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In this paper we study in detail the behavior of random-walk networkssRWN’sd. These networks are a
generalization of the well-known random Boolean networkssRBN’sd, a classical approach to the study of the
genome. RWN’s are also discrete networks, but their response is defined by small variations in the state of each
gene, thus being a more realistic representation of the genome and a natural bridge between discrete and
continuous models. RWN’s show a clear transition between order and disorder. Here we explicitly deduce the
formula of the critical line for the annealed model and compute numerically the transition points for quenched
and annealed models. We show that RBN’s and the annealed model of RWN’s act as an upper and a lower limit
for the quenched model of RWN’s. Finally we calculate the limit of the annealed model for the continuous
case.
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I. INTRODUCTION

Biological networksf1g are typically made up of a large
number of units interacting with each other in a highly non-
linear way, often exhibiting complex dynamics. Neural sys-
tems, where the units are neurons with chemoelectrical inter-
actions, or the genome, where the units are genes with
protein interactions, are typical examples of biological net-
works.

A classical approach to gene networks involves discrete
dynamical systems based on random Boolean functions.
Such Boolean networks are formed by a set ofN genes or
automataslabeled i =1,2, . . . ,Nd where each gene has two
possible statesxi P h0,1j, where 0 stands for inactivesnon-
protein productiond and 1 for activesprotein productiond.
Each genei is connected withK other geneshi1, i2, . . . ,iKj.
We generate in this way a network whose dynamics
is described by a set of N equations hxi

t+1

= f isxi1
t ,xi2

t , . . . ,xiK
t dji=1,2,. . .,N, where t indicates time and the

hf iji=1,2,. . .,N are Boolean functions ofK inputs. The output
values and the input automatahi1, i2, . . . ,iKj for these func-
tions are typically assigned in a quenched random way.
These rules fully describe the so-called random Boolean net-
works sRBN’sd f2g which are among the best known models
of biological networks. Extensive analysis has shown that
two phasessordered and disorderedd can be defined for
RBN’s. The existence of an ordered phase in this random
systems has been used as support for the idea of “order for
free.” Also, the presence of a critical point is particularly
relevant to complex systems, due to their maximum informa-
tion transfer properties and high homeostatic stability of at-
tractors. It has been conjecturedsedge of the chaos hypoth-
esisd that the boundary separating the ordered and disordered
phases will allow the genome to display stability and homeo-
stasis as emergent phenomena arising from criticalityf3g.

Although RBN’s are simple models, they capture the es-
sence of real genetic networks in some cases. An example is

the virus Phagel modelf4g, which consists in a coupled pair
of cross-inhibitory differential equations. Although continu-
ous in essence, the result in this model of interaction between
continuous quantities leads to a basically binarysRBN-liked
outcome. Nevertheless, not all models can be approached in
the same way. In general, the more complex the network is,
the more possible states can be observed, displaying a range
of intermediate nonbinary values. The protein concentration
produced by gene transcription determines the activation or
inhibition of other genes. But it is known that the range of
protein concentration produced by genes spans up to two
orders of magnitude. Very few genes are strictly on-off
switched f5g; rather they show a continuous behaviorf6g,
changing smoothlyswithout jumpsd among different states.
In order to handle this continuous behavior, models of many-
gene activity based on differential equations have been de-
veloped. However, they pose evident computational and ana-
lytical problems, becauseN genes imply N coupled,
nonlinear differential equations. Inf7g a continuous-discrete
hybrid set of piecewise linear differential equations is pro-
posed in order to avoid this problem. Unfortunately, it is
difficult to obtain analytical results in such continuous or
semicontinuous models. A discrete dynamical system would
be more manageable.

But how can such diversity of states be included in a
discrete system? A desirable feature for a discrete model de-
scribing genetic networks will be a set of functionshf iji=1,. . .,N

such that changes inxi
t will take place smoothly, through

single and ordered steps among a high number of possible
states. The model should also take into account other realistic
features, like the fact that the response of genes to stimula-
tion and inhibition by other genes shows saturation in their
response. Such is the case for random walk networks
sRWN’sd, proposed in a previous paperf8g as a more realistic
representation of the genome. These networks satisfy in a
simple way the previous requirements, working with small
variations in the gene states, thus being a discrete approach
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to differential equations and allowing a comparison with
continuous models.

