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Self-organized critical random Boolean networks
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Standard random Boolean networks display an order-disorder phase transition. We add to the standard
random Boolean networks a disconnection rule that couples the control and order parameters. In this way, the
system is driven to the critical line transition. Under the influence of perturbations the system points out
self-organized critical behavior. Several numerical simulations have been done and compared with a proposed
analytical treatment.
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[. INTRODUCTION connectivity of binary neural networks to their critical value.
These neural networks have a phase transition similar to

Random Boolean networkéRBN) were proposedl] as RBN [12,13. Using a fixed connectivity initialization the
discrete genetic network models. The network is composeB€tWwork evolves to an attractor. If an automaton does not

of nodes(automata The state of an automaton representschange its state in the attractor, a connection is added to it.

the state of a gene with two possible values-off). This Otherwise, if it changes then a connection is removed. The

state is the output of a Boolean function, which has the outdifferent networkswith different initial connectivitiesreach
d remain close to the critical region.

. . . ..an
put activity of some other genes as inputs. The connectlwt}? . _
of the system and the bias used for the Boolean functions arE From a more general perspective, some wdiké-1§

| ¢ ters in order to statistically determine th ave shown the relation between critical and self-organized
relevant parameters in order fo statistically determin€ the N€itica| phenomena. In particular, Sornetteal. [18] point

work dynamics. If the system has a high connectivity and &, ;¢ 5 heuristic method that transforms a system with a criti-
low bias, the dynamics of the automata is disordered; ity transition (Ising or bond percolation into a self-
seems that there is no correlation between .the.gene SW'tCh'r&ganized critical system. They propose to add some kind of
on and off. On the other hand, the dynamics is ordered if &nechanism(a feedback between the order and control pa-
low connectivity and a high bias are used. Only the orderedameters that slowly drives the system towards the critical
dynamics have biological sense. Kauffman says that thipoint.

parametric region offerfree orderand it seems that natural RBN are a classical example where complex global be-
selection works where the order existed previofiglyIn the  havior emerges from local simple rules. They exhibit a phase
critical region, which is the boundary between ordered andransition similar to the Ising model or bond percolation.
disordered phase, there are some scaling relations that halfergetting its initial biological inspiration, our goal is to de-
been the subject of recent workd-5]. Kauffman points out velop RBN that spontaneously evolve towards a global criti-
that genetic networks evolve to the boundary between orde¢al stationary state. For this purpose we use a disconnection
and disorder. In this region there is more diversity of patterngule that induces a feedback between the control and order

for activity and greater possibilities for complex evolution Parameters. These networks reach a critical state without
(antichaos hypothesi§6]. changing externally the control parameter. These systems

There is great interest in the evolution of topology in net-Show pharacteristips rel_ated to self—qrganized _criticality. Our
works [7,8]. Several schemes have been proposed for RB,_@volutlo_n method is distinct _from earlle_r works in the follow-
evolution. For instance, if8] a RBN evolves from an initial N9 We introduce a well-defined coupling between order and
K=1 mean connectivityusing a random initial conditigrto control parameters as [11], but the method is able to sta-

an attractor. At this point a copy of the network is made thatb“ize (the individuals connectivities become constant in
has a connection randomly removed or/and added. The neWnle) tShe nltletwork's along ';he dcrlf[!cal tcuI;VSN d t
network also reaches an attractor. If the same attractor has " >¢C- !l We gIvé an introduction to and we presen

been obtained, the network is maintained. Otherwise, th&'€ di_sconne_c_tion local rule t_hat gives to the RBN a self-
previous one is restored. During the RBN evolution, it ap_orgamzed critical(SOQ behavior. In Sec. Il statistical re-

pears some stasi periods and punctuations like in real evolli:'-UItS of the evolution of the self-organized RBN are pre-

tionary processes sented. In Sec. IV we show its SOC behavior in response to
In [10] the performance of an automaton is defined as th(gxternal perturbations. In Sec. V we apply an analytical treat-

number of steps that it is in majority during a given set of ment to the model and discuss the results, and finally, in Sec.

steps. An automaton in majority means that it has the sam}éI we make a summary and point out issues for future

state as the majority of the automata. The automaton with th@orks.
highest performance is replaced by another automaton with a
new random Boolean function and the process is repeated.
The authors show how the genetic network is able to modify
its bias in order to reach the critical region. A RBN is a discrete dynamical system composedNof

