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Abstract. When using γ -ray coded-mask cameras, one does not get a direct image as in classical
optical cameras but the correlation of the mask response with the source. Therefore the data must be
mathematically treated in order to reconstruct the original sky sources. Generally this reconstruction
is based on linear methods, such as correlating the detector plane with a reconstruction array, or non-
linear ones such as iterative or maximization methods (i.e. the EM algorithm). The latter have a better
performance but they increase the computational complexity by taking a lot of time to reconstruct an
image. Here we present a method for speeding up such kind of algorithms by making use of a neural
network with a back-propagation learning rule.
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1. Introduction

The possibility of imaging in γ -rays is very useful in different research fields be-
sides γ -ray astronomy: for instance, in nuclear medicine it is used to know the
distribution of the emitter isotopes previously introduced inside the patient body or
in nuclear fusion since it is interesting to know the plasma evolution inside the re-
actor (Pedersen and Granetz, 1984). In any case, we need to obtain an image of the
emitting sources, but this is a difficult task. The classical cameras based on lenses
or mirrors are here inappropriate due to the high energy of this radiation (Skinner,
1998) passing through the glass without suffering any significant deviation.

A coded mask camera, commonly used for imaging γ sources, is an opaque
body with a certain transparent pattern of holes interposed between the detector
plane and the source. This pattern codes the received signal. In fact, what we get
is the correlation of the sources with the mask pattern. Therefore we do not get
a direct image of the source (as it happens when using lenses, mirrors or pinhole
cameras) but an image to be mathematically processed.

The straightforward reconstruction methods in these cameras (Fenimore et al.,
1981) are based on correlating the detector plane with a reconstruction array (a
modification of the mask array). These methods are very popular because they are
easy and quick. Usually they are preferred when the coded mask camera is rather
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complex and it has many components. Unfortunately they have some problems in
handling data in difficult situations, for instance when the camera moves.

In order to improve the reconstructed image, more complex methods must be
used: TK-correlation (Hammersley, 1986), Iterative Removal of Sources (IROS)
(Hammersley et al., 1992), Maximum Entropy methods (MEM) (Ponman, 1984)
or Maximum Likelihood methods as the EM algorithm (Ballesteros et al., 1998).
These methods have better angular resolution and performance, but even in the
simplest cases, the reconstruction is very much slower than using correlation meth-
ods.

In this article we present a proposal to speed up these reconstruction methods
using a well known neural network (NN), a Multilayer Perceptron which uses a
Back-propagation (Rumelhart et al., 1986; Werbos, 1974; LeCun, 1985) learning
rule with momentum (Haykin, 1998). For our purpose we have used a public NN
package�: the Stuttgart Neural Network Simulator SNNS v. 4.1 (Zell et al., 1991).

2. Framework

A coded mask camera is composed by a discrete detector plane and an opaque
plate (the mask) consisting of a pattern of holes which receives direct inputs from
the sky (see Figure 1).

The detection process can be described by the following equation:

Dkl =
∑
ij

Oij	
ij

kl , (1)

where the indices kl label the detector plane units and ij the sky pixels. 	 is the
response array which has to include all the effects of the detection process: different
efficiencies for each detector unit, passive elements such as honeycombs, collim-
ators, etc. It indicates how many photons coming from the sky pixel ij contributes
to the signal of the detector unit kl.

The goal is to obtain the Oij sky intensity parameters (photons per area unit per
time unit), having the detected data Dkl (counts per detector unit per time unit), that
is, inverting Equation (1). Several of these methods with different performance are
mentioned in the Introduction.

Unfortunately those which give better image resolution and with better per-
formance are slower than linear methods, as correlation. In fact, for very complex
telescopes (with many pixels in the detector plane and cells in the mask) the recon-
struction using this kind of method could result impracticable. For instance, using
a Pentium II with 400 MHz (this will be the computer assumed to be used in the
whole paper), and in the case of the telescope IBIS on board INTEGRAL (Reglero
et al., 1996; Ballesteros et al., 1998) composed of 128 × 128 detector units and

� http://www.informatik.uni-stuttgart.de/ipvr/bv/projekte/snns/snns.html.
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a typical sky of 580 × 580 pixels, a reconstruction using the EM algorithm takes
about 65 days. Hence, a linear reconstruction method such as correlation has to be
used (which only takes 25 min).

