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Abstract
We analyse type I vacuum solutions admitting an isometry whose Killing
2-form is aligned with a principal bivector of the Weyl tensor, and we show
that these solutions belong to a family of type I metrics which admit a group
G3 of isometries. We give a classification of this family and study the Bianchi
type for each class. The classes compatible with an aligned Killing 2-form
are also determined. The Szekeres–Brans theorem is extended to non-vacuum
spacetimes with vanishing Cotton tensor.

PACS numbers: 04.20.Cv, 04.20.−q

1. Introduction

Several methods have been developed to simplify Einstein equations in order to look for
new exact solutions. These approaches usually imply imposing conditions that restrict the
space of possible solutions. Thus, a notable number of known solutions have been obtained
under the hypothesis that they admit a fixed isometry or conformal group. It has also been
fruitful to impose restrictions on the algebraic structure of the Weyl tensor. Indeed, wide
families of algebraically special solutions of Einstein equations have been found by considering
coordinates or frames adapted to the multiple Debever direction that these spacetimes admit.
Nevertheless, there is a lack of knowledge about algebraically general solutions, and they have
usually been obtained by imposing spacetime symmetries. One way to correct this situation
is to opt for imposing a complementary condition on a type I Weyl tensor which allows us
to simplify Einstein equations. This means considering subclassifications of algebraically
general spacetimes and looking for solutions in every defined class.

Debever [1] was the first to suggest a classification of type I metrics based on the nullity
of one of the Weyl algebraic invariant scalars. A similar kind of condition is satisfied by the
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Weyl eigenvalues in the purely electric or purely magnetic solutions [2], as well as in some
classes defined by McIntosh and Arianrhod [3] where the positive or negative real character of
a Weyl invariant scalar is imposed. These classes may also be reinterpreted in terms of some
kind of degeneracy of the four Debever directions that a type I metric admits [3, 4]. In this
latest work we have shown that these classes contain some families of metrics which can be
interpreted as generalized purely electric or purely magnetic spacetimes.

Besides those algebraic classifications quoted above one can define other families of type
I spacetimes by imposing conditions on the first-order Weyl concomitants. For example, in the
normal shear-free perfect fluid solutions [5] one restricts the kinematic coefficients associated
with the unique timelike Weyl principal direction. Another classification that imposes first-
order differential conditions on the type I canonical frame was given by Edgar [6]. Here
we have changed this approach slightly by imposing invariant conditions that are symmetric
with respect to the three spacelike principal directions. When the spacetime Cotton tensor
vanishes, the Bianchi identities imply that in both Edgar’s and our degenerate classes, the
Weyl eigenvalues are functionally dependent. The present work is concerned with the vacuum
solutions of the more degenerate class which we call I1. We show that in this case a three-
dimensional group of isometries exists and all the Weyl-invariant scalars depend on a unique
real function. We also offer an invariant subclassification of the type I1 metrics and prove that
the classes can be characterized by the Bianchi type of the G3. Some of these results were
communicated without proof at the Spanish Relativity Meeting 1998 [7].

In an algebraically general spacetime the Weyl canonical frame determines three timelike
principal 2-planes associated with a frame of orthonormal eigenbivectors of the Weyl tensor.
Here we use the complex Cartan formalism adapted to this orthonormal frame of eigenbivectors
under the hypothesis of a vanishing Cotton tensor. In this case the Cartan structure equations
and their integrability conditions, the Bianchi identities, do not constitute a completely
integrable system of equations. The integrability conditions for this system were considered
by Bell and Szekeres [8] and were investigated by Brans [9] who named them the post-Bianchi
equations. Edgar [10] analysed in detail these post-Bianchi equations that we obtain easily
here using a plain covariant approach. On the other hand, the complex formalism that we use
allows us to generalize easily the Szekeres–Brans theorem on the non-existence of vacuum type
I solutions with a zero Weyl eigenvalue [11, 12]. This extension is similar to that known for the
Goldberg–Sachs theorem and it implies that the Szekeres–Brans result also applies to the non-
vacuum solutions with vanishing Cotton tensor. This fact has already been used in analysing
the restrictions on the existence of purely magnetic solutions [13]. It is worth pointing out that
the set of the metrics with vanishing Cotton tensor contains all the vacuum solutions as well
as other non-vacuum metrics with specific restrictions on the energy content. For example, in
the case of perfect fluid solutions, this condition leads to non-shearing irrotational flows [14].