RWN’s allow for an analytical treatment and show com-
plex dynamical behavior and order-disorder transitions simi-
lar to RBN’s f9g—random threshold networksf10g or asym-
metric neural networksf11g, for example. In fact RBN’s are
a simple subcase of RWN’s.

In Sec. II we present the RWN model more formally,
explicitly deducing the critical line for the annealed model in
Sec. III. In Sec. IV we show new simulations and compute
the transition points for quenched and annealed models. In
Sec. V we obtain the stationary automatom-state distribution
and show that it is bimodal in the ordered phase. We discuss
the differences between the distributions in the annealed and
quenched models and show that they are the key to under-
stand the different behavior of both models. Finally we see
that RBN’s and the annealed model of RWN’s are an upper
and a lower limit for the quenched model of RWN’s, and we
calculate the limit for the continuous case of the annealed
model.

II. RWN MODEL DESCRIPTION

RWN’s are formed byN automatai P h1,2, . . . ,Nj, each
of them connected withK other automatahi1, i2, . . . ,iKj.
Each automaton can be in one ofs possible states ranging
from 1 to s: that is, xi P h1,2, . . . ,sj. The changes among
statesxi

t at timet occur in discrete stepsh+1,−1j, defined by
an associated functionsrule tabled fi of K variables. Each
one of these functions takes as input the values of theK input
automata:xi1

,xi2
, . . . ,xiK

. In contrast to RBN’s, in RWN’s the
output of the associated function does not directly define the
new value of the automaton, but just a variation +1 or −1 in
its valuexi and, hence, their link with differential equations.
These variations modify the state of a given automaton pro-
ducingsin the disordered cased a random-walk-like behavior
of its value, which gives name to these networks. The dy-
namics of each automaton is constrained by two reflecting
states: 1 ands. These extreme states represent null activity
and saturation activity, respectively, and act as barriers for
the automaton. Note that connections and rule tables are ran-
domly generated at the network definition stage but are
maintainedsquenchedd afterwards.

More formally, the evolution of the system is updated
synchronously by the iteration of a global mapping
FK : h1,2, . . . ,sjN° h1,2, . . . ,sjN where FK=sf1, f2, . . . ,fNd,
each f i being a function ofK+1 arguments:K automatom
values acting as input of automatoni, plus its own value—
i.e., f i : h1,2, . . . ,sjK+1° h1,2, . . . ,sj defined by

xi
t+1 = f isxi

t;fi
td =5

xi
t + 1 if fi

t = + 1∧ xi
t Þ s,

s if fi
t = + 1∧ xi

t = s,

xi
t − 1 if fi

t = − 1∧ xi
t Þ 1,

1 if fi
t = − 1∧ xi

t = 1,
6 s1d

fi being the rule tables:

fi:h1,2, . . . ,sjK ° h+ 1,− 1j, s2d

fi = fisxi1
t ,xi2

t , . . . ,xiK
t d. s3d

For example, let us takeK=2 ands=4 and the automaton
i with state at timet, xi

t=2. Let us suppose that its two input
automata have statesxi1

t =1 andxi2
t =3 at timet. We look for

the input combinations1, 3d in the rule tablefi correspond-
ing to the automatoni and find the outputfis1,3d= +1. Then
the valuexi

t=2 is updated toxi
t+1=2+1=3 attime t+1. In the

casexi
t=4 ssaturation stated the update would bexi

t+1=4.
Similarly, if the automaton has a value ofxi

t=1 snull activityd
and the output isfis1,3d=−1, the update would bexi

t+1=1.
The rule tableshfiji=1,. . .,N are randomly generated for a

particular system and then maintainedsquenched modeld. As
in RBN’s, here we can define a new parameterp, the bias
f9g, the probability for the output value offi to be +1fand
−1 with probability s1−pdg when we generate the functions
fi at the beginningfduring the network definition stageg.

For RWN’s with a given number of statess, two well-
defined phases can be found, which are separated by a criti-
cal line in thep−K space.

sid An ordered phase when the value of the biasp is far
away from 0.5 and/or the connectivityK is low, in which
case the networks freeze in a pattern after a short transient. In
this phase almost all of the automata remain in a frozen state.

sii d A disordered phase otherwisesp close to 0.5 and/or
large values ofKd, where all patterns are lost and the au-
tomata appear to be in complete disorder, switching from one
state to another apparently at random.