In the opposite case, using very simple cameras with few detector units and
mask cells, the reconstruction with correlation methods gives few pixels of great
size, that is, a poor angular resolution and bad imaging capabilities. Some examples
of such simple cameras are: the telescope SPI, also on board INTEGRAL (Lavigne
et al., 1998) (19 pixels in a hexagonal detector plane, and a typical hexagonal sky
of about 61 pixels), LEGRI (Figure 1) (10 × 10 pixels in the detector plane and a
typical sky of 33×33 pixels) or in a non-astronomical context, cameras monitoring
tokamaks (Pedersen and Granetz, 1984), nuclear power stations, and the coded-
mask cameras used in nuclear medicine (Ohyama et al., 1983).

Therefore one must improve the image using more sophisticated algorithms like
the Maximum Entropy Method or the EM algorithm, although the reconstruction
time increases (an image reconstruction of the LEGRI data with the EM algorithm
takes about 2.5 min whereas with correlation takes milliseconds). Our goal is to
speed up these reconstruction processes in the case of simple telescopes in order to
make it as fast as linear methods but without loosing their good performance.

In this work we will deal with the EM algorithm introduced in the field of γ -ray
astronomy in a previous article (Ballesteros et al., 1998). It is an iterative algorithm
of maximization that computes maximum likelihood estimators from incomplete
and noisy data. This method has great advantages respect to linear methods, being
comparable to MEM. It is a flexible method with very good performance and easy-
to-implement. Unfortunately, it is slower than linear methods and depending on the
camera complexity, reconstruction of an image could take a long time.

The iterative method is described by:

Õn+1
ij = Õn

ij

∑
kl 	

ij

kl

(
Dkl

D̃n
kl

)

∑
kl 	

ij

kl

, (2)

where Õn
ij is the estimation of the ij pixel intensity at iteration n, Dkl stands for the

detected data, D̃n
kl is the current estimation of the detected data (estimated using

Equation (1) and Õn
ij ). We use for n = 0 a flat image filled with 1’s, i.e. Õ0

ij = 1
for all ij . The convergence criterion of EM is described in Ballesteros et al. (1998).

In order to speed up the reconstruction we implement a NN which will carry
out the iterative EM algorithm in real time after the training process. The imple-
mented NN is a Multilayer Perceptron which uses a Backpropagation learning rule
with momentum. The NN uses a three layer feedforward architecture: an input
layer with M × M neurons (which stands for the detector plane), a hidden layer
which must be initializated with a certain amount of neurons and an output layer
composed of L × L neurons (which stands for the reconstructed sky).
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3. Neural network: learning and results

To train the network we generate a set of N sky images ({[Oij ](s)} with s =
1, . . . , N) just by placing a random number of γ sources in random positions inside
the field of view in a L × L lattice for each sky image.

All the generated sky sources have an intensity of 1 photon per area unit per
time unit. The length of the simulated observation is assumed to be equal to a time
unit. The area of each detector unit is assumed to be equal to an area unit.

The number of sources varies randomly following a uniform distribution between
1 and a maximum value. In order not to saturate too much the initial sky images,
the maximum value has been assumed to be the 80% of the number of pixels in the
L × L lattice.

An example of L × L = 9 × 9 cells and 17 points randomly placed, using a
uniform distribution, is shown in Figure 2a.

