn. �21�

We can fix x0 and move xn without loss of generality, such
that the latter equation can be expressed as

P�n� = �
0

1 �
0

x0

f�x0�f�xn�Fn−1�xn�dx0dxn

︸

the minimum here is xn

+ �
0

1 �
x0

1

f�x0�f�xn�Fn−1�x0�dx0dxn

︸

the minimum here is x0

. �22�

Applying the definition of F�x� and relation �6�, with a little
calculus we get

P�n� = �1

n
− 1��

0

1

f�x0�Fn�x0�dx0 + �
0

1

f�x0�Fn−1�x0�dx0

=
2

n�n + 1�
. �23�

Observe that P�n� is again independent of the probability
distribution of the random variable X. Notice that the latter
result can also be obtained, alternatively, with a purely com-
binatorial argument that reads as follows. Take a random
series with n+1 data and choose its two largest values. This

latter pair can be placed with equiprobability in n�n+1� po-
sitions, while only two of them are such that the largest
values are placed at distance n, so we get P�n�= 2

n�n+1� , in
agreement with the previous development.

At this point, we can calculate the mean degree �k� of the
horizontal visibility graph as follows:

�k� = 
 kP�k� = 

k=2

�
k

3
�2

3
�k−2

= 4, �24�

which we can recover from P�n� as

�k� = 2

n=1

�

P�n� = 4. �25�

Now, for illustration purposes, in Fig. 7 we show the adja-
cency matrix �9� of the horizontal visibility graph associated
with a random series of 103 data �the entry i , j is filled in
black if nodes i and j are connected, and left blank other-
wise�. Since every datum xi has visibility of its first neigh-
bors xi−1 ,xi+1, every node i will be connected by construction
to nodes i−1 and i+1: the graph is thus connected. Observe
in Fig. 7 that the graph evidences a typical homogeneous
structure: the adjacency matrix is predominantly filled
around the main diagonal. Furthermore, the matrix evidences
a superposed sparse structure, reminiscent of the visibility
probability P�n�=2 / �n�n+1�� that introduces some shortcuts
in the horizontal visibility graph, much in the vein of the
small-world model �10�. Here, the probability of having
these shortcuts is given by P�n�. Statistically speaking, we
can interpret the graph’s structure as quasihomogeneous,
where the size of the local neighborhood increases with the
graph’s size. Accordingly, we can approximate its mean path
length L�N� as

L�N� � 

n=1

N−1

nP�n� = 

n=1

N−1
2

n + 1

= 2 ln�N� + 2�� − 1� + O�1/N� , �26�

where we have made use of the asymptotic expansion of the
harmonic numbers and � is the Euler-Mascheroni constant.
As can be seen, the scaling is logarithmic, denoting that the

c
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FIG. 6. Semilogarithmic plot of the clustering distribution of a
horizontal visibility graph associated with random series of 106 data
extracted from a uniform distribution f�x�=U�0,1� �dots�. The solid
line corresponds to the theoretical prediction P�C�
= �1 /3��2 /3�2/C−2. In order to avoid border effects we have imposed
periodic boundary conditions in the data series.
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FIG. 7. Adjacency matrix of a horizontal visibility graph asso-
ciated with a random series of 103 data.
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horizontal visibility graph associated with a generic random
series is small world �10�, according to what Fig. 6 sug-
gested. In Fig. 8 we have plotted the numerical results of
L�N� �dots� of an horizontal visibility graph associated with
several random series of increasing size N=27 ,28 , . . . ,217.
The solid line corresponds to the best fit L�N�=1.3 ln�N�
−1.7.

V. APPLICATION OF THE THEORY TO DISCRIMINATE
CHAOTIC SERIES

So far we have presented exact results on the topological
properties of graphs associated with the series of i.i.d. ran-
dom variables �random series from now on� via the horizon-
tal visibility algorithm. The very first application of this
theory can be found in the task of discriminating a random
signal from a chaotic one. The task of identifying random
processes and more concretely discriminating �low-
dimensional� deterministic chaotic systems from stochastic
processes has been extensively studied in the last decades
�see for instance �21–27��. Essentially, all methods that have
been introduced so far rely on two major points: first, chaotic
systems have a finite dimensional attractor, whereas stochas-
tic processes arise from an infinitely dimensional one. Being
able to reconstruct this latter attractor is thus a clear evidence
showing that the time series has been generated by a deter-
ministic system. Second, deterministic systems evidence, as
opposed to random ones, short-time prediction: the differ-
ence between the time evolutions of two nearby states will
remain rather low for regular systems and will increase ex-
ponentially fast for chaotic ones, while for stochastic pro-
cesses this difference should be randomly distributed.
Whereas several algorithms relying on the preceding con-
cepts are nowadays available, the great majority of them are
purely numerical and/or usually complicated to perform,
computationally speaking �these difficulties are eventually
more acute for noisy series �28� or high-dimensional chaotic
ones �29��. Furthermore, even the discrimination between a
chaotic series and a series of i.i.d. random variables, some-
thing that an autocorrelation function or power spectra fail to
do but some other methods such as recurrence plots can �30�,
is nontrivial when the chaotic degree of the series is high or