We can observe that fors=2 the state of each automaton
i at time t+1 is independent of its state att, depending only
on the value offi. Thusxi

t+1= f isxi
t ;fi

td= f isfi
td and an output

fi
t= +1 forcesxi

t+1=2 and, similarly, an outputfs
t =−1 forces

xi
t+1=1. Therefore, RWN’s reduce to RBN’s whens=2. In

this sense, RWN’s represent a generalization of RBN’s, but
with a richer set of available behaviors.

In Fig. 1 we can see a particular example of a RWN in the
critical line, with N=100 automata,K=2, p=0.79, ands
=10, which illustrates this complex behavior. In the upper
part of the figure we show the level of activity for each
automaton as different gray tones and its evolution with time
stowards rightd. The graph in the lower part shows, as an
example, the evolution of the activity state of three of the
automata, marked with little dots in the vertical axis in the
upper graph. It can be seen how, after a transient, the system
reaches a complex periodic state.

III. RWN ANNEALED MODEL

The annealed model, proposed by Derrida and Pomeau
f12g, consists of studying a simplified model of a system in
which its time correlations are destroyed at each time step by
randomly redefining the relationships among components of
the system and their response functions. In the case of RBN’s
where it was applied, it consisted in redefining at each time
step theK inputs and the Boolean functions of all the au-
tomata. The unmodified model with time correlations is
called in this context the quenched model, as the relationship
among components and their response functions do not
change during its evolution. In RBN’s and other systems the
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boundary between ordered and disordered phases obtained
through the annealed model forN tending to infinity coin-
cides with the boundary of the quenched model, hence the
power of this method.

Therefore, following Derrida and Pomeau, we will derive
the boundaries separating order and disorder for the RWN
annealed model. In order to avoid time correlations, each
time step we redefine both the automaton inputsi1, i2, . . . ,iK
and functionsfi for each automatoni =1,2, . . . ,N. The
avoiding of time correlations is strictly true for RBN’s, but
for annealed RWN’s the memory dependence is not totally
avoided, asxi

t influencesxi
t+1 fsee Eq.s1dg. Nevertheless, the

RWN annealed model shows also an ordered-disordered
transition and we can compute it as a mean field of the RWN
quenched model.

If every time step each automatoni hasK new inputs and
new p-biased functionsfi, then the statexi of each automa-
ton i behaves as a biased random walk, with probabilityp of
moving upwards ands1−pd downwards. The behavior of the
automatoni is constrained by the reflecting states 1 ands.
For this arbitrary automatoni, we definePn as the probabil-
ity of being in statenP h1,2, . . . ,sj. If we assume no corre-
lations between automata, we can write the evolution of the
probabilities as

5
P1st + 1d = s1 − pdfP1std + P2stdg,

A
Pnst + 1d = s1 − pdPn+1std + pPn−1std,

A
Psst + 1d = pfPs−1std + Psstdg

6 s4d

with n=2,3, . . . ,s−1.

Let us take two annealed replicasswith initial state con-
ditions randomly chosend of the same system that are at time
t: C1std; (x1

s1dstd , . . . ,xN
s1dstd) and C2std; (x1

s2dstd , . . . ,xN
s2dstd).

The overlap in timet, astdP f0,1g, is defined as the normal-
ized numberNastd of elements with common states inC1std
and C2std. We can interpretC2 as a perturbation overC1.
Thus, astd will act as an order parameter whent tends to
infinity. If the system is in the ordered phase,a will tend to 1
and the initial perturbation will be absorbed. Otherwise, if
the system is in the disordered phase,a will tend to a stable
value different from 1 and the perturbation will persist.

