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Order-disorder phase transition in random-walk networks
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In this paper we study in detail the behavior of random-walk netwdR&/N's). These networks are a
generalization of the well-known random Boolean netwdiRBN’s), a classical approach to the study of the
genome. RWN'’s are also discrete networks, but their response is defined by small variations in the state of each
gene, thus being a more realistic representation of the genome and a natural bridge between discrete and
continuous models. RWN'’s show a clear transition between order and disorder. Here we explicitly deduce the
formula of the critical line for the annealed model and compute numerically the transition points for quenched
and annealed models. We show that RBN's and the annealed model of RWN’s act as an upper and a lower limit
for the quenched model of RWN's. Finally we calculate the limit of the annealed model for the continuous
case.
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I. INTRODUCTION the virus Phaga model[4], which consists in a coupled pair

Biological networks[1] are typically made up of a large of cross-inhibitory differential equations. Although continu-
number of units interacting with each other in a highly non-Ous in essence, the result in this model of interaction between

linear way, often exhibiting complex dynamics. Neural sys-continuous quantities leads to a basically bineRBN-like)

tems, where the units are neurons with chemoelectrical inteRU{come. Nevertheless, not all models can be approached in

actions, or the genome, where the units are genes witf'e S@me way. In general, the more complex the network is,
the more possible states can be observed, displaying a range

protein interactions, are typical examples of biological net-" = . 3 . i
works. of intermediate nonbinary values. The protein concentration

A classical approach to gene networks involves discreté’mduced by gene transcription determines the activation or

dynamical systems based on random Boolean functiondnhibition of other genes. But it is known that the range of

Such Boolean networks are formed by a seNofienes or ~ Protein concentration produced by genes spans up to two
automata(labeledi=1,2, ... N) where each gene has two ©rders of magnitude. Very few genes are strictly on-off
possible states; e {0, 1}, where 0 stands for inactivnon-  SWitched[S]; rather they show a continuous behaviéi,
protein production and 1 for active(protein production ~ c"anging smoothiywithout jumpg among different states.

Each gend is connected with other genediy,i, ... ic). In order to _handle this continuous behaV|(_)r, models of many-
We generate in this way a network whose dynamic ene activity based on dlfferent]al equations h_ave been de-
41 eloped. However, they pose evident computational and ana-

IS Ejestcrlbedt by a set of N equations {x lytical problems, becauseN genes imply N coupled,
=fi(,, %, .-~ % )i=1,2.. .\ Wheret indicates time and the ponlinear differential equations. [I7] a continuous-discrete
{fitiz1 2.y are Boolean functions oK inputs. The output hybrid set of piecewise linear differential equations is pro-
values and the input automafs,i,, ... ,ix} for these func- posed in order to avoid this problem. Unfortunately, it is
tions are typically assigned in a quenched random waydifficult to obtain analytical results in such continuous or
These rules fully describe the so-called random Boolean nesemicontinuous models. A discrete dynamical system would
works (RBN’s) [2] which are among the best known models be more manageable.
of biological networks. Extensive analysis has shown that But how can such diversity of states be included in a
two phases(ordered and disordergccan be defined for discrete system? A desirable feature for a discrete model de-
RBN’s. The existence of an ordered phase in this randonscribing genetic networks will be a set of functidrigi=; . n
systems has been used as support for the idea of “order feuch that changes imit will take place smoothly, through
free.” Also, the presence of a critical point is particularly single and ordered steps among a high number of possible
relevant to complex systems, due to their maximum informastates. The model should also take into account other realistic
tion transfer properties and high homeostatic stability of atfeatures, like the fact that the response of genes to stimula-
tractors. It has been conjecturéelige of the chaos hypoth- tion and inhibition by other genes shows saturation in their
esi9 that the boundary separating the ordered and disorderegsponse. Such is the case for random walk networks
phases will allow the genome to display stability and homeo{RWN’s), proposed in a previous pag&] as a more realistic
stasis as emergent phenomena arising from criticfity representation of the genome. These networks satisfy in a
Although RBN’s are simple models, they capture the essimple way the previous requirements, working with small
sence of real genetic networks in some cases. An example y&riations in the gene states, thus being a discrete approach
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to differential equations and allowing a comparison with &= d’i(xit X ,xit ). (3)
continuous models. ! K