We compute the detected data [Dkl], a M × M lattice (see Figure 2b), using
Equation (1). Each instrument has its own 	 response function which depends on
different effects: real efficiency of the detector units, transparency of the mask,
passive elements, strongbacks,... as was explained above. In any case, all of them
are linear systems (see Equation 1) and the differences among them come from
the different possible values of the response array 	 and its size. Given that these
systems are analogous, in order to test the method we have simulated a realistic 	

response, using two cases:

(a) A 5 × 5 detector plane plus a 13 × 13 coded mask. This configuration
produces a reconstructed sky with 9 × 9 pixels. The pattern of the mask has been
a 5 × 5 MURA pattern (Gottesman et al., 1989) placed in a mosaic. (b) A 7 × 7
detector plane plus a 19 × 19 coded mask (giving a reconstructed sky with 13 × 13
pixels) with a 7 × 7 MURA pattern placed also in a mosaic. This second case has
been less used due to be slower. In both cases each detector unit has a different
efficiency, randomly chosen in the range (0.5,1) (as said before, for simplicity each
detector unit has an area equal to 1 area unit). Similarly the mask transparency has
been randomly chosen in the range (0.8,1) for the transparent elements and in the
range (0,0.2) for the opaque elements.

We provide these detected data [Dkl] to the EM algorithm getting a set of
reconstructed sky images [Õij ] (see Figure 2c).

The NN uses as input the detected data set [Dkl] and as desired output the
EM algorithm reconstructions [Õij ]. Therefore, the NN learns the EM algorithm
reconstruction.

Why do we not train the NN by using directly the detected data together with the
original sky images, instead of using the reconstructions from the EM algorithm?
Because the mathematical mapping from [Oij ] to [Dkl] (see Equation 1) is not
bijective but surjective: that is, there are many different skies that will produce the
same detector response. If we try to train the NN with real images, the NN never
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Figure 2a-b. (a) Example of a random sky [Oij ] for the learning process. Each black pixel represents
a γ -ray point source with intensity equal to one photon per area unit per time unit. (b) Signal detected
[Dkl] in the detector plane.
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Figure 2c. (c) Image reconstructed [Õij ] by the EM algorithm. The bar at the right shows the meaning
of the grey scale.

will learn, because different sky configurations producing identical detector planes
obstruct the convergence of the learning process. Therefore, we provide a criterion
in order to make the mapping bijective. This criterion is given by a previously
existent reconstruction method (the EM algorithm). That is, the NN cannot be used
as a direct reconstruction method in this context, but it can simulate others.

Obviously this method cannot be applied to emulate the EM algorithm in the
case of very complex telescopes as IBIS, since generating each image of the set
takes 65 days, but the method could also be used to speed up reconstructions by
means of correlation (where each image takes 25 min).

Here we have used for the learning process sky images of 9 × 9 pixels and a
detector plane composed of 5×5 elements. The architecture of the NN is composed
of three layers: an input layer of 5×5 neurons, a hidden layer of 9×9 neurons and
an output layer with 9 × 9 neurons. The NN has been trained with a learning set
of N = 5000 samples (total pairs of detected data [Dkl]-desired output [Õij ]). It
uses the following parameters: learning parameter equal to 0.001 and momentum
parameter equal to 0.01.

We evaluate at each learning momentum the behavior of the NN by the relative
error RE defined (Zell et al., 1991) as:
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Figure 3. Evolution of the mean relative error RE (see Equation (3)) during the learning of the NN.
Each iteration represents a learning step where all the samples of the learning set are presented to the
NN. The process stops when RE = 1.

RE = 1

N

N∑
s=1

∑
ij

(
Õ

(s)
ij − �

(s)
ij

)2
, (3)

where N is the number of samples in the learning set (5000), [Õ(s)
ij ] is the s-th

sample of the desired output set and [�(s)
ij ] is the s-th neural network estimation.

The learning process (see Figure 3) is stopped when the RE for the learning
data is under a certain threshold. In this case RE = 1. For this purpose 4500
learning cycles, about 12 hours, are needed.

