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Self-organized critical random Boolean networks
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Standard random Boolean networks display an order-disorder phase transition. We add to the standard
random Boolean networks a disconnection rule that couples the control and order parameters. In this way, the
system is driven to the critical line transition. Under the influence of perturbations the system points out
self-organized critical behavior. Several numerical simulations have been done and compared with a proposed
analytical treatment.
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I. INTRODUCTION

Random Boolean networks~RBN! were proposed@1# as
discrete genetic network models. The network is compo
of nodes~automata!. The state of an automaton represe
the state of a gene with two possible values~on-off!. This
state is the output of a Boolean function, which has the o
put activity of some other genes as inputs. The connecti
of the system and the bias used for the Boolean functions
relevant parameters in order to statistically determine the
work dynamics. If the system has a high connectivity an
low bias, the dynamics of the automata is disordered
seems that there is no correlation between the gene switc
on and off. On the other hand, the dynamics is ordered
low connectivity and a high bias are used. Only the orde
dynamics have biological sense. Kauffman says that
parametric region offersfree orderand it seems that natura
selection works where the order existed previously@2#. In the
critical region, which is the boundary between ordered a
disordered phase, there are some scaling relations that
been the subject of recent works@3–5#. Kauffman points out
that genetic networks evolve to the boundary between o
and disorder. In this region there is more diversity of patte
for activity and greater possibilities for complex evolutio
~antichaos hypothesis! @6#.

There is great interest in the evolution of topology in n
works @7,8#. Several schemes have been proposed for R
evolution. For instance, in@9# a RBN evolves from an initial
K51 mean connectivity~using a random initial condition! to
an attractor. At this point a copy of the network is made t
has a connection randomly removed or/and added. The
network also reaches an attractor. If the same attractor
been obtained, the network is maintained. Otherwise,
previous one is restored. During the RBN evolution, it a
pears some stasi periods and punctuations like in real ev
tionary processes.

In @10# the performance of an automaton is defined as
number of steps that it is in majority during a given set
steps. An automaton in majority means that it has the sa
state as the majority of the automata. The automaton with
highest performance is replaced by another automaton w
new random Boolean function and the process is repea
The authors show how the genetic network is able to mod
its bias in order to reach the critical region.

In @11# is presented a method that is able to lead
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connectivity of binary neural networks to their critical valu
These neural networks have a phase transition simila
RBN @12,13#. Using a fixed connectivity initialization the
network evolves to an attractor. If an automaton does
change its state in the attractor, a connection is added t
Otherwise, if it changes then a connection is removed. T
different networks~with different initial connectivities! reach
and remain close to the critical region.

From a more general perspective, some works@14–18#
have shown the relation between critical and self-organi
critical phenomena. In particular, Sornetteet al. @18# point
out a heuristic method that transforms a system with a c
cal transition ~Ising or bond percolation! into a self-
organized critical system. They propose to add some kind
mechanism~a feedback between the order and control p
rameters! that slowly drives the system towards the critic
point.

RBN are a classical example where complex global
havior emerges from local simple rules. They exhibit a ph
transition similar to the Ising model or bond percolatio
Forgetting its initial biological inspiration, our goal is to de
velop RBN that spontaneously evolve towards a global cr
cal stationary state. For this purpose we use a disconnec
rule that induces a feedback between the control and o
parameters. These networks reach a critical state with
changing externally the control parameter. These syst
show characteristics related to self-organized criticality. O
evolution method is distinct from earlier works in the follow
ing: we introduce a well-defined coupling between order a
control parameters as in@11#, but the method is able to sta
bilize ~the individuals connectivities become constant
time! the networks along the critical curve.

In Sec. II we give an introduction to RBN and we prese
the disconnection local rule that gives to the RBN a se
organized critical~SOC! behavior. In Sec. III statistical re
sults of the evolution of the self-organized RBN are p
sented. In Sec. IV we show its SOC behavior in respons
external perturbations. In Sec. V we apply an analytical tre
ment to the model and discuss the results, and finally, in S
VI we make a summary and point out issues for futu
works.