In [11] is presented a method that is able to lead theautomata. Each automaton is a Boolean variable with two

Il. HOW DOES ONE MAKE A CRITICAL
SELF-ORGANIZED RBN?
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possible state€0,1}, such that t t+1/2 t+1
0, 0 | N
F:{0,3"—{0,5", D N N N
where F=(f,, ... f;, ... ,fy) and eachf; is a Boolean @4_1 @Jéé
function of K; inputs (the automatoni is connected t; 7 7 7
automata randomly chosen from the sef\bAutomata 0 0 1
K Boolean function New Boolean function Boolean function
fi {0,1} 'H{O,l} (2) Input Output Input Output Input Output
000 — 1 00 —1 00 —1
An automaton statee{0,1} is updated using its corre- o =0 o =0
sponding Boolean function o1 —» 1 1 —»1
X =0 X X ) 3

i FIG. 1. Disconnection of an automatarwith K;(t)=3. The
automaton receives more than one 0.tAtl/2 one of the automa-

EaChT‘ is represented as a Iook-ta_bleK)if Ian_Jts. Initially, ton connections is randomly cut and its Boolean function is changed
K neighbors and a look-table of bigsare assigned to each (by a look-table with biagp=0.5). The new Boolean function ob-
automaton. In order to generate such a look-table, the valugins a new state for the automatontin 1.

1 is assigned to an output with a probabilgyand 0 with a

probability 1—p. When the neighborhood and the functions composed by two (s and one 1. Hence, a random connec-

are established, they are maintaifgdencheg tion is cut[K;(t+1)=2] and another Boolean function with
We randomly initialize the states of the autométtial biasp=0.5 is assigned. A new state is then computed.

condition of the RBN. The automata are updated synchro- In a sandpilelike system there is a decrease in the mass,

nously using its corresponding Boolean functions energy, tension, etc. at the boundari@®,21. In the pro-
1 . posed RBN, there is a decrease in the number of connec-
X =F(X), (4) tions. Our system is a random graph with no boundaries. But,

there is a diffusion effect that is able to cause an avalanche of
disconnections. If one automaton connection is(atit), its
state can change from 1 to(@tt+1). The last change may
cause a disconnectidiat t+ 1) in any of the automata that
are connected to the first one, and so on until a stationary
state is reached.

These RBN exhibit a second-order phase transitid.
The control parameterK(andp) determine two regions: a
frozen phase foK<1/2p(1—p) and a disordered phase for
K>1/2p(1—p). Thus, the critical boundary is represented
as follows:

1

2p(1-p)°
The average of the evolution of the mean connectivity
The above description corresponds to a classical RBNK(t) of 1000 RBN, each one withi=10000 automata, is
We incorporate a disconnection rule to the system leadingepresented in Fig. 2. Each RBN diminishes its connectivity
the RBN to a stationary critical state with connectivity(p) due to Egs.(6) and (7). A fixed biasp has been used for
[see Eq(5)]. The rule is also applied synchronously to eachevery RBN: 100 different RBN and for each one 10 initial
automatori that has a local connectivity;(t) in such away conditions of the automata states (50% & and 50% of

Ke(p) (5) ll. RESULTS

that: (1) disconnection threshold; K;(t)>2 then 0’s approximately. All the RBN automata have a connec-
Ki(t) tivity K;(t=0)=10. The biasp ranges from 0.5 to 0.9 in
PR R steps of 0.01. The stationary stdtghen no more connec-
Ki(t+1)= Ki()—1 if J-Z‘l X'1<K'(t) L (6)  tions are cutis quickly reached in about 50 iterations. The
Ki(1), otherwise: mean connectivityK(t) stabilizes close to the transition
e ' curve between order and disordé.(t)]. This curve is de-
(2) minimal connectivity; ifK;(t)=2 then f[erm_ined by Eq(5) and it'is represent_ed as a continuoqs line
in Fig. 3. In the same figure, the circles are the stationary
Ki(t+1)=K;(t). (7)  result of the averaged mean connectivigprresponding to

sectionp versusK att=100, in Fig. 2. It can be observed

The rule is inspired in the Bak-Tang-Wiesenfeld modelthat the RBN stabilizes at the transition curve. In the same
[20]. As in the sandpilelike model we have incorporated afigure, three instances of the evolution of three RBN (
threshold. If the number of 0’s in the input of a Boolean =0.50, p=0.70 andp=0.85) have been represented. The
function is greater than one and the local connectivity of itsfill-down triangles represent the values of the RBN mean
corresponding automaton I;(t)>2, a connection of this connectivity evolving towards equilibrium. In addition the
automator(randomly choserwill be cut. Then, a new Bool- pattern evolution of the above three examples are represented
ean function with connectiviti;(t) — 1 will be assigned. in Fig. 4.