even when such a series is polluted with noise. All these
complications provide the motivation for a search for new
methods that can directly distinguish, in a reliable way, ran-
dom from chaotic time series, prior to quantifying the dimen-
sion �31� and without needs for additional sophisticated tech-
niques such as surrogate data �32� or noise reduction
methods �28�. In the preceding sections we have proved that
the horizontal visibility graph associated with a random se-
ries has well-defined and universal degree distribution, local
clustering distribution, and P�n�, independent of the shape of
the random probability distribution f�x�. These theorems
guarantee that horizontal visibility graphs with other topo-
logical properties are not uncorrelated random series. In what
follows we explore the reliability of the method to distin-
guish uncorrelated randomness from chaos in finite series.

A. Low-dimensional chaos

In order to test the practical usefulness of this method, we
have generated the horizontal visibility graph of several
noise-free chaotic series, and we have calculated numerically
their degree distribution. We have restricted our analysis to
discrete systems �maps�, but the method is also extensible to
flows �in that case the null hypothesis would no longer be
white noise but Brownian motion �13��. In Fig. 9 we have
plotted in semilogarithm the results of these simulations.
Compare it with Fig. 3. In every case and by a simple visual
inspection we can conclude that P�k� deviates from Eq. �15�:
the method is able to easily distinguish randomness from
low-dimensional chaos �similar results are obtained with
P�n� and P�C�, but P�k� works better as discriminator�.

Observe at this point that, if we shuffle the series data and
reproduce the analysis, we would find a degree distribution
that now would correspond to Eq. �15�, since shuffling
breaks the temporal correlations of the series: such shuffled
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FIG. 8. Mean path length L�N� of a horizontal visibility graph
associated with random series of N=27,28 , . . .217 data �dots�. The
solid line corresponds to the better fit L�N�=1.3 ln�N�−1.7. k
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FIG. 9. Semilogarithmic plot of the degree distribution of sev-
eral horizontal visibility graphs associated with �solid line� theoret-
ical prediction for random series �Eq. �15��, �squares� time series of
106 extracted from a logistic map xt+1=�xt�1−xt� in the fully cha-
otic region �=4, and �black triangles� time series of 106 extracted
from x variable of the Hénon map �xt+1 ,yt+1�= �yt+1−axt

2 ,bxt� in
the fully chaotic region �a=1.4, b=0.3�.
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series would be equivalent to a random series extracted from
a probability distribution equal to the system’s probability
measure �the beta distribution in the case of the logistic
map�. We can deduce that the algorithm captures temporal
correlations of time series, and that P�k� plays the role of an
autocorrelation function, but with the additional ability of
capturing nonlinear correlations. Observe also that this
method neither works on the time nor on the frequency do-
main, since it only makes use of topological features.

B. Noisy chaotic series

It is well known that standard methods evidence problems
when noise is present in chaotic signals, since even a small
amount of noise can destroy the fractal structure of a chaotic
attractor and mislead the calculation of chaos indicators such
as the correlation dimension or the Lyapunov exponents �28�.
In order to check the algorithm’s robustness, we have intro-
duced an amount of white noise �measurement noise� in a
signal extracted from a fully chaotic logistic map ��=4.0�.
In Fig. 10 we plot the degree distribution of its associated
visibility graph. Remarkably, the algorithm still discriminates
noisy chaotic behavior from randomness even when the
noise level reaches 100% of the signal amplitude.

C. High-dimensional chaos: Coupled map lattice

Standard methods of phase-space reconstruction also
demonstrate computational problems when the attractor di-
mension is large �29�. Here, we have generated high-
dimensional chaotic series by means of the so-called CML
�33�, a paradigmatic formalism for spatiotemporal chaos,
widely used to model chaotic extended systems including
fully developed turbulence and pattern formation problems.
We have coupled N=1000 logistic maps xt

i �i=1, . . . ,N� such
that xt+1

i = f(� /2xt
i−1+ �1−��xt

i+� /2xt
i+1), where f�x�=4x�1

−x� and �=0.4 is the coupling strength �note that such a
system exhibits high-dimensional chaos with an estimated
attractor dimension D2=800 �29��. In Fig. 11 we have plotted
the degree distribution of its associated visibility graph along
with the theoretical prediction for a random series. While the
deviations from Eq. �15� are not as evident as for low-
dimensional chaotic series, a 	2 clearly rejects the hypothesis
of randomness: the method distinguishes randomness from
high-dimensional chaos.