II. HOW DOES ONE MAKE A CRITICAL
SELF-ORGANIZED RBN?

A RBN is a discrete dynamical system composed ofN
automata. Each automaton is a Boolean variable with
©2001 The American Physical Society13-1
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possible states:$0,1%, such that

F:$0,1%N°$0,1%N, ~1!

where F5( f 1 , . . . ,f i , . . . ,f N) and eachf i is a Boolean
function of Ki inputs ~the automatoni is connected toKi
automata randomly chosen from the set ofN automata!

f i :$0,1%Ki°$0,1%. ~2!

An automaton statexi
tP$0,1% is updated using its corre

sponding Boolean function

xi
t115 f i~xi 1

t ,xi 2
t , . . . ,xi Ki

t !. ~3!

Each f i is represented as a look-table ofKi inputs. Initially,
Ki neighbors and a look-table of biasp are assigned to eac
automaton. In order to generate such a look-table, the v
1 is assigned to an output with a probabilityp and 0 with a
probability 12p. When the neighborhood and the functio
are established, they are maintained~quenched!.

We randomly initialize the states of the automata~initial
condition of the RBN!. The automata are updated synchr
nously using its corresponding Boolean functions

xt115F~xt!, ~4!

These RBN exhibit a second-order phase transition@19#.
The control parameters (K andp) determine two regions: a
frozen phase forK,1/2p(12p) and a disordered phase fo
K.1/2p(12p). Thus, the critical boundary is represent
as follows:

Kc~p!5
1

2p~12p!
. ~5!

The above description corresponds to a classical R
We incorporate a disconnection rule to the system lead
the RBN to a stationary critical state with connectivityKc(p)
@see Eq.~5!#. The rule is also applied synchronously to ea
automatoni that has a local connectivityKi(t) in such a way
that: ~1! disconnection threshold; ifKi(t).2 then

Ki~ t11!5H Ki~ t !21 if (
j 51

Ki (t)

xi j
,Ki~ t !21

Ki~ t !, otherwise;

~6!

~2! minimal connectivity; ifKi(t)52 then

Ki~ t11!5Ki~ t !. ~7!

The rule is inspired in the Bak-Tang-Wiesenfeld mod
@20#. As in the sandpilelike model we have incorporated
threshold. If the number of 0’s in the input of a Boolea
function is greater than one and the local connectivity of
corresponding automaton isKi(t).2, a connection of this
automaton~randomly chosen! will be cut. Then, a new Bool-
ean function with connectivityKi(t)21 will be assigned.

The disconnection mechanism is illustrated in Fig. 1. T
automatoni has a connectivityKi(t)53 and an input vector
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composed by two 08s and one 1. Hence, a random conne
tion is cut@Ki(t11)52# and another Boolean function wit
biasp50.5 is assigned. A new state is then computed.

In a sandpilelike system there is a decrease in the m
energy, tension, etc. at the boundaries@20,21#. In the pro-
posed RBN, there is a decrease in the number of conn
tions. Our system is a random graph with no boundaries. B
there is a diffusion effect that is able to cause an avalanch
disconnections. If one automaton connection is cut~at t), its
state can change from 1 to 0~at t11). The last change may
cause a disconnection~at t11) in any of the automata tha
are connected to the first one, and so on until a station
state is reached.

III. RESULTS

The average of the evolution of the mean connectiv
K(t) of 1000 RBN, each one withN510 000 automata, is
represented in Fig. 2. Each RBN diminishes its connectiv
due to Eqs.~6! and ~7!. A fixed biasp has been used fo
every RBN: 100 different RBN and for each one 10 initi
conditions of the automata states (50% of 18s and 50% of
08s approximately!. All the RBN automata have a connec
tivity Ki(t50)510. The biasp ranges from 0.5 to 0.9 in
steps of 0.01. The stationary state~when no more connec
tions are cut! is quickly reached in about 50 iterations. Th
mean connectivityK(t) stabilizes close to the transitio
curve between order and disorder@Kc(t)#. This curve is de-
termined by Eq.~5! and it is represented as a continuous li
in Fig. 3. In the same figure, the circles are the station
result of the averaged mean connectivity~corresponding to
sectionp versusK at t5100, in Fig. 2!. It can be observed
that the RBN stabilizes at the transition curve. In the sa
figure, three instances of the evolution of three RBNp
50.50, p50.70 andp50.85) have been represented. T
fill-down triangles represent the values of the RBN me
connectivity evolving towards equilibrium. In addition th
pattern evolution of the above three examples are represe
in Fig. 4.