RWN's allow for an analytical treatment and show com-  For example, let us taki€=2 ands=4 and the automaton
plex dynamical behavior and order-disorder transitions simii with state at time, X' =2. Let us suppose that its two input
lar to RBN's[9]—random threshold networf40] or asym-  automata have stat 1:1 andx}2:3 at timet. We look for
metric neural networkgl1], for example. In fact RBN’s are  the input combinatioril, 3) in the rule tableg; correspond-
a simple subcase of RWN's. ing to the automatonand find the outpui(1,3)=+1. Then

In Sec. Il we present the RWN model more formally, the valuex(=2 is updated tof*'=2+1=3 attimet+1. In the
explicitly deducing the critical line for the annealed model in c35e x\=4 (saturation stajethe update would bed**=4.
Sec. lll. In Sec. IV we show new simulations and computesimilarly, if the automaton has a value Xyt 1 (null activity)

the transition points for quenched and annealed models. Ignd the output is4(1,3)=-1, the update would bx;“l:l.
Sec. V we obtain the stationary automatom-state distribution The rule tableg¢p}i-, . are randomly generated for a

and show that it is bimodal in the ordered phase. We discusﬁarticular system and then maintainegienched modglAs
the differences between the distributions in the annealed and RpN's, here we can define a new parameiethe bias
quenched models and show that they are the key to undefg) the probability for the output value af; to be +1[and
stand the different behavior of both models. Finally we see 1 \yith probability (1-p)] when we generate the functions

that RBN'’s and the annealed model of RWN's are an upper T, ; T~
- ; . at the beginnindduring the network definition stage
and a lower limit for the quenched model of RWN's, and we ™ = p\wWN's with a given number of states two well-

calculate the limit for the continuous case of the annealeqjeﬁned phases can be found, which are separated by a criti-
model. cal line in thep-K space.
(i) An ordered phase when the value of the hiais far
II. RWN MODEL DESCRIPTION away from 0.5 and/or the connectivitg is low, in which
. case the networks freeze in a pattern after a short transient. In
RWN’s are formed byN automatal €{1,2, ... N}, each  this phase almost all of the automata remain in a frozen state.
of them connected wittK other automatafis,iz, ... ik} (i) A disordered phase otherwigp close to 0.5 and/or
Each automaton can be in one ®possible states ranging |arge values ofK), where all patterns are lost and the au-
from 1 tos: that is, X e{1,2,... 5. The changes among tomata appear to be in complete disorder, switching from one
states< at timet occur in discrete stepgs-1,-1, defined by  state to another apparently at random.
an associated functiofrule tablg ¢; of K variables. Each We can observe that f@=2 the state of each automaton
one of these functions takes as input the values oKtitut i at timet+1 is independent of its state gtdepending only
automatax; , X, ... Xi,- In contrast to RBN's, in RWN's the  on the value of;. Thusx}ﬂ:fi(X}; ¢}):fi(¢}) and an output
output of the associated function does not directly define thes'=+1 forcesx*'=2 and, similarly, an outpup.=-1 forces
new value of the automaton, but just a variation +1 or -1 inxi“l:]_, Therefore, RWN’s reduce to RBN’s whesx2. In
its valuex; and, hence, their link with differential equations. this sense, RWN'’s represent a generalization of RBN's, but
These variations modify the state of a given automaton prowith a richer set of available behaviors.
ducing(in the disordered C&}Sﬁ random-walk-like behavior In Fig_ 1 we can see a particu|ar examp|e of a RWN in the
of its value, which gives name to these networks. The dycritical line, with N=100 automataK=2, p=0.79, ands
namics of each automaton is constrained by two reflecting:10, which illustrates this complex behavior. In the upper
states: 1 and. These extreme states represent null activitypart of the figure we show the level of activity for each
and saturation activity, respectively, and act as barriers foautomaton as different gray tones and its evolution with time
the automaton. Note that connections and rule tables are raftowards right. The graph in the lower part shows, as an
domly generated at the network definition stage but arexample, the evolution of the activity state of three of the
maintained(quencheg afterwards. automata, marked with little dots in the vertical axis in the
More formally, the evolution of the system is updated upper graph. It can be seen how, after a transient, the system
synchronously by the iteration of a global mappingreaches a complex periodic state.
Fei{1,2,...sN—{1,2,... siN where Fy=(fy,fs,...,fy),