When a spacetime admits an isometry, the Killing vector ξ plays the role of an
electromagnetic potential satisfying the Lorentz gauge, and its covariant derivative ∇ξ is,
in the vacuum case, a solution of the source-free Maxwell equations. Because this fact was
first observed by Papapetrou [15], the Killing 2-form ∇ξ has also been called the Papapetrou
field [16]. Metrics admitting an isometry were studied by considering the algebraic properties
of the associated Killing 2-form [17, 18], and this approach was extended to the spacetimes
with an homothetic motion [19, 20].

More recently, Fayos and Sopuerta [16, 21] have developed a formalism that improves
the use of the Killing 2-form and its underlined algebraic structure in the analysis of the
vacuum solutions with an isometry. They consider two new viewpoints that permit a more
accurate classification of these spacetimes: (i) the differential properties of the principal
directions of the Killing 2-form, and (ii) the degree of alignment of the principal directions
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of the Killing 2-form with those of the Weyl tensor. The Fayos and Sopuerta approach uses
the Newman–Penrose formalism and several extensions have been built for homothetic and
conformal motions [22, 23] and for non-vacuum solutions [24].

In the Kerr geometry the principal directions of the Killing 2-form associated with the
timelike Killing vector are the two double principal null (Debever) directions of the Weyl tensor
[16]. But in a type D spacetime these two Debever directions are the principal directions of
the principal 2-plane and, consequently, in the Kerr spacetime, the Killing 2-form is an
eigenbivector of the Weyl tensor. This fact has also been remarked by Mars [25] who has
shown that this property characterizes the Kerr solution under an asymptotic flatness behaviour.
Elsewhere [26] we have shown that the type D vacuum solutions having a timelike Killing
2-form aligned with the Weyl geometry are the Kerr–NUT spacetimes.

In a Petrov type I spacetime a principal direction of a Weyl principal 2-plane never
coincides with one of the four null Debever directions [27, 28]. Therefore, in a type I metric
two different kinds of alignment of a Killing 2-form and the Weyl tensor can be considered. On
one hand, we can impose, as Fayos and Sopuerta do [21], the alignment between a principal
direction of the Killing 2-form and a principal Debever direction of the Weyl tensor. On the
other hand, we can consider that a principal 2-plane of the Weyl tensor is the principal 2-plane
of the Killing 2-form. In this work we adopt this second point of view and show that all the
vacuum type I solutions having a Killing 2-form which is an eigenbivector of the Weyl tensor
belong to the class I1 quoted above. In consequence, these spacetimes admit a group G3 of
isometries. We also study the Bianchi types compatible with this kind of alignment.

The paper is organized as follows. In section 2 we present the general notation of the
complex formalism used in this work and apply this formalism to write the Cartan structure
equations and to characterize the geometric properties of a 2+2 almost-product structure. In
section 3 we adapt the Cartan complex formalism to the canonical frame of a type I Weyl
tensor and write the Bianchi identities for the spacetimes with a vanishing Cotton tensor.
Some direct consequences of these equations lead us to present a classification of the type
I spacetimes. The generalization of a theorem by Brans and a tensorial expression for the
post-Bianchi equations are easily obtained too. In section 4 we study general properties of an
aligned Papapetrou field and show that every type I vacuum solution with an isometry having
an aligned Killing 2-form belongs to the more degenerate class I1 in the classification given
in the previous section. Some basic results on the type I1 vacuum solutions are presented
in section 5 where a subclassification of these metrics is also offered. In section 6 we show
that a type I1 vacuum metric with a non-constant eigenvalue admits a group G3 of isometries
and, for every subclass presented in previous section, we study its Bianchi type. The Bianchi
types which are compatible with an aligned Killing 2-form are also determined. Finally, in
section 7 we study the vacuum case with constant eigenvalues and prove that the spacetime
has a group G4 of isometries, obtaining in this way an intrinsic characterization of the vacuum
homogeneous Petrov metric.

2. Cartan equations in complex formalism

Let (V4, g) be an oriented spacetime of signature (−, +, +, +) and let η be the volume element.
If we denote by ∗ the Hodge dual operator, we can associate with every 2-form F the self-dual
2-form F = 1√

2
(F − i ∗F). Hereafter we shall say bivector to indicate a self-dual 2-form.