The self-overlapa(t) is the unitary percentage of au
tomata with the same value int21 and int. The stationary

FIG. 1. Disconnection of an automatoni with Ki(t)53. The
automaton receives more than one 0. Att11/2 one of the automa-
ton connections is randomly cut and its Boolean function is chan
~by a look-table with biasp50.5). The new Boolean function ob
tains a new state for the automaton int11.
3-2
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SELF-ORGANIZED CRITICAL RANDOM BOOLEAN NETWORKS PHYSICAL REVIEW E63 051913
self-overlap,a(t→`)5a* , is an order parameter for th
RBN transition @22#. Therefore in the disordered state w
havea* ,1 and in the ordered state the self-overlap is giv
by a* 51. In Fig. 5 we have represented the self-over
evolution ~averages are calculated as in Fig. 2!. The initial

FIG. 2. Average evolution of the mean connectivityK(t), where
t are the iterations. We have considered 1000 RBN (N510 000):
100 different RBN with 10 initial conditions (50% of the automa
with state 1 and 50% with state 0 int50) for each value of the
biasp. All the RBN have a initialK(t50)510 mean connectivity.

FIG. 3. ~a! The continuous line represents the critical cur
obtained from the theory@Eq. ~5!#. It is a boundary between th
ordered and disordered phases of the RBN.~b! The fill-down tri-
angles represent three instances of the RBN evolution fop
50.50, p50.70, andp50.85. Each triangle represents the me
connectivityK(t) in consecutive steps.~c! The circles represent th
stationary state at the end of the RBN evolution@K(t50)510#
using different values for the biasp ~ranging from p50.5 to p
50.9 inp increments of 0.01). Each circle represents the averag
1000 RBN (N510 000) during 1000 time steps.
05191
n
p

self-overlap isa(t51)50.5 due to the random state initia
ization. It can be observed that the self-overlap gro
quickly reaching the stationary valuea* 51 for high values
of the bias. This is to be expected because in the crit
boundary withK5Kc , the self-overlap reaches the valu
a(t)51 for the first time. On the other hand, for low value
of the bias, the self-overlap is stable at a value lower than
We will show in Sec. V that this is an RBN size effect.

of

FIG. 4. These figures show the spatiotemporal automata act
for the evolution of networks built ofN5100 automata. Time runs
from left to right. The number of iterations is represented byt. The
value of the automaton state~vertical axis! is represented as black i
it is one, and white otherwise. From top to bottom: RBN withp
50.50, p50.70, andp50.85.

FIG. 5. Evolution of the average self-overlapa(t) for the simu-
lations of Fig. 2 (t is the number of iterations!.
3-3
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In order to compare the different velocities to approa
the stability in the self-overlap and the connectivity, the se
overlap of the connectivitiesq(t) has been represented
Fig. 6. The quantityq(t) is defined as the unitary percenta
of automata that have the same connectivity at timest21
and t. As it can be observed, the connectivity is stabilize
approximately, in 50 time steps. On the other hand, the s
overlap needs about 100 time steps to stabilize.

In short, the evolution of an RBN with dynamics given b
Eqs. ~6! and ~7! is such that the RBN is driven from th
disordered phase to the critical boundary@Eq. ~5!# with mean
connectivityKc(p) and self-overlapa'1.

In the next section we study the nature of the RBN eq
librium state, and whether it is metastable or not. In orde
do so we analyze the response of the system to exte
perturbations.

IV. PERTURBATION ANALYSIS

We now evolve the RBN using the disconnection ru
@Eqs.~6! and~7!#. We perturb the RBN making use of san
pilelike methods@20,21#. For this purpose we start with
relaxed RBN and a fixed biasp. In order to perturb the RBN
we randomly choose an automatoni, and add to it a connec
tion ~i.e., its connectivity changes fromKi to Ki11). A new
Boolean functionf i with Ki11 inputs is assigned toi using
the biasp, so that one obtains a new state for the automa
i. If the automaton state is maintained, then there is on
small increase in the RBN mean connectivity. If the autom
ton state changes, it is possible to cause a disconnec
originating an avalanche via branching. When the avalan
stops, the RBN is minimally perturbed again, and so on.