eachf; being a function ofK+1 argumentsK automatom I1l. RWN ANNEALED MODEL
values acting as input of automatgnplus its own value—
e, fi:{1,2,...s*1—{1,2,... s} defined by The annealed model, proposed by Derrida and Pomeau
[12], consists of studying a simplified model of a system in
x} +1 if ¢,} = +1 Elxit #s, which its time correlations are destroyed at each time step by

randomly redefining the relationships among components of

H t_ t_
if ¢ =+10x=s, (1)  the system and their response functions. In the case of RBN’s

S
X =]

x—1 if gj=-10x#1, where it was applied, it consisted in redefining at each time
1 if pl=—10x=1, step theK inputs and the Boolean functions of all the au-
tomata. The unmodified model with time correlations is
¢; being the rule tables: called in this context the quenched model, as the relationship
among components and their response functions do not
di{l,2, ... = {+1,-1, (2 change during its evolution. In RBN'’s and other systems the
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Let us take two annealed replicésith initial state con-
ditions randomly chosgrof the same system that are at time
t: Cy (=", ... XP(©) and Cy() = (x2(1), ... X2(1)).
The overlap in timd, a(t) € [0, 1], is defined as the normal-
ized numbemMNa(t) of elements with common states @y(t)
and C,(t). We can interprelC, as a perturbation ovet;.
T Thus, a(t) will act as an order parameter whértends to
20 40 60 80 100 120 140 infinity. If the system is in the ordered phasewill tend to 1

automaton

t and the initial perturbation will be absorbed. Otherwise, if
lg £ ’ AT TR T the system is in the disordered phaaeyill tend to a stable
8k value different from 1 and the perturbation will persist.
87k s Now we need to compute the overlap irl between
£ g 3 these two annealed replicas. There will be five cases contrib-
g i A . uting to its value.
3E o antom. 33 (i) Two equivalent automata™(t) and x?(t) are equal
B LM ToauomBs [with probabilitya(t)] and also theik inputs[with probabil-
0 20 60 80 100 120 140 ity a(t)]. The contribution is the@“*(t).
t (i) Two equivalent automata are equal with different in-

FIG. 1. Example of complex RWN behavior. Top: dynamics of aEUt \;]alues’ buLthehprObablllty :fLo_r thzeltrlk:lput fun_(t:)tlo_dﬁto_
RWN with N=100 automatak=2, p=0.79, ands=10. The hori- D¢ the same by chance "’2;( p)*. The contribution is
zontal axis represents time steps and the vertical axis shows the 1(§Beq_a(t)[1—a (t.)][p +(1-p)<l. o
automata. Different gray intensities correspond to different states (iii) Two equivalent automata with different values but the
for each automaton, ranging from(thite) to 10 (black. Bottom: ~ Same inputs. In the next time step they can coincide only
evolution of the automata statésutomata valugsin time for the ~ When their values arés—1,s) or (s,s—1) and ¢;=+1 or
same RWN. For simplicity, only automaton Nos. 33, 53, and 88 aravhen they ard1,2) or (2,1) and ¢ =—1. The contribution is
shown(figure from[9]). then

boundary between ordered and disordered phases obtained 2(pP;_1Ps+ (1 = p)P\Py)
through the annealed model fdf tending to infinity coin- 1-5° p? ’
cides with the boundary of the quenched model, hence the n=l" 7
power of this method. )