The disconnection mechanism is illustrated in Fig. 1. The The self-overlapa(t) is the unitary percentage of au-
automatori has a connectivit);(t) =3 and an input vector tomata with the same value tr-1 and int. The stationary
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FIG. 2. Average evolution of the mean connectitgt), where !

t are the iterations. We have considered 1000 RBN-=(0 000): FIG. 4. These figures show the spatiotemporal automata activity
100 different RBN with 10 initial conditions (50% of the automata for the evolution of networks built ol =100 automata. Time runs
with state 1 and 50% with state O tr=0) for each value of the from left to right. The number of iterations is represented.bjhe
biasp. All the RBN have a initialK (t=0)=10 mean connectivity.  value of the automaton stateertical axi$ is represented as black if

it is one, and white otherwise. From top to bottom: RBN with
self-overlap,a(t—=)=a*, is an order parameter for the =0.50,p=0.70, andp=0.85.
RBN transition[22]. Therefore in the disordered state we ) o
havea* <1 and in the ordered state the self-overlap is giverself-overlap isa(t=1)=0.5 due to the random state initial-
by a*=1. In Fig. 5 we have represented the self-overlap'zalt'on- It can be obsgrved that the self-oyerlap grows
evolution (averages are calculated as in Fig. Zhe initial  9uickly reaching the stationary vala =1 for high values
of the bias. This is to be expected because in the critical
boundary withK=K_, the self-overlap reaches the value
a(t)=1 for the first time. On the other hand, for low values
of the bias, the self-overlap is stable at a value lower than 1.

0¥ T
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8 M We will show in Sec. V that this is an RBN size effect.
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FIG. 3. (a) The continuous line represents the critical curve
obtained from the theor{Eq. (5)]. It is a boundary between the

ordered and disordered phases of the RBN.The fill-down tri-
angles represent three instances of the RBN evolution pfor
=0.50, p=0.70, andp=0.85. Each triangle represents the mean
connectivityK(t) in consecutive stepsc) The circles represent the
stationary state at the end of the RBN evolutid(t=0)=10]
using different values for the bigs (ranging fromp=0.5 to p

=0.9 inpincrements of 0.01). Each circle represents the average of FIG. 5. Evolution of the average self-overlaft) for the simu-
1000 RBN (N=10000) during 1000 time steps. lations of Fig. 2 € is the number of iterations
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FIG. 7. Log-log histogranfS(T)] for T (iterations needed for
the system to reach a stationary stataring 5x 1P perturbations

FIG. 6. Average self-overlap of the connectivigyt) for the in a RBN. p=0.65 for N= 100 000(diamond$, N=10 000 (filled
simulations in Fig. 2 {(is the number of iterations circles, N=1000 (unfilled circles, and N=100 (triangles. Inset:

the same figure but in linear-log form.

In order to compare the different velocities to approach
the stability in the self-overlap and the connectivity, the self-represented after810° perturbations. For this purpose we
overlap of the connectivitieg|(t) has been represented in have used a RBN witp=0.65 and different sizes\ =100
Fig. 6. The quantity(t) is defined as the unitary percentage (triangles, N=1000 (unfilled circles, N=10000 (filled
of automata that have the same connectivity at time4 circles, and N=100 000 (diamond$. The dotted line is a
andt. As it can be observed, the connectivity is stabilized,visual guide to see the size effect. It is easy to see that when
approximately, in 50 time steps. On the other hand, the selfN—«, the histograms tend to a power law. A fit with the
overlap needs about 100 time steps to stabilize. first points givesS(T)~T? with z=-2.9+0.1. Figure 8