Now we need to compute the overlap int+1 between
these two annealed replicas. There will be five cases contrib-
uting to its value.

sid Two equivalent automataxi
s1dstd and xi

s2dstd are equal
fwith probabilityastdg and also theirK inputsfwith probabil-
ity astdKg. The contribution is thenaK+1std.

sii d Two equivalent automata are equal with different in-
put values, but the probability for their input functionsfi to
be the same by chance isp2+s1−pd2. The contribution is
thenastdf1−aKstdgfp2+s1−pd2g.

siii d Two equivalent automata with different values but the
same inputs. In the next time step they can coincide only
when their values aress−1,sd or ss,s−1d and fi = +1 or
when they ares1,2d or s2,1d andfi =−1. The contribution is
then

sivd Two equivalent automata with different values and
different inputs, separated by one unit as in casesiii d, but fas
in casesii dg the response offi is the correct one by chance.
The contribution of this case is, therefore,

svd And two equivalent automata with different values and
different inputs, separated by two units, thef value for the
smaller of them being by chance +1 and −1 for the bigger
one. This case contributes with

Notice that insiii d, sivd, andsvd we have used the condi-
tioned probability as we already know that att the two au-
tomata have different values. Notice also that the temporal
dependence of the distributionshPnstdjn=1,. . .,s fas given in Eq.
s4dg has been omitted but included in the functionsFsp,s; td,
Vsp,s; td, and Csp,s; td. Summing all the contributions we
obtain the time evolution of the overlap in the annealed
model:

FIG. 1. Example of complex RWN behavior. Top: dynamics of a
RWN with N=100 automata,K=2, p=0.79, ands=10. The hori-
zontal axis represents time steps and the vertical axis shows the 100
automata. Different gray intensities correspond to different states
for each automaton, ranging from 1swhited to 10 sblackd. Bottom:
evolution of the automata statessautomata valuesd in time for the
same RWN. For simplicity, only automaton Nos. 33, 53, and 88 are
shownsfigure from f9gd.
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ast + 1d = astdhaKstd + f1 − aKstdgfp2 + s1 − pd2gj + f1 − astdg

3haKstdFsp,s;td + f1 − aKstdgfVsp,s;td

+ Csp,s;tdgj. s5d

This equation has a fixed point at the valuea* =1; thus,

U ]ast + 1d
]astd

U
a*=1

= 1 + 2Kps1 − pd − Fsp,sd ø 1 s6d

is the condition for the fixed point to be stable, which leads
to the following critical surface separating the ordered and
disordered phases for annealed RWN’s:

2Kps1 − pd = Fsp,sd, s7d

where nowFsp,sd=Fsp,s; t→`d, for the stationary distri-
bution hPnst→`djn=1,. . .,s from Eq. s4d.

Notice that whens=2, thenFsp,2 ;td=1 for all t, which
leads to the well-known critical curve for RBN’sf9g:

K2ps1 − pd = 1. s8d

IV. SIMULATIONS OF ANNEALED
AND QUENCHED RWN’s

In f8g we showed the evolution of the overlap in RWN’s
as a function of the number of possible statess and how the
stationary value of the overlapa* acts as an order parameter,
a RWN being ordered whena* =1. The agreement between
annealed simulations and the theoretical overlap evolution
model for the annealed case was complete. We also showed
how the stationary value of the overlap is smaller ass grows
and how it is always smaller in the annealed model when
compared with the quenched model. Nevertheless, none of
those simulations were performed near a critical point and its
effect was not shown.

In the upper part of Fig. 2 we show the evolution of the
overlap astd between two given configurations of an an-
nealed system, given fixed values ofN, K, ands, as a func-
tion of the biasp. Solid lines are the theoretical predictions
for annealed RWN’s, obtained from Eqs.s4d and s5d, and
symbolsscircles, squares, diamonds, and trianglesd mark the
results from simulations of annealed RWN’s. Ast tends to
infinity, these values ofastd tend toa* , the stationary value of
the overlap. Both for the ordered casesa* =1d with high p
and the disordered case with low values ofp, there is full
agreement between our theoretical annealed model and the
annealed simulations.

There is only a discrepancy in the special case withp
=0.81, which corresponds to a critical point. This phenom-
enon was expected and it is usual in critical pointsf12g.
When the system is at a critical point, the effects of the
finiteness of the system are more evident, and the discrep-
ancy is a consequence of the system size. Yet as the systems
we simulate become biggersN=100, N=1000, N
=10 000, . . .d, the experimental points tend to converge to the
theoretical curve. We should remember the fact that the an-
nealed RWN’s are not completely uncorrelated. Even in the
annealed case, each automaton still keeps memory of its pre-

vious state, as we mentioned before, and this fact introduces
temporal correlations in the annealed model, which are espe-
cially evident in the transition points. Nevertheless, the the-
oretical description of the annealed model is correct at the
thermodynamical limit—i.e., whenN tends to infinity. For
comparison we also showsFig. 2, bottomd the quenched
model simulations for the same values of the parameters.
Clearly, the stationary overlap values for the quenched model
are bigger than those for the annealed model. Thus, the latter
underestimates the former.