In order to characterize the avalanches, we have meas
two different variables: the timeT needed for the net to reac
a stationary state and the total number of disconnectionB
duringT. In Fig. 7 the histogramS(T) of avalanche times is

FIG. 6. Average self-overlap of the connectivityq(t) for the
simulations in Fig. 2 (t is the number of iterations!.
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represented after 53106 perturbations. For this purpose w
have used a RBN withp50.65 and different sizes:N5100
~triangles!, N51000 ~unfilled circles!, N510 000 ~filled
circles!, and N5100 000 ~diamonds!. The dotted line is a
visual guide to see the size effect. It is easy to see that w
N→`, the histograms tend to a power law. A fit with th
first points givesS(T);Tz with z522.960.1. Figure 8
shows the histogramS(B) of disconnections using the sam
numerical simulations as before. We obtain again a poss
power law described byS(B);BD with D522.260.2. In
both figures, insets in linear-log form are showed in order
exclude possible exponential fits.

In the inset of Fig. 9 we show the temporal evolution

FIG. 7. Log-log histogram@S(T)# for T ~iterations needed for
the system to reach a stationary state! during 53106 perturbations
in a RBN. p50.65 for N5100 000~diamonds!, N510 000~filled
circles!, N51000 ~unfilled circles!, andN5100 ~triangles!. Inset:
the same figure but in linear-log form.

FIG. 8. Log-log histogram for the sizes of the avalanchesB. B is
the number of disconnections for each perturbation andS(B) is the
histogram. For this purpose, it has used the same simulations of
7. Inset: the same figure but in linear-log form.
3-4
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SELF-ORGANIZED CRITICAL RANDOM BOOLEAN NETWORKS PHYSICAL REVIEW E63 051913
the mean connectivityK(t) for a perturbed RBN (N
510 000,p50.65). In Fig. 9 we represent the power spe
trum S( f ) ~log-log! obtained by averaging 305 temporal s
ries of 16 384 time steps. A power law described byS( f )
; f f with f521.9260.09 is in good agreement with th
data.

The numerical results do not seem definitive. The pow
law regime forT andB lasts for almost a decade, but there
a clear finite size effect. There are strong computational
strictions for working with bigger RBN because the size
the avalanches is limited by the number of RBN automa
Nevertheless, in theS( f ) histogram there is scaling for mor
than two decades. In conclusion, we think that the res
point out a SOC behavior.

V. ANALYTIC TREATMENT

At this point we ask ourselves: why are the evoluti
rules able to drive an RBN to the critical boundary betwe
the order and disorder phases? As the bias has been al
fixed, there can only be variations in the mean connectiv
K(t) ~acting as order parameter! and the self-overlapa(t)
~control parameter!. In this section we show that there is
feedback mechanism between both parameters that lead
system to a SOC behavior@18#.

As we mentioned before, the self-overlapa(t) is the uni-
tary percent of automata that has the same state int11 and
t. If the mean connectivityK(t) is known, the value of the
self-overlap at timet11 can be determined by the followin
equation:

a~ t11!5aK(t)~ t !1P„12aK(t)~ t !…. ~8!

If we interpret a(t) as the probability for an arbitrary
automaton to remain in the same state at botht21 andt, the
term aK(t)(t) gives the probability that all the inputs of

FIG. 9. Power spectrum~log-log! of the mean connectivity evo
lution K(t) of a RBN (p50.65 andN510 000). It is the average o
305 temporal series of 16 384 steps. The slope of the dotted lin
f521.9260.09. Inset: a particular case of the evolution of t
mean connectivityK(t) for the average series (t is the number of
iterations!.
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given automaton are the same fort21 to t. It is clear that
12aK(t)(t) is the probability that at least one of the inpu
will be different at t and t21. In that case, there is still a
probability that this particular automaton remains in t
same state att andt11 by chance. This probability is given
by P5p21(12p)2 @22#. In a standard RBN the mean con
nectivity K does not have an explicit dependence on time
one includes the disconnection rule described above,
mean connectivity of the system evolves with time. IfPk(t)
is the probability of an automaton to have connectivityk,
then

K~ t !5 (
k52

10

Pk~ t !k, ~9!

where the maximum connectivity value has been taken
10, without loss of generality. The connectivity distributio
evolves according to the following system of equations:

P10~ t11!5@F101~12F10!a
10~ t !#P10~ t !, ~10a!