Therefore, following Derrida and Pomeau, we will derive ) ) ) )
the boundaries separating order and disorder for the RwWN_(iv) Two equivalent automata with different values and
annealed model. In order to avoid time correlations, eacfflifferent inputs, separated by one unit as in ddigg but[as
time step we redefine both the automaton inpyfs, ... ,ix N case(ii)] the response of; is the correct one by chance.
and functions ¢, for each automatori=1,2,...N. The The contribution of this case is, therefore,
avoiding of time correlations is strictly true for RBN’s, but 2(p2P,_,P, + (1 p)P,P,)

(1 =a()a®(r)

for annealed RWN's the memory dependence is not totally (1 - a())(1 - %)

avoided, as¢ influences<** [see Eq(1)]. Nevertheless, the 1- 2;:1 P?
RWN annealed model shows also an ordered-disordered

transition and we can compute it as a mean field of the RWN Qep.sn)

quefnched ”.“Ode'- h oh ) (v) And two equivalent automata with different values and
If every time step each automatohasK new inputs and  iterent inputs, separated by two units, thevalue for the

new p-biased functionsp;, then the state; of each automa- . Jiier of them beina by chance +1 and -1 for the bigaer
toni behaves as a biased random walk, with probabdityf one. This case contrigutgs with 99

moving upwards an¢il —p) downwards. The behavior of the

automatoni is constrained by the reflecting states 1 and 2p(1 - p)E::Z P, P,
For this arbitrary automaton we defineP,, as the probabil- (1 -a(0))(1 - a(r)) —
ity of being in statene{1,2, ... s}. If we assume no corre- 1 —2,,=1 P,

lations between automata, we can write the evolution of the
probabilities as
Pi(t+1) = (1 -p)[Py(t) + Px(1)], Notice that in(iii), (iv), and(v) we have used the condi

W(p.s;1)

tioned probability as we already know thattathe two au-
: tomata have different values. Notice also that the temporal
§ Po(t+1) = (1 —p)Ppsq(t) + pProy(t), (4) dependence of the distributiof,(t)},-1.. . s[as given in Eq.
: (4)] has been omitted but included in the functiabi, s;t),
B Q(p,s;t), and¥(p,s;t). Summing all the contributions we
sz(H 1) = pLPs-() + P(0)] obtain the time evolution of the overlap in the annealed
with n=2,3,... s-1. model:
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at+1) =at){a“(t) +[1-a“O)][p*+ (L -p? +[1 -a(t)] L
X{aK(t)CI)(p,S;t) +[1- aK(t)][Q(p,s,t) - p=0.95 yamaEEEENEESSEREEREERRE
+W(p,s;t)}. (5) oer Annealed |

This equation has a fixed point at the vahie=1; thus, =10000

da(t+1) B N _ _
o) | S LtAPA-P-Ree <1 (6 %

is the condition for the fixed point to be stable, which leads
to the following critical surface separating the ordered and

disordered phases for annealed RWN’s: 0.2
2Kp(1-p) =P(p,s), (7) )
where nowd(p,s)=®(p,s;t— ), for the stationary distri- T s T —
bution {Pp(t—)},-1 . .5 from Eq. (4). @ t
Notice that whers=2, then®(p,2;t)=1 for all t, which 1 T T JBO0TTFOTOOee000Fe000e0000¢000000000
aye a
leads to the well-known critical curve for RBN[9]: L P=°-9500°° DDDDDDDDDDDDDDD i
goo®
K2p(1-p)=1. 8 0.8 o =081 go” Quenched
p(1-p) 8 o™’ N=10000
= o K=2 B
o
o Du 5=9
IV. SIMULATIONS OF ANNEALED 06 0 6070 100000009997
AND QUENCHED RWN'’s % L o o o0 000 J
[u] o<>°
In [8] we showed the evolution of the overlap in RWN's 04~ o @ ooo°°° .
as a function of the number of possible statesd how the . ° °<>°° p=0.60 |
stationary value of the overlagd acts as an order parameter, o o R 4«4««,4«4«««««««q«««
< —

a RWN being ordered whea =1. The agreement between 021 00,0 4qqaedde
annealed simulations and the theoretical overlap evolutior 48893 ]
model for the annealed case was complete. We also showe
how the stationary value of the overlap is smallesagsows % 10 20 30 40 50
and how it is always smaller in the annealed model when(®) 1

compared with the quenched model. Nevertheless, none of
those simulations were performed near a critical point and itsro

effect was not shown. s=9, and different values of the bigsIn all of them we have taken