We use the error definition of Equation (3) as the stopping criterion because it is
the one displayed by the SNNS package (together with the ‘absolute’ error, which
is equal to Equation (3) but not divided by N). The name ‘relative’ comes from the
fact that it is averaged by the number of elements of the training set. But it is not
actually a relative error. Thus, in order to compare the difference between EM and
NN images and to test the goodness of the reconstruction we are going to define a
really relative error R which can be written as a function of RE:

R =

√√√√√√
∑N

s=1

∑
ij

(
Õ

(s)
ij − �

(s)
ij

)2

∑N
s=1

∑
ij

(
Õ

(s)
ij

)2 =
√√√√ N × RE

∑N
s=1

∑
ij

(
Õ

(s)
ij

)2 , (4)
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In this case, RE = 1 gives R = 0.038, that is, the final relative error at the end of
the learning process is 3.8%.

Though the EM algorithm is not a linear algorithm, its final response is rather
linear, that is, the reconstruction of a sky source with intensity 2I is just the double
of the reconstruction of a sky source in the same position with intensity I almost
independently of the other sky sources (Ballesteros, 1992). Moreover, it is quite
insensitive to noise in the detector plane. Given this linearity in the response, train-
ing the NN with point sources with an intensity of 1 and without noise is enough
to teach the NN.

In Figure 4 we show an example of a more realistic case, not used in the training
set. In Figure 4a we have as sky input for our simulator 4 sky point sources with
intensities 6.4, 8.8, 15.3 and 20.2 photons per area unit per time unit, that is a mean
source intensity of about 12. There is also a Poissonian random background with a
mean value of 3 counts per detector unit per time unit. Considering the square root
of the background (an estimation of the statistical fluctuation of the background)
measured in the whole detector plane as the noise (5 × 5 = 25 detector units) as
the noise, considering the efficiency of the detector plane equal to 0.75 (for each
detector unit, the efficiency was generated randomly between 0.5 and 1.0), and
considering that only a half of the signal from the sky sources passes through the
mask, the signal-to-noise ratio is given by

S

N
= 0.5 × 0.75 × 25 × ∑

skysources√
background × 25

= 473.3

8.7
= 54.4 . (5)

The direct reconstruction with the EM algorithm (Figure 4b) gives a typical spread-
ing of the reconstructed signal in the cases where the source is not centered at
a pixel of the reconstructed signal. The spreading of the sources is as follows:
15.3 and 20.2 over four pixels, 6.4 over two pixels and 8.8 over one pixel. The
reason of this distribution is that the simulator (and the real detector too), is unable
to properly resolve a source in a non-centered position: the detected response is
equivalent to have two (or four) well centered weaker sources.

As can be seen, the reconstruction produced by the NN (Figure 4c) from the
detector data (in this case the data do not belong to the training set) is very similar
to the one produce by the EM algorithm. In fact the relative error between them is
just R = 0.047 (in this case, Equation (4) has been applied with N = 1, as the set
has only one case).

In order to test the goodness of the NN reconstructions, we have carried out a
set of one hundred simulations, similar to the last one. Each one has a number of
sources randomly chosen between 1 and 20 in random positions and with values
for their intensities chosen randomly in the range 1 to 100. Besides, for each case
a random noise with mean values ranging between 0 and 50 counts has been added
to the detector units.

From these simulated data we reconstruct the sky using the trained NN and
the EM algorithm, calculating afterwards their relative error between them, R, and
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Figure 4a-b. (a) Example of sky to test the neural network: four sky point-sources with different
intensities used as input sky in the simulator. Besides a random noise with mean 3 counts per pixel
in the detector plane is added. (b) Reconstruction [Õij ] using the EM algorithm from the signal
detected with noise.
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Figure 4c. (c) Reconstruction [�ij ] using the trained NN. The bar at the right shows the meaning of
the grey scale.