Pk~ t11!5~12Fk11!@12ak11~ t !#Pk11~ t !

1@Fk1~12Fk!a
k~ t !#Pk~ t !, ~10b!

P2~ t11!5~12F3!@12a3~ t !#P3~ t !1P2~ t !, ~10c!

wherek59,8, . . . ,3. ThevariableFk5pk1kpk21(12p) is
the automaton probability to maintain its connectivity b
chance. Equation~10a! describes the loss of connections f
all the automata with connectivity 10 at instantt. The rest of
the Eqs.~10b!, except for the last one@Eq. ~10c!#, have two
contributions: the first one represents the creation of
tomata with connectivityk that previously had connectivity
k11, and the second one describes the automata that m
tain their same value of connectivityk. The last equation
@Eq. ~10c!# describes the growth of automata population w
connectivity 2. The evolution of the critical self-organize
RBN is described by the coupled system of Eqs.~8! and
~10a!–~10c!.

One can see thata* 51 is the only possible value tha
makes the probability distribution stationary. In Eq.~8!, a*
51 is a fixed point whenK* (12P)<1, whereK* 5K(t
→`) is the asymptotic connectivity, that is, whenever t
stationary mean connectivity satisfies

K* <
1

2p~12p!
, ~11!

whose boundary is the critical curve depicted in Fig. 3. Fr
the system of Eqs.~10a!–~10c! it can be easily deduced tha

K~ t11!5K~ t !2@12P2~ t !#

2 (
k53

10

@Fk1~12Fk!a
k~ t !#Pk~ t !, ~12!

so that the mean connectivity of the system always decre
during its dynamical evolution. Therefore, if the initial con
dition satisfiesK(t50).1/@2p(12p)#, it will slowly fall

is
3-5
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towards the critical condition. The first timea* 51 is when
the system reaches the critical curve and it therefore st
lizes.

We can study more rigorously the evolution of the syst
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by the classical analysis of linear stability. We perturb t
fixed point V* [(a* 51,P10* , . . . ,Pk* , . . . ,P2* ), with K*
5(k52

10 Pk* k, and compute the Jacobi matrix of the system
V* :
L ~V* !5S K* ~12P! 0 ••• 0 ••• 0

10~12F10!P10* 1 ••• 0 ••• A

A A � A A A

k~12Fk!Pk*

2~k11!~12Fk11!Pk11* ••• A 1 ••• A

A ••• A A 1 0

23~12F3!P3* 0 0 0 0 1

D . ~13!
e

and

hat
cal
ta-

N.

i-

he
BN
We can calculate the characteristic polynomial by mean
the determinantal condition

uL ~V* !2lI u50. ~14!

Thus,

P~l!5@K* ~12P!2l#~12l!950, ~15!

and then the associated eigenvalues arel15K* (12P) and
the ~9 times! degenerated eigenvaluel251. This means tha
for l1<1 the critical point will indeed be linearly stable
One can see that the characteristic polynomial is indepen
of the stationary distribution$Pk* %. Obviously this distribu-
tion depends on the initial conditions, but fulfills the cond
tion K* 5(k52

10 Pk* k and thus the condition~11!.
In order to check this theoretical analysis we have p

formed several numerical simulations. In Fig. 10 the theo
ical evolution of the self-overlapa(t) has been represente
with continuous line. We have used the following value
a(t50)50.5, p50.5, andPk(t50)50.0 for all k but P10
51.0, that is,K(t50)510. It can be seen that the sel
overlap converges asymptotically to 1. With the same
rameters and initial conditions we have performed our se
numerical simulations. In the same figure we have also p
ted the average evolution of the self-overlap for 1000 R
of different sizes:N510 000~circles!, N51000 ~triangles!,
andN5100 ~squares!. As can be seen from the plot, the fir
steps of the simulation agree with the theoretical curve
can be observed that the stationary state of the simulat
approaches the theoretical one asN increases. In order to
perform a scaling size effect study we have represented
stationary states (12a* ) for different sizes~see the inset in
Fig. 10!. The fitting shows that (12a* );(1/N)a with a
50.2760.05, in such a way that in the thermodynamic lim
(N→`) we geta* 51, as is to be expected.
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In a similar way, the four graphs in Fig. 11 show th
theoretical evolution~continuous line! and the numerical
simulation ~circles! of the overlap for RBN (N510 000).
For each graph we have used 1000 averaged simulations
four different values for the biasp. In Fig. 12 we have plot-
ted the evolution of the theoreticalK(t) mean connectivity
~lines! and simulations with RBN~symbols! for the same
bias values of Fig. 11. Finally, in Fig. 13 we show$Pk* % the
stationary distributions as functions of the biasp: theoretical
~top one! and simulation~bottom!.