In the upper part of Fig. 2 we shovy the gvolut|on of the as initial conditionsa(0)=1/s. Each point represents the average of
overlap a(t) between two given configurations of an an- g gitrerent networks, withN=10 000 automata each one. Solid

nealed system, given fixed valuesMfK, ands, as a func-  |jpes represent the theoretical evolution using E4sand(5). Bot-
tion of the biasp. Solid lines are the theoretical predictions tom: evolution of the overlag(t) for quenched RWN'’s for the same
for annealed RWN'’s, obtained from Eqg&l) and (5), and  parameter values and initial conditions than those in the left graph.
symbols(circles, squares, diamonds, and trianglesirk the  Again, each point represents the average of 100 different networks,
results from simulations of annealed RWN’s. Atends to  with N=10 000 automata each one.
infinity, these values dd(t) tend toa’, the stationary value of
the overlap. Both for the ordered ca&€ =1) with high p  vious state, as we mentioned before, and this fact introduces
and the disordered case with low valuespfthere is full  temporal correlations in the annealed model, which are espe-
agreement between our theoretical annealed model and tleally evident in the transition points. Nevertheless, the the-
annealed simulations. oretical description of the annealed model is correct at the
There is only a discrepancy in the special case with thermodynamical limit—i.e., wheilN tends to infinity. For
=0.81, which corresponds to a critical point. This phenom-comparison we also showFig. 2, bottom the quenched
enon was expected and it is usual in critical poiftg]. model simulations for the same values of the parameters.
When the system is at a critical point, the effects of theClearly, the stationary overlap values for the quenched model
finiteness of the system are more evident, and the discrefre bigger than those for the annealed model. Thus, the latter
ancy is a consequence of the system size. Yet as the systemnsderestimates the former.
we simulate become bigger(N=100, N=1000, N This result implies that the critical values of the bafor
=10000,..), the experimental points tend to converge to thethe order-disorder transition in the annealed model will be
theoretical curve. We should remember the fact that the anarger than in the quenched case. We can see this better in
nealed RWN's are not completely uncorrelated. Even in thd~ig. 3. Here we have calculated the transition points for both
annealed case, each automaton still keeps memory of its prquenched and annealed systems, for the ¢&s@. These

FIG. 2. Evolution of the overlap(t) as a function of the biag.
p: evolution of the overlap(t) for annealed RWN’s witiK=2,
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0.85 V. RWN QUENCHED MODEL
4

08 In RBN's the frontier between order and disorder obtained

0.75 7 using an annealed model coincides with the frontier for the
0.7 7 quenched model. As we have seen, this is not the case for
B .65 - RWN'’s, and the transitions between order and disorder in
0.6 - —e— Annealed these two models do not coincide. Such a result is due to the
0.55 1 _=— Quenched fact that the memory of the quenched system introdgces
strong correlations in the automata. As a consequence, in the

0.5 2 3 4 5 6 7 8 9 guenched model each automaton is not strictly modified by a
s pure random-walk perturbation, and the automatom-state dis-

_ L , . tributions in this model are clearly different to the distribu-
FIG. 3. Order-disorder transition in RWN'’s. The critical values tions in the annealed method. Observe that the stationary

of the bias for RWN'’s withK=2 are plotted as a function of the values of{P.} -, . can be calculated from Eq4) in the
number of states, for both annealed and quenched systems. The. . ' . .
imit when t— and then summing up all the equations

transition in quenched RWN's happens at valuep simaller than from 1 t rtaim. In this way we arrive to the followin
those predicted by the annealed model. 0 0 a certaim. S way we arrive 1o (he following
recurrent relationship:

transition points are defined by the values pfwhere a" P -p ( p ) 9)