We can associate with every oriented orthonormal frame {eα} the orthonormal frame
{Ui} of the bivector space defined as Ui = 1√

2
[e0 ∧ ei − i ∗ (e0 ∧ ei)]. This frame satisfies
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2U2
i = g, and it has the induced orientation given by

Ui × Uj = − i√
2
εijkUk, i �= j, (1)

where × means the contraction of adjacent indices in the tensorial product and U2
i = Ui × Ui .

On the other hand, if {Ui} is an oriented orthonormal frame of bivectors, for every
(complex) non-null vector x, the four directions {x,Ui (x)} are orthogonal and can be
normalized to get an oriented orthonormal frame. In terms of these vectors, the metric
tensor g is written

g = 1

x2

[
x ⊗ x − 2

3∑
i=1

Ui (x) ⊗ Ui (x)

]
. (2)

Moreover, the self-dual 2-forms Ui can also be written as

Ui = − 1

x2

(
x ∧ Ui (x) +

i√
2
εijkUj (x) ∧ Uk(x)

)
. (3)

Nevertheless, if x is a null vector the four orthogonal directions {x,Ui (x)} cannot be
independent. So, one of the directions is a linear combination of the other ones, Ui (x) =
ax + bjUj (x). Contracting this equation with Ui we obtain the following

Lemma 1. If {Ui} is an orthonormal frame of bivectors and x is a null vector, then scalars bi

exist such that

x =
∑

biUi (x).

Every unitary bivector Ui defines a 2+2 almost product structure. These kinds of
structures have been considered elsewhere [29] and have been used to classify the type D
spacetimes attending to the geometric properties of the Weyl principal structure. The 1-form
δUi ≡ − tr ∇Ui collects the information about the minimal and the foliation character of the
2-planes that Ui defines. More precisely, we have [29, 30]:

Lemma 2. Let Ui be a unitary bivector and λi = Ui (δUi ), and let us consider the 2+2 almost
product structure that Ui defines. It holds:

(i) Both planes are minimal if, and only if, Re(λi) = 0.
(ii) Both planes are foliations if, and only if, Im(λi) = 0.

The umbilical nature of the 2-planes defined by Ui can also be characterized in terms of the
covariant derivative of Ui [29, 30]. This property is equivalent to the null principal directions
of Ui being shear-free geodesics and can be stated in terms of the 1-forms λj as:

Lemma 3. Let us consider the 2+2 structure defined by a bivector U1, and let us take {U2,U3}
to complete an orthonormal frame. The principal directions of U1 are shear-free geodesics if,
and only if, λ2 = λ3.

For a given orthonormal frame {eα} six connection 1-forms ωβ
α

(
ωβ

α = −ωα
β

)
are defined

by ∇eα = ωβ
α ⊗eβ . These equations are equivalent to the first structure equations in the Cartan

formalism. If we consider {Ui} the orthonormal frame of bivectors associated with {eα}, the
six connection 1-forms can be collected into three complex ones 	

j

i

(
	

j

i = −	i
j

)
that are

defined by

	
j

i = ω
j

i − i εijk ωk
0.
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In terms of these complex 1-forms, the first Cartan structure equations are equivalent to

∇Ui = 	
j

i ⊗ Uj . (4)

The second Cartan structure equations follow by applying the Ricci identities to the bivectors
{Ui},∇[α∇β]Ui εδ = Ui ε

µRµδβα + Ui
µ

δRµεβα , and they can be written as

d	k
i − 	

j

i ∧ 	k
j = i

√
2εikm Riem(Um), (5)

where Riem(Um)αβ = 1
2Rαβµν(Um)µν . Taking into account the invariant decomposition of the

Riemann tensor into the trace-free part, the Weyl tensor, and the trace, the Ricci tensor, we
have

Riem = W + Q ∧ g, Q = 1
2

[
Ric − 1

6 (tr Ric)g
]
.