From the previous figures it can be clearly observed t
the computer RBN simulations agree with our theoreti
analysis in spite of the size effect that is due to compu
tional restrictions.

FIG. 10. The theoretical evolution of the self-overlap in a RB
Where t is the number of iterations.p50.5, a(t50)50.5, and
K(t50)510. All the automata have connectivity 10, i.e.,P10(t
50)51.0 ~continuous line!. The circles correspond to the numer
cal simulation forN510 000, the triangles forN51000 and the
squares forN5100. In the inset, the filled circles represent t
average stationary values of the self-overlap reached by the R
with different sizes, and logarithmically spaced out.
3-6
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SELF-ORGANIZED CRITICAL RANDOM BOOLEAN NETWORKS PHYSICAL REVIEW E63 051913
VI. SUMMARY

RBN are classic complex systems that show that glo
order is able to emerge from local rules. They exhibit a ph
order-disorder transition modulated by the values of th
connectivity and bias. Some authors have already propo
mechanisms for RBN evolution@9–11#. We have, following
the Sornetteet al. criterium @18#, coupled the control param
eter ~connectivity for a fixed bias! and the order paramete
~self-overlap! in order to convert a critical system into a se
organized critical one. From the numerical simulations it c
be deduced that the system evolves from the disorde
phase to the critical transition curve independently of
fixed bias. Moreover, the response to external perturbat
points to a SOC behavior.

FIG. 11. Theoretical evolution~continuous line! and numerical
simulation ~circles! of a(t) for RBN (N510 000). We have per-
formed 1000 averaged simulations with four different values for
biasp (t is the number of iterations!.

FIG. 12. Evolution of the mean connectivityK(t) (t is the num-
ber of iterations!: the lines correspond to the theoretical results a
the symbols to the averaged simulations. We have considered
same cases as in Fig. 11.
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The theoretical analysis fits with the numerical simu
tions and it is able to predict RBN behaviors to govern var
tions. We tested other disconnection rules~similar to 6 and
7!: for example, we changed the breaking threshold o
connection. If there is a disconnection when no 0 inp
arrive to the automata, the system stabilizes under the cri
curve. If there is a disconnection when there are more t
one 0 inputs in the automata, the system stabilizes over
critical curve. In the theoretical analysis, these modificatio
imply that the probabilitiesFk change. In the first case th
probabilities increase and in the second case they decre
The values of these probabilities control the rate at which
mean connectivity decreases. In the first case, the rat
greater and the self-overlap reaches the value 1 deep in
the ordered phase. In the second case, the rate is very s
and the net stabilizes in the disordered phase with s
overlap lower than 1. There is a range for the values of
Fk functions that gives the correct rate. The chosen r
produces values in that range. From the theoretical poin
view it seems easy to obtain similar results using a fix
connectivity and changing the bias, or modifying both
them simultaneously.

Much future work is open. We think that the order-contr
coupling parameter proposed in@11# also works for RBN.
And vice versa: the proposed method in this article works
this type of binary neural nets. In order to consider biologi
implications the automata~to be considered as genes! dy-
namics and the disconnection rule~to be thought of as mu-
tations! should have different characteristic times. We sho
also include a rule that allows for a possible connect
growth, and not simply consider connection loss as we h

e

d
he

FIG. 13. Stationary distribution of the connectivityP* (k) with
k52,3, . . .,10. In the bottom graph each distribution has been c
culated averaging over 1000 RBN. In the top one we show
theoretical stationary distribution of connectivities.
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done in this article. We think that the point of view consi
ered here can have further applications along these line
any case, we can extrapolate our results to a different typ
nets that show a clear transition between the ordered
disordered phases with well-defined order and control
rameters.
d
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