This result implies that the critical values of the biasp for
the order-disorder transition in the annealed model will be
larger than in the quenched case. We can see this better in
Fig. 3. Here we have calculated the transition points for both
quenched and annealed systems, for the caseK=2. These

FIG. 2. Evolution of the overlapastd as a function of the biasp.
Top: evolution of the overlapastd for annealed RWN’s withK=2,
s=9, and different values of the biasp. In all of them we have taken
as initial conditionsas0d=1/s. Each point represents the average of
100 different networks, withN=10 000 automata each one. Solid
lines represent the theoretical evolution using Eqs.s4d ands5d. Bot-
tom: evolution of the overlapastd for quenched RWN’s for the same
parameter values and initial conditions than those in the left graph.
Again, each point represents the average of 100 different networks,
with N=10 000 automata each one.
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transition points are defined by the values ofp where a*

equals 1 for the first timeswe can use in fact 1−a* as the
order parameterd. It is clear that the annealed model fails to
predict the transition for the quenched model. The transition
in the quenched model takes place at values ofp smaller than
those predicted by the annealed model predicts and hence, in
this case, Derrida’s method does not work. This failure is an
effect of the different state probability distributions
hPnjn=1,. . .,s in both models due to the memory of the
quenched system, as we will prove in Sec. V.

Nevertheless, it is important to highlight that in both cases
ssee Fig. 3d ass increases the curves quickly converge to a
limiting value. This implies that at the continuous limit,s
→`, the transition is well defined and independent of the
value ofs f8g.

V. RWN QUENCHED MODEL

In RBN’s the frontier between order and disorder obtained
using an annealed model coincides with the frontier for the
quenched model. As we have seen, this is not the case for
RWN’s, and the transitions between order and disorder in
these two models do not coincide. Such a result is due to the
fact that the memory of the quenched system introduces
strong correlations in the automata. As a consequence, in the
quenched model each automaton is not strictly modified by a
pure random-walk perturbation, and the automatom-state dis-
tributions in this model are clearly different to the distribu-
tions in the annealed method. Observe that the stationary
values ofhPnjn=1,. . .,s can be calculated from Eq.s4d in the
limit when t→` and then summing up all the equations
from 1 to a certainn. In this way we arrive to the following
recurrent relationship:

Pn = Pn−1S p

1 − p
D . s9d

Normalizing to 1 the sum ofPn from 1 to s, we obtain

Pn =
1

z
S p

1 − p
Dn−1

, s10d

an exponential discrete probability distribution, with the nor-
malization factor equal to

z=

1 −S p

1 − p
Ds

1 −
p

1 − p

. s11d

FIG. 4. The stationary automaton-state distributionhPnjn=1,. . .,6 for a quenched RWN in the cases=6 as a function of the biasp and the
connectivityK. Ordered states are plotted as black bars.

FIG. 3. Order-disorder transition in RWN’s. The critical values
of the bias for RWN’s withK=2 are plotted as a function of the
number of statess, for both annealed and quenched systems. The
transition in quenched RWN’s happens at values ofp smaller than
those predicted by the annealed model.
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But in fact, the behavior of the automata in the ordered
zone is far away from such a biased random walk. The sta-
tionary quenched distribution of the automaton values will
not be an exponential like the one described by the previous
equation.

Figure 4 shows the stationary automatom-state distribu-
tion hPnjn=1,. . .,6 for a quenched RWN in the cases=6. It can
be seen that as we enter the disordered zonesi.e., big values
of the connectivityKd it tends to an exponential distribution,
according to Eq.s10d. In that zone, each automaton is being
perturbed by a nearly pure biased random walk. But in the
ordered zonessmall values of the connectivityd, the distribu-
tion tends to be limited basically to the extreme values, 1 or
s, the intermediate states having a probability close to 0. One
can see how the ordered state has basically a binary outcome.
Notice also that in this zone the probability for an automaton
to bes or 1 is clearly determined by the biasp, beingp and
s1−pd, respectively.