In short, the evolution of an RBN with dynamics given by shows the histograr8(B) of disconnections using the same
Egs. (6) and (7) is such that the RBN is driven from the numerical simulations as before. We obtain again a possible
disordered phase to the critical boundBEy. (5)] with mean  power law described b$(B)~BP with D=—2.2+0.2. In
connectivityK.(p) and self-overlap~1. both figures, insets in linear-log form are showed in order to

In the next section we study the nature of the RBN equi-exclude possible exponential fits.
librium state, and whether it is metastable or not. In order to In the inset of Fig. 9 we show the temporal evolution of
do so we analyze the response of the system to external
perturbations. 10°

7

10
IV. PERTURBATION ANALYSIS

We now evolve the RBN using the disconnection rule
[Egs.(6) and(7)]. We perturb the RBN making use of sand-
pilelike methods[20,21]. For this purpose we start with a
relaxed RBN and a fixed bigs In order to perturb the RBN, S(B) 1¢*
we randomly choose an automatigorand add to it a connec-

tion (i.e., its connectivity changes froy; to K;+1). A new 10°
Boolean functionf; with K;+ 1 inputs is assigned tiousing ,
the biasp, so that one obtains a new state for the automaton 10

i. If the automaton state is maintained, then there is only a
small increase in the RBN mean connectivity. If the automa-
ton state changes, it is possible to cause a disconnectior 10°
originating an avalanche via branching. When the avalanche
stops, the RBN is minimally perturbed again, and so on.

In order to characterize the avalanches, we have measured F|G. 8. Log-log histogram for the sizes of the avalandBeB is
two different variables: the tim& needed for the net to reach the number of disconnections for each perturbation 3(R) is the
a stationary state and the total number of disconnect®ns histogram. For this purpose, it has used the same simulations of Fig.
duringT. In Fig. 7 the histogran®(T) of avalanche times is 7. Inset: the same figure but in linear-log form.
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given automaton are the same forl tot. It is clear that
1—ak®(t) is the probability that at least one of the inputs
will be different att andt—1. In that case, there is still a
probability that this particular automaton remains in the
same state dtandt+1 by chance. This probability is given
by P=p?+(1—p)? [22]. In a standard RBN the mean con-
nectivity K does not have an explicit dependence on time. If
one includes the disconnection rule described above, the

mean connectivity of the system evolves with timeP|{(t)
is the probability of an automaton to have connectivity
then

10

K(t>=k§2 POk,

C)

where the maximum connectivity value has been taken as
FIG. 9. Power spectrurfiog-log) of the mean connectivity evo- 10, without loss of generality. The connectivity distribution

lution K(t) of a RBN (p=0.65 and\N=10 000). It is the average of evolves according to the following system of equations:

305 temporal series of 16 384 steps. The slope of the dotted line is

¢=—1.92+0.09. Inset: a particular case of the evolution of the Pio(t+1)=[®1o+ (1-D19)a’(t)]P1o(t), (103
mean connectivityK (t) for the average serieg {s the number of i1
iterations. Pr(t+1)=(1-®p, )[1-a"" (1) [Py 1(1)

+H[ @+ (1-Da“(t)IP(t), (10D

the mean connectivityK(t) for a perturbed RBN N
=10000,p=0.65). In Fig. 9 we represent the power spec-
trum S(f) (log-log) obtained by averaging 305 temporal se-

ries of 16 384 time steps. A power law described 3(y) wherek=9,8, . . . ,3. Thevariabled, = p*+kp*~*(1—p) is
~f% with ¢=—1.92+0.09 is in good agreement with the the automaton probability to maintain its connectivity by
data. chance. Equatio10g describes the loss of connections for

The numerical results do not seem definitive. The powerg]| the automata with connectivity 10 at instanThe rest of
law regime forT andB lasts for almost a decade, but there isthe Eqgs.(10b), except for the last ongEq. (109)], have two
a clear finite size effect. There are strong computational recontributions: the first one represents the creation of au-
strictions for working with bigger RBN because the size oftomata with connectivitk that previously had connectivity
the avalanches is limited by the number of RBN automatay+ 1, and the second one describes the automata that main-
Nevertheless, in th&(f) histogram there is scaling for more tain their same value of connectivity The last equation
than two decades. In conclusion, we think that the result§Eq_(1oC)] describes the growth of automata population with
point out a SOC behavior. connectivity 2. The evolution of the critical self-organized
RBN is described by the coupled system of E(®. and
(108—(100).

