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Abstract A novel class of graphs, here named quasiperiodic, are constructed via ap-
plication of the Horizontal Visibility algorithm to the time series generated along the
quasiperiodic route to chaos. We show how the hierarchy of mode-locked regions
represented by the Farey tree is inherited by their associated graphs. We are able to
establish, via Renormalization Group (RG) theory, the architecture of the quasiperi-
odic graphs produced by irrational winding numbers with pure periodic continued
fraction. Finally, we demonstrate that the RG fixed-point degree distributions are re-
covered via optimization of a suitably defined graph entropy.
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Quasiperiodicity is observed along time evolution in nonlinear dynamical systems
(Schuster 1988; Strogatz 1994; Hilborn 1994) and also in the spatial arrangements of
crystals with forbidden symmetries (Shechtman et al. 1984; Schroeder 1991). These
two manifestations of quasiperiodicity are rooted in self-similarity and are seen to
be related through analogies between incommensurate quantities in time and spatial
domains (Schroeder 1991). Here we point out that quasiperiodicity can be visualized
in a third way: in the graphs generated when the Horizontal Visibility (HV) algorithm
(Lacasa et al. 2008; Luque et al. 2009) is applied to the stationary trajectories of the
universality class of low-dimensional nonlinear iterated maps with a cubic inflexion
point, as represented by the circle map (Schroeder 1991).

The idea of mapping time series into graphs has been presented in recent work
(Zhang et al. 2006; Kyriakopoulos and Thurner 2007; Xu et al. 2008, Donner et al.
2010a, 2010b, 2011; Campanharo et al. 2011) where different approaches have been
developed. In particular, the period-doubling bifurcation cascade has been analyzed
in the light of the HV formalism (Luque et al. 2011, 2012) and a complete set of
graphs, called Feigenbaum graphs, that encode the dynamics of all stationary tra-
jectories of unimodal maps has been provided. The Feigenbaum scenario is one of
the three well-known routes to reach chaos in low-dimensional dissipative systems
(along with the intermittency route and the quasiperiodicity route) (Schuster 1988;
Strogatz 1994; Hilborn 1994). In this Letter we characterize the structural, scal-
ing and entropic properties of the graphs obtained when the HV formalism is ap-
plied to the quasiperiodic routes to chaos. As we shall see, a Renormalization Group
(RG) treatment of such graphs is the instrument that grants access to our main re-
sults.

We briefly recall that the standard circle map (Schuster 1988; Strogatz 1994;
Hilborn 1994) is the one-dimensional iterated map given by

θt+1 = fΩ,K(θt ) = θt + Ω − K

2π
sin(2πθt ), mod 1, (1)

representative of the general class of nonlinear circle maps: θt+1 = fΩ,K(θt ) = θt +
Ω +K ·g(θt ), mod 1, where g(θ) is a periodic function that fulfills g(θ + 1) = g(θ).
The HV graphs obtained for this family of maps exhibit universal properties that
without loss of generality we explain in the next paragraphs in terms of the standard
circle map.

The dynamical variable 0 ≤ θt < 1 can be interpreted as a measure of the an-
gle that specifies the trajectory on the unit circle, the control parameter Ω is the
so-called bare winding number, and K is a measure of the strength of the nonlin-
earity. The dressed winding number for the map is defined as the limit of the ratio:
ω ≡ limt→∞(θt − θ0)/t and represents an averaged increment of θt per iteration. For
0 ≤ K ≤ 1 trajectories are periodic (locked motion) when the corresponding dressed
winding number ω(Ω) is a rational number p/q and quasiperiodic when it is irra-
tional. The winding numbers ω(Ω) form a devil’s staircase which makes a step at
each rational number ω = p/q and remains constant for a range of Ω . For K = 1
(critical circle map) locked motion covers the entire interval of Ω leaving only a
multifractal subset of Ω unlocked.

The resulting hierarchy of mode-locking steps at K = 1 can be conveniently repre-
sented by a Farey tree which orders all the irreducible rational numbers p/q ∈ [0,1]
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Fig. 1 Examples of two standard circle map periodic series with dressed winding number ω = 5/8, K = 0
(top) and K = 1 (bottom). As can be observed, the order of visits on the circle and the relative values of
θn remain invariant and the associated HV graph is therefore the same in both cases

according to their increasing denominators q . In the devil’s staircase, ω(Ω), the width
of the steps (intervals where ω is constant) becomes smaller when the denominator q

increases. Furthermore, if we have two steps with winding numbers p/q and p′/q ′,
the largest step between them has a winding number (p +p′)/(q + q ′), which is also
the irreducible rational number with the smallest denominator. Thus, the Farey tree
also orders all mode-locking steps with ω = p/q in the circle map according to their
decreasing widths (Hao and Zeng 1998).