D. Topological properties of chaotic series

Observe in Fig. 9 that the series extracted from the logis-
tic and the Hénon maps seem to have an associated visibility
graph with a degree distribution, which has an exponential
tail, yet different to Eq. �15�. This characteristic can be ex-
plained as follows: first, the tail of P�k� is related to the hub
degree. Hubs correspond to the data series that have the larg-
est visibility. These are, according to Eq. �17�, extreme
events in the series, whose degree is truncated by other ex-
treme data �statistically speaking�. Accordingly, the tail of
P�k� essentially reduces to calculate the probability distribu-
tion of recurrence times in the series. Within random series,
notice that this distribution is straightforwardly exponential
�recurrence times in a Poisson process are exponentially dis-
tributed �34��, consistent with Eq. �15�. Within chaotic series,
recurrence time statistics are related �17� to the concept
Poincaré recurrence time �35�, which measures the time in-
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FIG. 10. Semilogarithmic plot of the degree distribution of a
horizontal visibility graph associated with �triangles� noisy chaotic
series of 105 data extracted from the logistic map ��=4� with a
measurement noise level of 10% �by amplitude� and �circles� idem
but for noise level of 100%. The solid line corresponds to the the-
oretical prediction for random series P�k�= �1 /3��2 /3�k−2.
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FIG. 11. Semilogarithmic plot of the degree distribution of a
horizontal visibility graph associated with �squares� chaotic series
of 105 data extracted from a CML of 1000 logistic maps with �
=4 and a coupling strength �=0.4 �see the text�. The solid line
corresponds to the theoretical prediction for random series P�k�
= �1 /3��2 /3�k−2. Inner box: values of 	2 goodness-of-fit test be-
tween Eq. �15� and �i� a random series extracted from a uniform
distribution �reference value� and �ii� the CML series. While visu-
ally speaking the deviations from Eq. �15� are not here as evident as
in the case of low-dimensional chaotic series, a 	2 test clearly re-
jects the hypothesis of randomness �the critical values for 10%, 5%,
and 1% levels of significance are 35.2, 38.1, and 41.7, respectively,
which are very far from the value of the test statistic 9406.1�: the
algorithm distinguishes high-dimensional chaos from randomness.
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terval between two consecutive visits of a trajectory to a
finite-size region of the phase space. As a matter of fact, it
has been shown that Poincaré recurrence times are exponen-
tially distributed in several hyperbolic chaotic systems, in-
cluding the logistic and the Hénon maps �see �36� and refer-
ences therein�. We conjecture that the functional form of
P�k� is closely related for chaotic series with their associated
Poincaré recurrence time distribution �which deviates from
the Poissonian statistics �Eq. �15�� due to deterministic ef-
fects�, something that will be addressed in future work.

E. Stochastic processes versus chaos

The task of distinguishing determinism from a generic
stochastic process �e.g., fractional Brownian motion, high-
order Markovian models, etc.� is more general and goes well
beyond the scope of this work, since our theory only ad-
dresses series of i.i.d. random variables �uncorrelated random
series�. However, in a recent work �13� it has been shown
that fractional Brownian motions and colored noise series
map into scale-free visibility graphs, which clearly differ
from the functional form of P�k� for chaotic series and from
i.i.d. theory. In this sense we conjecture that the visibility
algorithm efficiently discriminates not only uncorrelated ran-
domness from chaos but also more complicated stochastic
processes such as colored noise or fractional Brownian mo-
tion.

VI. SOME CONJECTURED RANDOMLIKE SERIES:
DECIMAL EXPANSION OF NORMAL NUMBERS

A real number R �which can be understood as a series if
we pick its decimal expansion� is defined as a normal num-
ber if, for all integer k, any given k tuple is equally likely in
the k expansion of R; that is to say, the digits of a real
number show a uniform distribution in every base �18�. For
instance, in a decimal base, if the number R is normal then
every string of size k is equally likely to appear: for k=4 the
string 3254 is as likely as 1234, and this holds for all k. It is
a well-known result from measure theory that a real number
chosen at random is absolutely normal with a probability of
1. Interestingly, many fundamental constants such as 
, e, or
common irrational numbers such as ln 2 or �2 are conjec-
tured to be normal, but not a single proof exists so far �18�.
Now, the degree distribution of a visibility graph associated
with the series generated by the decimal expansion of a nor-
mal number should follow Eq. �15�. In other words, a devia-
tion from Eq. �15� would imply the non-normality of a given
number. In Table I we have reported the values of a 	2

goodness-of-fit test between the degree distribution of graphs
associated with the decimal expansion of several conjectured
normal numbers �series of N=100 000 data� and Eq. �15�.
The same test has been performed for the case of a random
series extracted from a uniform distribution of the same size,
for the sake of comparison. As expected, the null hypothesis
of normality cannot be rejected. Note that this procedure can
easily extend to other number theoretic sequences, which are
also conjectured to be random.