As the self-dual Weyl tensor W = 1
2 (W − i ∗W) satisfies W(U) = W(U) for every self-dual

2-form U , the second term of equations (5) becomes

Riem(Um) = W(Um) + Um × Q + Q × Um. (6)

The three complex 1-forms λi = Ui (δUi ) contain the 24 independent connection
coefficients as the 	

j

i do. In fact, by using (1) and the first structure equations (4), both
sets

{
	

j

i

}
and {λi} can be related by

λi ≡ Ui (δUi ) = − i√
2
εijkUk

(
	

j

i

)
. (7)

And the inverse of these expressions says that for i, j, k different

Uk

(
	

j

i

) = i√
2
εijk(λi + λj − λk), (i, j, k �=). (8)

There is a subset of the second structure equations (5) that can be concisely stated in terms of
the 1-forms λi . Indeed, if we calculate

(
d	

j

i ,Uk

)
from the second structure equations (5) and

use (6) to replace Riem(Uk,Uk), we get that for i, j, k different, it holds:

∇ · λi = λ2
i − (λj − λk)

2 − W(Ui ,Ui ) − 1
2 tr Q, (i, j, k �=), (9)

where we have denoted ∇· ≡ tr ∇ and λ2
i = g(λi, λi).

3. Type I metrics with vanishing Cotton tensor: generalized Szekeres–Brans theorem

In a type I spacetime the Weyl tensor defines an orthonormal frame {Ui} of eigenbivectors. If
we denote by αi the corresponding eigenvalues, the self-dual Weyl tensor takes the canonical
expression [35]

W = −
∑

αiUi ⊗ Ui . (10)

So, the structure equations (4), (5) can be written in this frame of principal bivectors. The
integrability conditions for the second structure equations (5) are the Bianchi identities which
equal the divergence of the Weyl tensor with the Cotton tensor P:

∇ · W = P, Pµν,β ≡ ∇[µQν]β. (11)

Hereafter we will consider spacetimes with vanishing Cotton tensor. Then, the Bianchi
identities (11) state that the Weyl tensor is divergence-free, ∇ ·W = 0. If we use the canonical
expression (10) to compute the divergence of the Weyl tensor and we take into account that
∗Uj = iUj , the Bianchi identities become

dαi = (αj − αk)(λj − λk) − 3αiλi, (i, j, k �=), (12)
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where i, j, k take different values. Let us suppose now that one of the eigenvalues, say αi ,
takes the value zero. So, from (12) we have 0 = (αj − αk)(λj − λk). As αj �= αk , it
must be λj − λk = 0. This condition is equivalent to the principal directions of Ui being
shear-free geodesics as lemma 3 states, and by the generalized Goldberg–Sachs theorem [31]
the spacetime must be algebraically special. Thus we have generalized a previous result,
which can be inferred from a paper by Szekeres [11] and was stated by Brans [12], on the
non-existence of vacuum type I solutions with a vanishing Weyl eigenvalue to the case of
non-vacuum solutions with vanishing Cotton tensor.

Theorem 1. There is no type I spacetime with vanishing Cotton tensor for which one of the
eigenvalues of the Weyl tensor is zero.

The Weyl tensor is trace-free, α1 + α2 + α3 = 0, and consequently only two of the three
equations (12) are independent. So, we can write Bianchi identities explicitly as

dα1 = (α1 + 2α2)(λ2 − λ3) − 3α1λ1

dα2 = (2α1 + α2)(λ1 − λ3) − 3α2λ2.
(13)

From these equations a direct calculation leads us to the following:

Proposition 1. In a type I spacetime with vanishing Cotton tensor the scalars {αi} depend on
a function (dαi ∧ dαj = 0) if, and only if, one of the following conditions holds:

(i) λi ∧ λj = 0,∀i, j ,

(ii)
∑

piλi = 0, where the scalars pi satisfy
∑

i,j,k �=
pi(αj − αk)

2 = 0.

If we take into account lemmas 2 and 3, the last proposition states that the functional
dependence of the Weyl eigenvalues is related to restrictions on the geometric properties
of the principal 2-planes. Of course we are under the hypothesis of a vanishing Cotton
tensor. We can find a similar situation in type D spacetimes where some families determined
by imposing conditions on the gradient of the Weyl eigenvalue turn out to be those classes
defined attending the geometric properties of the Weyl principal structure [29]. The above
result for the case of type I metrics leads us to the following classification [7]:

Definition 1. We will say that a type I spacetime is of class Ia (a = 1, 2, 3) if the dimension
of the space that the λi generate is a.