The HV algorithm assigns each datum θi of a time series {θi}i=1,2,... to a node i

in its associated HV graph, and i and j are two connected nodes if θi, θj > θn for
all n such that i < n < j . Without loss of generality, we apply the HV algorithm to
the superstable orbits of the critical circle map (K = 1) with an irreducible rational
number ω(Ω) = p/q . Thus, the associated time series always contains θ0 = 0 as one
of its values and has period q (cf. Schuster 1988; Strogatz 1994; Hilborn 1994). If
p/q � 1/2 the associated HV graph is a periodic repetition of a motif with q nodes,
p of which have connectivity k = 2. (Observe that p in the map indicates the number
of turns in the circle to complete a period.) If p/q > 1/2, it can be considered as
1 − (q − p)/q with (q − p)/q < 1/2 and the associated HV graph is a periodic
repetition of a motif with q nodes, (q − p) of which have connectivity k = 2. In fact,
the series generated with p/q > 1/2 (counterclockwise rotation in the circle map)
is the time reversed of the one generated with (q − p)/q < 1/2 (clockwise rotation
in the circle map) and their associated graphs are symmetric mirror versions of each
other. For K ≤ 1, the order of visits of positions in the attractors and their relative
values remain invariant for a locked region with ω = p/q (Hao and Zeng 1998),
such that the HV graphs associated with them are the same. In Fig. 1 we present an
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Fig. 2 Six levels of the Farey tree and the periodic motifs of the graphs associated with the corresponding
rational fractions p/q taken as dressed winding numbers ω in the circle map (for space reasons only
two of these are shown at the sixth level). (a) In order to show how graph concatenation works, we have
highlighted an example using different grey tones on the left side: as 1/3 > 1/4, G(1/3) is placed on the
left, G(1/4) on the right and their extremes are connected to an additional link closing the motif G(2/7).
(b) Five steps in the Golden ratio route, b = 1 (thick solid line); (c) Three steps in the Silver ratio route,
b = 2 (thick dashed line)

example where the first and the last node in the motif correspond to the largest value
in the attractor.

In Fig. 2 we depict the associated HV periodic motifs for each p/q in the Farey
tree. We observe straightforwardly that the graphs can be constructed by means of the
following inflation process: let p/q be a Farey fraction with ‘parents’ p′/q ′ < p′′/q ′′,
i.e., p/q = (p′ + p′′)/(q ′ + q ′′). The ‘offspring’ graph G(p/q) associated with ω =
p/q , can be constructed by the concatenation G(p′′/q ′′)⊕G(p′/q ′) of the graphs of
its parents. By means of this recursive construction we can systematically explore the
structure of every graph along a sequence of periodic attractors leading to quasiperi-
odicity. A standard procedure to study the quasiperiodic route to chaos is fixing K = 1
and selecting an irrational number ω∞ ∈ [0,1]. Then, a sequence ωn of rational
numbers approaching ω∞ is taken. This sequence can be obtained through succes-
sive truncations of the continued fraction expansion of ω∞. The corresponding bare
winding numbers Ω(ωn) provide attractors whose periods grow towards the onset of
chaos, where the period of the attractor must be infinite. A well-studied case is the se-
quence of rational approximations of ω∞ = φ−1 = (

√
5 − 1)/2 
 0.6180 . . . , the re-

ciprocal of the Golden ratio, which yields winding numbers {ωn = Fn−1/Fn}n=1,2,3...