Note on flows

Notice that the theory that we have developed in Secs.
II–IV addresses a series of i.i.d. variables, that is, a discrete
series. Accordingly, we have compared the results obtained
from chaotic maps or from the decimal expansion of num-
bers to this i.i.d. theory, that is, discrete data. Now, it is not
straightforward to compare this theory with visibility graphs
extracted from flows �continuous series�, since in any dis-
cretization of a flow some continuity properties are present,
something that is not assumed a priori in the i.i.d. theory.
This will be addressed in further work.

VII. CONCLUDING REMARKS

In this work we have introduced the horizontal visibility
algorithm, an algorithm that maps time series into graphs,
which is inspired by the so-called visibility algorithm �1�.
The present algorithm is quite similar to the latter, yet ana-
lytically solvable. Accordingly, we have obtained exact re-
sults on several properties of the horizontal visibility graph
associated with generic uncorrelated random series, and nu-
merical simulations confirmed its reliability for finite series.
Concretely, the degree distribution of the graph has an expo-
nential form P�k�= �1 /3��2 /3�k−2, the clustering coefficient
C has a probability distribution P�C�= �1 /3��2 /3�2/C−2, and
the mean path length scales with the system’s size in a loga-
rithmic fashion, evidencing the small-world phenomenon
�10�. Since the results are independent of the distribution
from which the series was generated, we conclude that every
uncorrelated random series must have the same horizontal
visibility graph, and in particular the same degree distribu-
tion. Thereby, this algorithm can be used as a simple test for
discriminating uncorrelated randomness from chaos. Con-
cretely, we have shown that the method can perfectly distin-
guish between random series �different probability distribu-
tions� that indeed follow the theoretical prediction and
chaotic series �logistic, tent, and Hénon maps� that clearly
deviate from the theory. This extends to chaotic series pol-
luted with noise and even to high-dimensional chaotic series
�coupled map lattice�.

Observe that this method diverges from the standard al-
gorithms introduced so far �27�, since it makes use of graph

TABLE I. 	2 goodness-of-fit test between the degree distribu-
tion of visibility graphs associated with several number theoretical
sequences and the theoretical prediction for random series. The
number theoretical sequences are constructed from the decimal ex-
pansion of the first 6�105 digits of 
, e, and ln 2, grouped by
tuples of six elements, which provides series of 105 data, respec-
tively. As expected, the normality of 
, e, and ln 2 is not rejected by
the 	2 test.

Series 	2

Decimal expansion of 
 19.9

Decimal expansion of e 20.2

Decimal expansion of ln 2 22.34

Random series extracted from uniform distribution 23.1
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theoretical techniques to characterize nonlinear temporal cor-
relations of the series, and its recipe is straightforward: �i�
construct a visibility graph from the series under study, �ii�
compute its degree distribution P�k� and compare it to Eq.
�15�. A visual inspection �or eventually a 	2 goodness-of-fit
test between P�k� and Eq. �15� if needed� allows us to reject
the hypothesis that the series is random. The algorithm is
direct and has a low computational cost, as opposed to sev-
eral standard methods. Furthermore, it is not just empirical
since it is based in exact results. It is worth emphasizing that
its purpose is not to quantify chaos but to easily discriminate
chaos from uncorrelated randomness. For practical purposes,
the method should be used as a reliable preliminary test
when looking for deterministic fingerprints in time series �in
this sense, once we have checked that P�k� has an exponen-
tial tail that deviates from Eq. �15�, embedding methods
should be applied to the series�. Whether this algorithm is
also able to quantify chaos, as well as the relation between

standard chaos indicators �Lyapunov exponents, correlation
dimension, etc.� and the topological properties of the visibil-
ity graphs, is an open problem for further research.

It is also worth commenting that in a preceding work it
has been shown that the visibility algorithm is also able to
identify colored noise series �f−� noises and fractional
Brownian motion�, since their associated visibility graphs are
scale free �13�, and an algebraic relation between the expo-
nent of the power-law degree distribution and the Hurst ex-
ponent of the time series exists. In this sense, the visibility
algorithm can also discriminate chaos from colored noise.
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