Differential conditions of this kind were imposed by Edgar [10] on the type I spacetimes, and
he showed that in the vacuum case his classification also has consequences on the functional
dependence of the Weyl eigenvalues. We have slightly modified the Edgar approach in order
to obtain a classification that is symmetric in the principal structures of the Weyl tensor. We
stress the invariant nature of this classification. It is based on the vector Weyl invariants λi

which have a precise geometric meaning: they contain the information about the properties of
the Weyl principal planes (see lemmas 2 and 3). On the other hand, these geometric properties
can be interpreted in terms of the kinematical behaviour of the null principal directions of
these planes [29]. Let us take into account that λi cannot all be zero because this fact implies
that all of the connection coefficients are so, and the spacetime would be plane. So, after
definition 1, proposition 1 can be stated as:

Proposition 2. In a type I spacetime with vanishing Cotton tensor the Weyl eigenvalues depend
on a function (dαi ∧ dαj = 0) if, and only if, it is class I1 or it is class I2 and the second
condition of proposition 1 is satisfied.
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Different authors [10, 12] have shown that when the Cartan structure equations in vacuum
are referred to the Weyl principal frame the Bianchi identities have non-trivial integrability
conditions. First considered by Bell and Szekeres [8], these integrability conditions were
called the post-Bianchi equations [12] and they have usually been written in the NP formalism
[10, 12]. Here we can easily obtain these post-Bianchi equations in tensorial formalism
for spacetimes with vanishing Cotton tensor. Indeed, taking the exterior derivative of (13)
we obtain

1

α2 − α3
dλ1 +

1

α3 − α1
dλ2 +

1

α1 − α2
dλ3 = 0

α1

α2 − α3
dλ1 +

α2

α3 − α1
dλ2 +

α3

α1 − α2
dλ3 + 4(λ1 ∧ λ2 + λ2 ∧ λ3 + λ3 ∧ λ1) = 0.

(14)

If we take into account the Bianchi identities (13), the integrability conditions of the post-
Bianchi equations (14) are now an identity and so, no new equations are obtained as other
authors claimed [10, 12]. Moreover, only 9 of these 12 complex equations are independent of
the Cartan structure equations [12].

4. Aligned Papapetrou fields: the vacuum type I case

If ξ is a (real) Killing vector its covariant derivative ∇ξ is named Killing 2-form or Papapetrou
field [15, 16]. The Papapetrou fields have been used to study and classify spacetimes admitting
an isometry or an homothetic or conformal motion (see [16–24]). In this way, some classes of
vacuum solutions with a principal direction of the Papapetrou field aligned with a (Debever)
null principal direction of the Weyl tensor have been considered [21]. Also, the alignment
between the Weyl principal plane and the Papapetrou field associated with the timelike Killing
vector has been shown in the Kerr geometry [21, 25].

Is it possible to determine all the vacuum solutions having this property of the Kerr metric?
Elsewhere [26] we give an affirmative answer to this question for the case of type D spacetimes
by showing that the type D vacuum solutions with a timelike Killing 2-form aligned with the
Weyl geometry are the Kerr–NUT metrics. Here we analyse the type I case and will see that the
spacetime necessarily admits a group G3 of isometries. We begin by showing in this section
that these solutions belong to class I1 of definition 3.

If {Ui} is an orthonormal basis of the self-dual 2-form space, the Papapetrou field ∇ξ

becomes

∇ξ =
∑

�iUi +
∑

�̃i Ũi , (15)

where �i are three complex functions and ˜ means complex conjugate. Let us suppose that
U1 is ξ -invariant, that is, LξU1 = 0. If we denote by At the transpose of the tensor A, this
condition reads

i(ξ)∇U1 + (∇ξ × U1) − (∇ξ × U1)
t = 0. (16)

Contracting this equation with U2 and U3, we get

�2 = − i√
2

(
ξ, 	1

3

)
, �3 = − i√

2

(
ξ, 	2

1

)
. (17)