where Fn is the Fibonacci number generated by the recurrence Fn = Fn−1 + Fn−2

with F0 = 1 and F1 = 1. The first few steps of this route are shown in Fig. 2(b):
ω1 = 1/1,ω2 = 1/2,ω3 = 2/3,ω4 = 3/5,ω5 = 5/8, . . . ,ω6 = 8/13 . . . . Within the
range Ω(Fn−1/Fn) one observes trajectories of period Fn and, therefore, this route to
chaos consists of an infinite family of periodic orbits with increasing periods of val-
ues Fn, n → ∞. If we denote by Gφ−1(n) the graph associated to ωn = Fn−1/Fn in
the Golden ratio route, it is easy to prove that the associated connectivity distribution
P(k) for Gφ−1(n) with n ≥ 3 and k ≤ n + 1 is Pn(2) = Fn−2/Fn, Pn(3) = Fn−3/Fn,
Pn(4) = 0 and Pn(k) = Fn−k+1/Fn. In the limit n → ∞ the connectivity distribution
at the accumulation point Gφ−1(∞), the quasiperiodic graph at the onset of chaos,
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Fig. 3 Empty circles stand for
theoretical degree distributions
of quasiperiodic graphs. Filled
values have been obtained by
direct application of the HV
algorithm to critical circle map
series of 106 values.
Distributions have been shifted
from each other to enhance
visualization. From down-up:
(a) ω∞ = [1̄],
Ω = 0.606661 . . . .
(b) ω∞ = [2̄],
Ω = 0.418864 . . . ; ω∞ = [3̄],
Ω = 0.323873 . . . ; ω∞ = [4̄],
Ω = 0.271502 . . .

takes the form

P∞(k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − φ−1 k = 2,

2φ−1 − 1 k = 3,

0 k = 4,

φ1−k k ≥ 5.

(2)

Figure 3(a) shows that the theoretical degree distribution of the quasiperiodic graph
for the route described above is in perfect agreement with the same quantity obtained
by applying the HV algorithm to a circle map time series with a dressed winding
number ω∞ = φ−1. The procedure explained for the Golden ratio can be repeated for
the ‘time reversed sequence’: {ωn = Fn−2/Fn = 1 − Fn−1/Fn}n=1,2,3,.... In this case
the ratio converges to 1 − φ−1 in the limit n → ∞. The connectivity distributions of
the graphs {G1−φ−1(n)}n=1,2,3,... are the same as in the Golden ratio route because
these graphs are symmetric mirror versions of the former (as we have mentioned
before we use the term ‘time’ because the ‘time reverse’ of a graph from a series
generated by a clockwise rotation in the circle map corresponds to the graph from the
same but counterclockwise rotation).

The previous results can be interpreted through a suitably defined Renormaliza-
tion Group (RG) transformation. We proceed as in previous work (Luque et al. 2011,
2012) and define the RG graph operation R as the coarse-graining of every cou-
ple of adjacent nodes where one of them has degree k = 2 into a block node that
inherits the links of the previous two nodes. If we continue with the case of the
Golden ratio, we first note that R{Gφ−1(n)} = G1−φ−1(n − 1) and R{G1−φ−1(n)} =
Gφ−1(n − 1), so the RG flow alternates between the two mirror routes. If we define

the operator ‘time reverse’ by Gφ−1(n) ≡ G1−φ−1(n), the transformation becomes

R{Gφ−1(n)} = Gφ−1(n − 1) and R{G1−φ−1(n)} = G1−φ−1(n − 1). Repeated appli-

cation of R yields two RG flows that converge, for n finite, to the trivial fixed point
G0 (a graph with P(2) = 1). The accumulation points n → ∞, the quasiperiodic
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graphs, act as nontrivial fixed points of the RG flow: R{Gφ−1(∞)} = Gφ−1(∞) and

R{G1−φ−1(∞)} = G1−φ−1(∞).
The above RG procedure works only in the case of the Golden ratio route. (As a

counterexample look at the so-called Silver ratio route shown in Fig. 2c.) To extend
the above formalism to other irrational numbers, we develop the following explicit
algebraic version of R and apply it to the Farey fractions associated with the graphs,

R

(
p

q

)

=
{

R1
(p

q

) = p
q−p

if p
q

< 1
2 ,

R2
(p

q

) = 1 − q−p
p

if p
q

> 1
2 ,

(3)

along with the algebraic analog of the ‘time reverse’ operator R(x) = 1 − R(x). Ob-
serve that along the Golden ratio route fractions are always greater than 1/2, and we
can therefore renormalize this route by setting

R

(
Fn−1

Fn

)

= R2

(
Fn−1

Fn

)

= Fn−2

Fn−1
, (4)

whose fixed-point equation R(x) = x is x2 + x − 1 = 0, with φ−1 a solution of it.
A straightforward generalization of this scheme is obtained by considering the

routes {ωn = Fn−1/Fn}n=1,2,3... with Fn = bFn−1 + Fn−2, F0 = 1, F1 = 1 and b

a natural number. It is easy to see that limn→∞ Fn−1/Fn = (−b + √
b2 + 4)/2,

which is a solution of the equation x2 + bx − 1 = 0. Interestingly, all the pos-
itive solutions of the above family of quadratic equations happen to be positive
quadratic irrationals in [0,1] with pure periodic continued fraction representation:
φ−1

b = [b, b, b, . . .] = [b̄] (b = 1 corresponds to the Golden route). Every b > 1 ful-
fills the condition Fn−1/Fn < 1/2, and, as a result, we have