If we now use the stationary quenched values of the au-
tomata distribution in the ordered zone—that is, if we use

Pn = 5s1 − pd if n = 1,

p if n = s,

0 otherwise,
6 s12d

and we apply them to Eq.s7d, we obtain that the boundary
condition becomes

K2ps1 − pd = 1, s13d

that is, again, the boundary condition for RBN’s.
Therefore, RBN’s and the annealed model of RWN’s are

the limiting cases for quenched RWN’sscoinciding only in
the cases=2d, and the critical transition order-disorder curve
for quenched systems lies between both transition frontier
curves, as can be seen in Fig. 5.

As Fig. 3 implies, when passing from these discrete net-
works to the continuous case—that is, whens tends to
infinity—the transition from order to disorder is still well
defined. It is possible to calculate the limit of Eq.s7d for
annealed RWN’s whens→`. In the continuous case, the
critical curve becomes

K =
2fp − s1 − pdg2

ps1 − pdf1 + up − s1 − pdug2 , s14d

which defines an order-disorder critical curve in theK−p
spacesFig. 5, dashed lined. Equations13d can be expressed in
a more compact form, but we prefer to write it this way
because it explicitly shows its invariance under the ex-
changes ofp and s1−pd.

As the annealed model is a lower limitsin the K axis;
upper in thep axisd of the quenched systems, then for
quenched RWN’s in the continuous limitss→`d the transi-
tion is also well defined and enclosed between the annealed
model and the classical transition for RBN’s.

VI. CONCLUSIONS

The study of the genome has revealed a complex world of
relationships and couplings among genes, which produces
what is indeed a genetic network. As a consequence, the
study of its behavior by means of classical, linear methods is
not possible given that the real behavior is highly nonlinear
and shows complex dynamics. Therefore new type of models
and methods of analysis are needed to face its study and
understanding.

RBN’s were one of the first ways proposed to study sta-
tistically genome global properties. Unfortunately this is a
model of all-nothing behavior where the state of a given
gene is completely determined by the input genes and where
smooth variations of state are not allowed, contrary to what
happens in the real genomes. On the other hand, differential
equation systems, which in principle should give a better
understanding of such continuous behavior, are difficult to
solve and analytical results are hard to obtain.

This paper deals with random walk networks, a simple
random network model which largely resembles real genetic
networks. RWN’s are a natural link between discrete all-
nothing modelsslike RBN’sd and continuous differential
equations systems, as RWN’s allow small, continuouslike
variations in the behavior of the genome.

RWN’s allow for analytical treatment, and in this paper
we have deduced the critical frontier for the annealed model.
Unfortunately, due to the memory of the system, the an-
nealed solution does not coincide with the quenched critical
frontier. Nevertheless, the annealed critical boundary acts as
a lower limit for the real case. On the other hand, we have

FIG. 5. Gray pixels: stationary overlapa* between two
quenched RWN’s as a function ofp andK. Gray intensities indicate
different values of the stationary overlap. Dark gray corresponds to
a perfect overlap—that is, toa* =1 sordered phased—and white to
noncorrelateda* scompletely disordered phased. For each point we
have performed 10 000 simulations withN=10 000 ands=4. Su-
perimposed are the order-disorder frontiers for RBN’ssupper solid
lined and for the annealed model of RWN’sslower solid lined in the
cases=4. We can see how the transition from order to disorder in
the quenched RWN’s happens in the zone between both curves. The
dashed line corresponds to the criticalK-p curve from Eq.s12d in
the annealed case whens→`.
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shown how RBN’s act as an upper limit for the quenched
case and we have delimited its order-disorder transition fron-
tier to be between both transition frontiers. If RWN’s pretend
to be a bridge model between RBN’s and continuous models,
we have demonstrated that in the continuous limitss tending
to infinityd RWN’s are well behaved and, as RBN’s, have a
well-defined order-disorder transition, usually so difficult to
prove for continuous systems.

As we have seen, RWN’s can be considered a natural
generalization of RBN’s. In fact, RBN’s are a subcase of our
model which trivially reduce to them when the number of
allowed statess equals 2. RBN’s have been studied exten-
sively over the past three decadesf13g and are still used as a

model to study competitive gamesf14g, synchronization
f15,16g, scale-free connectivityf17,18g, self-organized criti-
cality f19g, or time-reversible modelsf20,21g. RWN’s now
offer a more general and richer frame to study all these phe-
nomena.
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