So, if U1 is ξ -invariant, two complex components (or four real ones) of the Killing 2-form ∇ξ

are determined by ξ . If, in addition, U2 (and so U3) are invariant, then ∇ξ is totally determined
by ξ . As a consequence of this result, a group that acts on a spacetime admitting an invariant
frame must be simply transitive. In a type I spacetime the Weyl tensor defines an invariant
orthonormal frame {Ui} of eigenbivectors. Thus, we have the following:
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Proposition 3. Let {Ui} be the principal 2-forms of a type I spacetime and
{
	

j

i

}
the associated

complex connection 1-forms. If ξ is a Killing field, then the Papapetrou field becomes
∇ξ = ∑

�iUi +
∑

�̃i Ũi where, for every cyclic permutation,

�i ≡ −(∇ξ,Ui ) = − i√
2

(
ξ, 	k

j

)
. (18)

In order to clarify what kind of alignment between the Killing 2-form and the Weyl tensor
is analysed in this work we give the following:

Definition 2. We say that a Papapetrou field ∇ξ is aligned with a bivector U if both 2-forms
have the same principal 2-planes, that is, ∇ξ = �U + �̃Ũ . We say that a Papapetrou field ∇ξ

is aligned (with the Weyl tensor) if it is aligned with a Weyl principal bivector.

After this definition, a corollary immediately follows from proposition 3:

Corollary 1. Let ξ be a (real) Killing field in a type I spacetime, and let
{
	

j

i

}
be the (complex)

connection 1-forms associated with the principal bivectors of the Weyl tensor. The necessary
and sufficient condition for the Papapetrou field ∇ξ to be aligned with the principal bivector
Ui (∇ξ = �Ui + �̃Ũi ) is for ξ to be orthogonal to the two complex connection 1-forms 	

j

i .

This result is independent of the Ricci tensor. Now we will analyse the case of vacuum
solutions in detail.

In a type I spacetime, the connection 1-forms associated with the principal bivectors of
the Weyl tensor must also be ξ -invariant. This condition means that d

(
ξ, 	

j

i

) = −i(ξ) d	
j

i .
Moreover, if the Ricci tensor is zero, we can use the second structure equations (5) with Q = 0
to substitute the differential of the connection 1-forms and we obtain that every Killing field
ξ must satisfy

d�i = �j	
j

i + αiUi (ξ ). (19)

Thus, if the Killing 2-form ∇ξ is aligned with a principal bivector, let us say U3, ξ must be
orthogonal to 	1

3 and 	2
3 and so �1 = 0 = �2. In this particular case, equations (19) become

d�3 = α3U3(ξ), �3	
3
2 = −α2U2(ξ), �3	

3
1 = −α1U1(ξ). (20)

Taking into account that U2
i = 1

2g, from the second of the equations above we obtain
ξ = 2�3

α2
U2

(
	2

3

)
. So, it follows that if ξ1 and ξ2 are two Killing fields which are orthogonal to

the same pair of connection 1-forms, then ξ1 ∧ ξ2 = 0. This result can be stated as

Proposition 4. Let {Ui} be the principal bivectors of a type I vacuum solution. Then, for every
Ui , there is at most, one (real) Killing field ξi such that its associated Papapetrou field ∇ξi is
aligned with Ui .

Equations (20) can be written in the equivalent form

ξ = 2

α3
U3(d�3), 	2

3 = i
√

2
α2

α3
U1(d ln �3), 	3

1 = i
√

2
α1

α3
U2(d ln �3). (21)

Taking into account these expressions and (7), from Bianchi identities (13) we obtain

d(α3)
2 = 4

(
α2

2 + α2α3 + α2
3

)
d ln �3. (22)

So dα3 ∧d ln �3 = 0, and if we differentiate (22) we have (2α2 +α3) dα2 ∧d ln �3 = 0. Then,
as (2α2 + α3) �= 0 we conclude that

dα2 ∧ d ln �3 = 0. (23)
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Moreover, if α2
2 + α2α3 + α2

3 = 0, from (22) we have dα3 = 0 and so dα2 = 0. Thus, the
eigenvalues are constant and the Bianchi identities lead to λi ∧ λj = 0. So, the spacetime
belongs to class I1. On the other hand, if α2

2 + α2α3 + α2
3 �= 0, from (22) and (23) we have

dα2 ∧ dα3 = 0. But (21) and (13) imply

dα2 ∧ dα3 = 2

α1
(α1 − α2)

(
α2

2 + α2α3 + α2
3

)
U2

(
	3

1

) ∧ U3
(
	2

1

)
and so, it follows that U2

(
	3

1

) ∧ U3
(
	2

1

) = 0. From expressions (7), this last condition states
that λi ∧ λj = 0, and so we have established:

Theorem 2. A vacuum type I spacetime which admits a Killing field with an aligned Papapetrou
field belongs to class I1.