equals 1 for the first iméwe can use in fact 1& as the T N1-p)

order parameter It is clear that the annealed model fails to o )

predict the transition for the quenched model. The transitiodNormalizing to 1 the sum oP, from 1 toss, we obtain

in the quenched model takes place at valugs srhaller than 1 -1

those predicted by the annealed model predicts and hence, in P,= —(L> 7 (10)

this case, Derrida’s method does not work. This failure is an z\1-p

?giﬂ of iahebo?r;ﬁer:]%rc]itelsﬁ?jtje ?gogﬁglllzergésr;“bgftliﬂz an exponential discrete probability distribution, with the nor-
nfn=1,...s H :

guenched system, as we will prove in Sec. V. malization factor equal to

Nevertheless, it is important to highlight that in both cases p \*
(see Fig. 3 ass increases the curves quickly converge to a 1- 1-p D
limiting value. This implies that at the continuous limé, 7= — (12)
— oo, the transition is well defined and independent of the 1- p
value ofs [8]. 1-p

K=3
0.500 0.201
X —1|0.2
0.000] [0.4 |  0.159 - -
p=0.5] 30.000| |, 0.141| 01
0.000] |a. 0.141
0.000| | 0.157||eo
0.500 m 1 2 3 4 5 6
0.400| 0.6 — | 0.094] 0.4 —
0.000| 8.5 1 0.089| (0.3
p=0.86] 0.000] (0.3 1 0.101}|0.2
0.2 |
ooea | O

0.000!
0.599]
0.300
0.000| o5 |
0.000!
0.000!
0.000!
0.700!

0.205]
m 1 2 3 4 5 8
0.075([os
0.052 0.5
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0.076/ o7 |
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55656555
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o
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0.200| (5 0.138| ,055|
0.000| |0.6 | 0.026| (0.6 0.030] |0
p=0.8] 3] 0.000| (0.4 0.012| o4 0.027
0.000/(0-2 | 0.013| [0- 0.037,
0.000| % 0.050| [ 0.118| [0
0.800 0.761 0.733
0.100 0.100) 0.100
0.000| | | 0.000| |~ | 0.000| |~
p=0.9] 30.000| (g4 | 0.000| [¢.4 | 0.000/ |g.
0.000| (02 { 0.000] 0.2 | 0.000] jo.
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§

FIG. 4. The stationary automaton-state distributiBp}n-1 .. sfor a quenched RWN in the case6 as a function of the bigs and the
connectivityK. Ordered states are plotted as black bars.
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But in fact, the behavior of the automata in the ordered K2p(l-p)=1, (13
zone is far away from such a biased random walk. The sta- ) " ,
tionary quenched distribution of the automaton values willthat is, again, the boundary condition for RBN's.

not be an exponential like the one described by the previous Therefore, RBN's and the annealed model of RWN's are
equation. the limiting cases for quenched RWNsoinciding only in

Figure 4 shows the stationary automatom-state distributhe cases= 2), and the critical transition order-disorder curve
tion {P,}ney _ gfor a quenched RWN in the case 6. It can for quenched systems lies between both transition frontier

be seen that as we enter the disordered zbee big values CUrVes. as can be seen in Fig. 5. .

of the connectivityK) it tends to an exponential distribution, As Fig. 3 |mp||e§, when passing fror_n these discrete net-
according to Eq(10). In that zone, each automaton is being yvo_rks to the con_t_lnuous case—that IS, Wher_tenQS to
perturbed by a nearly pure biased random walk. But in thénfmlty—the_ transition from order to d|spr<_jer is still well
ordered zongsmall values of the connectivitythe distribu- ~ defined. It is possible to calculate the limit of Eq) for
tion tends to be limited basically to the extreme values, 1 ofN€aled RWN's whers—c. In the continuous case, the
s, the intermediate states having a probability close to 0. On&fitical curve becomes

can see how the ordered state has basically a binary outcome. 2[p-(1-p)]?