Figure 5. Histogram of the relative error, R, between reconstructions with the trained NN and the
EM algorithm, obtained for a set of 100 image reconstructions, which do not belong to the training
set.
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considering separately each case (that is, using N = 1 in Equation (4)). For greater
clarity the resulting relative error of these 100 simulations (not belonging to the
training set) is presented in the form of an histogram (Figure 5). As can be seen,
the relative error, R, produced by the neural network in the reconstruction ranges
mainly between 4 and 9%. Considering as a single set with N = 100 all the sim-
ulations, the relative error of the whole set is R = 0.068 (6.8%). Therefore it can
be concluded that the trained NN simulates quite well the original reconstruction
method (the EM algorithm) and it seems that, due to the linearity in the response
of the EM algorithm, it is enough for our purposes to train the NN using sources
of intensity 1 without noise. Notice also that once the NN has learned it is able to
carry out a reconstruction in real time (∼1 ms).

In order to show that this good response is not limited to the case of point
sources but also to well-defined extended sources, we are going to work with the
other camera previously defined, as it allows a greater number of pixels in the re-
constructed image and therefore better image capabilities. The associated network
has a 7 × 7 detector plane and 13 × 13 reconstructed images, with 13 × 13 cells
in the hidden layer and also a set of N = 5000 samples. The training takes about
3 days with the same kind of learning curve depicted in Figure 3. It uses a learning
parameter of 0.001 and a momentum of 0.035.

The sky source ([Oij ]) used in this case is a cross configuration, as can be seen
in Figure 6a. In Figure 6b can be seen the signal detected in the simulator, ([Dij ]). If
we reconstruct the sky from this detected data using the EM algorithm, we obtain
Figure 6c, which shows a typical blur in the center due to the closeness of the
sources. If we reconstruct the sky from the same data [Dij ] using our NN, we
obtain the [�ij ] shown in Figure 6d. The relative error in this case is a bit higher,
R = 0.088, although the error is still under 10%.

4. Discussion

Our analysis shows that it is possible to speed up a reconstruction method, such as
the EM algorithm, by using a classical NN. Its main shortcoming is that it takes
a long time for learning. However, once it has learned, the reconstruction of the
image is almost instantaneous (∼1 ms).

Here we have to notice that the learning of the NN can be performed before the
camera is operative. In telescopes on board satellites (like SPI or LEGRI), there is a
long time interval between the instant when all the instruments are fully developed
(but still not inside the satellite) and the moment when they are fully operational,
already in orbit and integrated to the satellite. This allows us to train the net using
the real response of the telescope before the first images are obtained.

A real-time image reconstruction is useful not only when one has to deal with
many sets of data (as those that can be produced in the lifetime of a mission,
between two to five years) but also when a quick response is needed. An example
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Figure 6a-b. (a) 13×13 cross-like source [Oij l used for test the NN. (b) Signal detected [Dkl] in the
detector plane.



220 F. J. BALLESTEROS, E. M. MURO & B. LUQUE

Figure 6c-d. (c) Reconstruction [Õij ] using the EM algorithm from the signal detected. (d) Re-
construction [�ij ] using the trained NN. The bar at the right shows the meaning of the grey
scale.
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is the quick-look procedure (Roberts et al., 1996). The quick-look is a standard
procedure in space-borne telescopes where a quick look of the data is done period-
ically, obtaining rough, fast image reconstructions. Its aim is to detect the location
of any unexpected (and interesting) sky source (in this case gamma or X sources)
inside the field of view of the camera (i.e. a gamma bursts) in the shortest time, in
order to change as soon as possible the pointing. Another example where a quick
response is needed is the monitoring of nuclear power stations or tokamaks (Ress
et al., 1985) to control possible radiation or plasma leaks.

An obvious extension of our proposal is to implement this type of NN in a hard-
ware chip installed in the proper instrument of measure, so real time images can
be obtained. It would be also interesting in nuclear medicine and nuclear physics
fields.

We have to consider that the NN we have used is a public domain NN package,
which can simulate several types of NN’s and therefore it is not optimized in time
for any concrete neural network. A fully dedicated NN, specifically programmed
for this problem will substantially increase the speed of learning process.
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