One can see tha* =1 is the only possible value that

At this point. we ask ourselves: 'v'vhy are the evolution -1 as the probability distribution stationary. In E8), a*
rules able to drive an RBN to the critical boundary between_ ; is 5 fixed point wherk* (1—P)<1, whereK* =K(t

the order and disorder phases? As the bias has been alreagyoo) is the asymptotic connectivity,
fixed, the're can only be variations in the mean ConneCt'V'tystationary mean connectivity satisfies
K(t) (acting as order paramejeand the self-overla@(t)

(control parameter In this section we show that there is a 1
feedback mechanism between both parameters that leads the K*< 2p(1—p)’
system to a SOC behavift8]. P P

As we mentioned before, the self-overlaft) is the uni-  \whose boundary is the critical curve depicted in Fig. 3. From

tary percent of automata that has the same state-thhand  the system of Eqq108—(100) it can be easily deduced that
t. If the mean connectivit)(t) is known, the value of the

self-overlap at timé¢+ 1 can be determined by the following
equation:

Pa(t+1)=(1-®3)[1-a%(t)]Pa(t)+Pa(t), (100

V. ANALYTIC TREATMENT

that is, whenever the

(11

K(t+1)=K(t)—[1-Py(1)]
10

_ _ k
a(t+1)=akKO () + P(1—akO (1)), ® 2, [P+ (1-@a(nIPYD), (12
If we interpreta(t) as the probability for an arbitrary so that the mean connectivity of the system always decreases
automaton to remain in the same state at heth andt, the  during its dynamical evolution. Therefore, if the initial con-

term a¥((t) gives the probability that all the inputs of a dition satisfiesk(t=0)>1/[2p(1—p)], it will slowly fall
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towards the critical condition. The first tire =1 is when by the classical analysis of linear stability. We perturb the

the system reaches the critical curve and it therefore stabfixed point Q*=(a*=1,P},, ... Py, ... ,P3), with K*
lizes. =3:2,P{k, and compute the Jacobi matrix of the system at

We can study more rigorously the evolution of the system()*:

K*(1—P) 0 0 0
10(1- P4 Py 1 0
L(Q*)= k(1—®)P§ (13
—(k+1)(1-dy )Py -0 81
: : i1 0
—3(1-d3)P% 0 0O 0 0 1

We can calculate the characteristic polynomial by means of In a similar way, the four graphs in Fig. 11 show the
the determinantal condition theoretical evolution(continuous ling and the numerical
simulation (circles of the overlap for RBN N=10000).

For each graph we have used 1000 averaged simulations and
four different values for the bias. In Fig. 12 we have plot-
ted the evolution of the theoretic&l(t) mean connectivity
(lines) and simulations with RBNisymbolg for the same
bias values of Fig. 11. Finally, in Fig. 13 we sh¢®; } the
stationary distributions as functions of the bjagheoretical
(top ong and simulation(bottom).

From the previous figures it can be clearly observed that
the computer RBN simulations agree with our theoretical
analysis in spite of the size effect that is due to computa-

IL(Q*)—\1|=0. (14)

Thus,

P(N)=[K*(1—P)—\](1—\)°=0, (15)

and then the associated eigenvalueshgre K* (1—P) and _ S|
the (9 timeg degenerated eigenvaldg=1. This means that tional restrictions.

for N4=<1 the critical point will indeed be linearly stable.
One can see that the characteristic polynomial is independer

1.0

T

N=10000

of the stationary distributioP} }. Obviously this distribu-

tion depends on the initial conditions, but fulfills the condi-

=0.5
p M

0.9 #

tion K* =312 ,P¥k and thus the conditiofil1).

g

In order to check this theoretical analysis we have per-
formed several numerical simulations. In Fig. 10 the theoret-

ical evolution of the self-overlap(t) has been represented a(t)

with continuous line. We have used the following values:
a(t=0)=0.5, p=0.5, andP,(t=0)=0.0 for all k but P4,
=1.0, that is,K(t=0)=10. It can be seen that the self-
overlap converges asymptotically to 1. With the same pa-
rameters and initial conditions we have performed our set of
numerical simulations. In the same figure we have also plot-
ted the average evolution of the self-overlap for 1000 RBN
of different sizes:N= 10000 (circles, N= 1000 (triangles,
andN =100 (squares As can be seen from the plot, the first
steps of the simulation agree with the theoretical curve. It

approaches the theoretical one Msncreases. In order to

0.8
0.7 -

i

5

C

C
|
!
i
o.s—%

h

0.5
0

50

100
t

150

200

. . ; FIG. 10. The theoretical evolution of the self-overlap in a RBN.
can be observed that the stationary state of the simulationgere t is the number of iterationg=0.5, a(t=0)=0.5, and