R

(
Fn−1

Fn

)

= R1

(
Fn−1

Fn

)

= Fn−1

(b − 1)Fn + Fn−2
. (5)

The transformation R1 can only be applied (b−1) times before the result turns greater
than 1/2, so the subsequent application of R followed by reversion yields

R(b)

(
Fn−1

Fn

)

= R2

[

R
(b−1)
1

(
Fn−1

Fn

)]

= Fn−2

Fn−1
. (6)

It is easy to demonstrate by induction that

R
(b−1)
1 (x) = x

1 − (b − 1)x
, (7)

whose fixed-point equation R(b)(x) = R2[R(b−1)
1 (x)] = x leads in turn to x2 + bx −

1 = 0, with φ−1
b a solution of it. We can proceed in an analogous way for the symmet-

ric case ωn = 1 − (Fn−1/Fn), but, as the sense of the inequalities for 1/2 is reversed,
the role of the operators R1 and R2 must be exchanged.

The previous result indicates that graphs must be renormalized via Rb{G
φ−1

b
(n)} =

G
φ−1

b
(n − 1). Again, the iteration of this process yields two RG flows that con-

verge to the trivial fixed point G0 for n finite. The quasiperiodic graphs, reached as
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accumulation points (n → ∞), act as nontrivial fixed points of the RG flow since
Rb{G

φ−1
b

(∞)} = G
φ−1

b
(∞).

We observe that for fixed b ≥ 2, and from the construction process illustrated in
Fig. 2(a), it can be deduced that P∞(2) = φ−1

b , P∞(3) = 1 − 2φ−1
b and P∞(k �=

bn + 3) = 0,∀n ∈ N. P∞(k = bn + 3), n ∈ N can be obtained from the condition
of RG fixed-point invariance of the distribution, as it implies a balance equation
P∞(k) = φ−1

b P∞(k + b) whose solution has the form of an exponential tail. The
degree distribution P∞(k) for this quasiperiodic graphs is therefore

P∞(k) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ−1
b k = 2,

1 − 2φ−1
b k = 3,

(1 − φ−1
b )φ

(3−k)/b
b k = bn + 3, n ∈ N,

0 otherwise.

(8)

A perfect agreement between theoretical and numerical results for some examples
can be observed in Fig. 3(b).

Notably, all the RG flow directions and fixed points described above can be derived
directly from the information contained in the degree distribution via optimization of
the graph entropy functional H = −∑∞

k=2 P(k) logP(k). The optimization is for a
fixed b and takes into account the constrains: P(2) = φ−1

b , P(3) = 1 − 2φ−1
b , max-

imum possible mean connectivity 〈k〉 = 4 (Luque et al. 2012) and P(k) = 0 ∀k �=
bn + 3, n ∈ N. The degree distributions P(k) that maximize H can be proven to be
exactly the connectivity distributions of (2) and (8) for the quasiperiodic graphs at the
accumulation points found above. This establishes a functional relation between the
fixed points of the RG flow and the extrema of H as it was verified for the period-
doubling route (Luque et al. 2011, 2012).

We have demonstrated the capability of the HV algorithm for transforming into
graph language the universal properties of the route to chaos via quasiperiodicity in
low-dimensional nonlinear dynamical systems. The outcome is a novel type of graph
architecture where the motifs are the building blocks with which quasiperiodicity
is expressed recursively via concatenation. Significantly, the HV formalism leads to
analytical expressions for the degree distribution, a function that in all mode-locking
regions is essentially exponential. The networks’ scaling properties can be formulated
in terms of an ad hoc RG transformation for which the nontrivial graph fixed points
capture the features of the quasiperiodic accumulation points. As we have seen, it
is through the properties of the RG transformation presented above that the relevant
details of the quasiperiodic graphs studied are determined. This class represents all
the quasiperiodic attractors reached when irrational winding numbers with pure peri-
odic continued fractions are used as dressed winding numbers. Furthermore, a graph
entropy is introduced via the degree distribution and its optimization reproduces the
RG fixed points.

By means of the HV algorithm, we have found a connection between pure peri-
odic continued fractions and the degree distribution of their associated quasiperiodic
graphs. It seems feasible to generalize our results beyond to periodic continued frac-
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tions or any irrational with a pattern in its continued fraction. Finally, it has not es-
caped our notice that, as we have a one-to-one correspondence between graphs and
rational numbers, a possible graph algebra can be explored.
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