Notice also that in this zone the probability for an automaton = 21 (14)
to besor 1 is clearly determined by the bigs beingp and p(1-p)[1+[p-(1-p)]

(1-p), respectively. which defines an order-disorder critical curve in e p

If we now use the stationary quenched values of the auspaceFig. 5, dashed line Equation(13) can be expressed in
tomata distribution in the ordered zone—that is, if we use a more compact form, but we prefer to write it this way

(1-p) ifn=1 because it explicitly shows its invariance under the ex-
, ' changes op and(1-p).
Pn=1P if n=s, (12 As the annealed model is a lower linfin the K axis;
0 otherwise, upper in thep axis of the quenched systems, then for

quenched RWN's in the continuous limi— o) the transi-
tion is also well defined and enclosed between the annealed
model and the classical transition for RBN’s.

and we apply them to Edq7), we obtain that the boundary
condition becomes

6 o

DISORDER VI. CONCLUSIONS

The study of the genome has revealed a complex world of
relationships and couplings among genes, which produces
what is indeed a genetic network. As a consequence, the
study of its behavior by means of classical, linear methods is
not possible given that the real behavior is highly nonlinear
and shows complex dynamics. Therefore new type of models
and methods of analysis are needed to face its study and
understanding.

RBN's were one of the first ways proposed to study sta-
tistically genome global properties. Unfortunately this is a
model of all-nothing behavior where the state of a given
gene is completely determined by the input genes and where
smooth variations of state are not allowed, contrary to what
happens in the real genomes. On the other hand, differential
equation systems, which in principle should give a better
0.5 0.6 0.7 0.8 0.9 understanding of such continuous behavior, are difficult to

p solve and analytical results are hard to obtain.

This paper deals with random walk networks, a simple
random network model which largely resembles real genetic
getvvorks. RWN's are a natural link between discrete all-

FIG. 5. Gray pixels: stationary overlap’ between two
quenched RWN’s as a function pfandK. Gray intensities indicate

different values of the stationary overlap. Dark gray corresponds t . . \ . . .
a perfect overlap—that is, ta' =1 (ordered phage—and white to nothing models(like RBN’s) and continuous differential

noncorrelated” (completely disordered phasdor each point we ~€duations systems, as RWN's allow small, continuouslike
have performed 10 000 simulations wit=10 000 ands=4. Su-  variations in the behavior of the genome.
perimposed are the order-disorder frontiers for RBsper solid RWN's allow for analytical treatment, and in this paper
line) and for the annealed model of RWNiewer solid ling inthe ~ We have deduced the critical frontier for the annealed model.
cases=4. We can see how the transition from order to disorder inUnfortunately, due to the memory of the system, the an-
the quenched RWN'’s happens in the zone between both curves. THgaled solution does not coincide with the quenched critical
dashed line corresponds to the critigalp curve from Eq.(12) in frontier. Nevertheless, the annealed critical boundary acts as
the annealed case when- . a lower limit for the real case. On the other hand, we have
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shown how RBN'’s act as an upper limit for the quenchedmodel to study competitive gamgd4], synchronization
case and we have delimited its order-disorder transition fronf15,16], scale-free connectivitj17,18|, self-organized criti-
tier to be between both transition frontiers. If RWN's pretendcality [19], or time-reversible modelg20,21]. RWN'’s now

to be a bridge model between RBN'’s and continuous modelffer a more general and richer frame to study all these phe-
we have demonstrated that in the continuous ligtending  nomena.
to infinity) RWN's are well behaved and, as RBN's, have a
well-defined order-disorder transition, usually so difficult to

prove for continuous systems.

As we have seen, RWN'’s can be considered a natural We would like to thank Amelia Ortiz and Alberto Fernan-
generalization of RBN's. In fact, RBN'’s are a subcase of ourdez for their valuable opinions. B.L. has been supported by
model which trivially reduce to them when the number of CICYT BFM2002-01812. F.B. has been supported by MEC
allowed states equals 2. RBN’s have been studied exten-AYA 2003-08739-c02-Qincluding FEDER and Generalitat
sively over the past three decadé$§] and are still used as a Valenciana GRUPOS 03/170.
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