K(t=0)=10. All the automata have connectivity 10, i.€;qt

perform a scaling size effect study we have represented the 5)=1.9 (continuous ling The circles correspond to the numeri-

stationary states (2a*) for different sizeqsee the inset in

cal simulation forN=10 000, the triangles foN=1000 and the

Fig. 10. The fitting shows that (£a*)~(1/N)* with «

squares forN=100. In the inset, the filled circles represent the

=0.27+0.05, in such a way that in the thermodynamic limit average stationary values of the self-overlap reached by the RBN
(N—) we geta* =1, as is to be expected. with different sizes, and logarithmically spaced out.
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FIG. 11. Theoretical evolutiofcontinuous ling and numerical
simulation (circles of a(t) for RBN (N=10000). We have per-
formed 1000 averaged simulations with four different values for the
biasp (t is the number of iterations

VI. SUMMARY
FIG. 13. Stationary distribution of the connectivi®f (k) with

RBN are classic complex systems that show that globak=2 3 ... 10. In the bottom graph each distribution has been cal-
order is able to emerge from local rules. They exhibit a phaseulated averaging over 1000 RBN. In the top one we show the
order-disorder transition modulated by the values of theiltheoretical stationary distribution of connectivities.
connectivity and bias. Some authors have already proposed . o ) . .
mechanisms for RBN evolutioi®—11]. We have, following The theo_retlcal analys!s fits with the_ numerical S|mul_a—
the Sornettet al. criterium[18], coupled the control param- tions and itis able to predict RBN behaviors to govern varia-
eter (connectivity for a fixed bigsand the order parameter tions. We tested other disconnection ru{ep’mlar to 6 and
(self-overlap in order to convert a critical system into a self- 7): for example, we changed the breaking threshold of a
organized critical one. From the numerical simulations it carfonnection. If there is a disconnection when no 0 inputs
be deduced that the system evolves from the disordere@fTive to the au;omatg, the syst.em stabilizes under the critical
phase to the critical transition curve independently of thefurve. If there is a disconnection when there are more than
fixed bias. Moreover, the response to external perturbation@n€ O inputs in the automata, the system stabilizes over the

points to a SOC behavior. critical curve. In the theoretical analysis, these modifications
imply that the probabilitiesb, change. In the first case the
10 probabilities increase and in the second case they decrease.
9B ] The values of these probabilities control the rate at which the
& mean connectivity decreases. In the first case, the rate is
8 %"z ] greater and the self-overlap reaches the value 1 deep inside
S the ordered phase. In the second case, the rate is very small
7 *j\u Zﬁ \ 1 and the net stabilizes in the disordered phase with self-
6 4‘; ‘\%%W\N 0=0.9 ] overlap lower than 1. There is a range for the values of the
K(t) ﬁ“;ﬂ = : @, functions that gives the correct rate. The chosen rule
5 ] produces values in that range. From the theoretical point of
Al ‘; ] view it seems easy to obtain similar results using a fixed
o}k 0=0.8 connectivity and changing the bias, or modifying both of
B gy mmm— e them S|multaneously_. _
N — Much future work is open. We think that the order-control
2t - =08 ] coupling parameter proposed fihil] also works for RBN.
1 ‘ ‘ ‘ And vice versa: the proposed method in this article works in
0 50 15{’0 150 200 this type of binary neural nets. In order to consider biological

implications the automaté&o be considered as genedy-

FIG. 12. Evolution of the mean connectivitg(t) (t is the num-  namics and the disconnection ruke be thought of as mu-
ber of iterationk the lines correspond to the theoretical results andtationg should have different characteristic times. We should
the symbols to the averaged simulations. We have considered ti&lso include a rule that allows for a possible connection
same cases as in Fig. 11. growth, and not simply consider connection loss as we have
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done in this article. We think that the point of view consid- ACKNOWLEDGMENTS
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