In the following sections we study the symmetries of the class I1 spacetimes and will show
that they admit more than one Killing field. Consequently, a unique symmetry with an aligned
Papapetrou field implies that other symmetries exist. More precisely, from theorem 2 above
and theorem 3 and proposition 12 that we will show in following sections, we can state:

Corollary 2. A vacuum type I spacetime which admits a Killing field with an aligned
Papapetrou field admits, at least, a three-dimensional group of isometries.

5. Type I1 vacuum solutions: basic properties and classification

In this section we analyse some basic properties of type I1 vacuum metrics which lead us to
a natural subclassification. Afterwards, in the following sections, we study the symmetries
of these spacetimes. We shall start our analysis of type I1 vacuum metrics for the case of
solutions having a non-constant eigenvalue α1. The case of all the eigenvalues being constant
will be dealt with in the last section.

Type I1 vacuum solutions satisfy λi ∧ λj = 0. Then, if dα1 �= 0, Bianchi identities (13)
show dα1 ∧ λi = 0. Now expressions (8) say that three functions γi exist such that

	
j

i = γkεijk Uk(dα1). (24)

In this case, the second structure equations (5) can be written as

dUi (dα1) = −d ln γi ∧ Ui (dα1) − γjγk

γi

Uj (dα1) ∧ Uk(dα1) + i
√

2
αi

γi

Ui (25)

for every cyclic permutation i, j, k. In terms of these functions γi , the Bianchi identities (13)
become

dα1 = 1√
2
(γ3(α1 − α2) + γ2(α1 − α3)) dα1

dα2 = 1√
2
(γ3(α2 − α1) + γ1(α2 − α3)) dα1.

(26)

The second equation above says that α2 depends on α1. Now we will prove that the functions
γk depend on α1 too. From equations (24) we have 	2

1 = γ3U3(dα1), and we can calculate
∇	2

1 and make use of (4) to substitute ∇U3. Thus, we obtain

∇	2
1 = d ln γ3 ⊗ 	2

1 − γ3(∇dα1) × U3 − γ3

γ1
	3

1 ⊗ 	3
2 +

γ3

γ2
	3

2 ⊗ 	3
1 .

Contracting this equation with U1 and U2 and taking into account (24) and that ∇dα1 is
symmetric, we get

Uj

(
	2

1, d ln γ3
) = −(

Uj , d	2
1

) = 0 j = 1, 2,
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where, in the last equality, we have used the second structure equations (25) and
expressions (24). So we find that dγ3 is orthogonal to U1

(
	2

1

)
and U2

(
	2

1

)
, or from (24),

dγ3 is orthogonal to U1(dα1) and U2(dα1). If we repeat this calculation replacing 	2
1 by 	3

1,
we also see that dγ2 is orthogonal to U3(dα1) and U1(dα1). According to (26) γ3 depends on
α1 and γ2, so we have that dγ3 is orthogonal to every Uj (dα1). Equations (26) say that the
same applies for dγ2 and dγ1. Thus we have established that, for all i, j ,

(dγi,Uj (dα1)) = 0. (27)

If dα1 is not a null vector, {dα1,Ui (dα1)} is an orthogonal frame and (27) proves that
dγj ∧ dα1 = 0. So, we can state:

Lemma 4. Let g be a class I1 vacuum solution with the Weyl tensor having an eigenvalue α1

such that (dα1)
2 �= 0. Then the functions γj given in (24) satisfy dγj ∧ dα1 = 0.

On the other hand, the second structure equations (25) give us the differential of the
1-forms Ui (dα1). If we consider an arbitrary (complex) vector field χ and the 1-forms
{Ui (χ)}, expressions (1) and (4) can be used to compute the Lie derivative Lχg in terms of
the exterior differentials {dUi (χ)} and the connection coefficients associated with {Ui}. More
precisely, we have:

Lχg ≡ (∇χ + t∇χ) = 2(U1 × �1 + �2 × U2 + i
√

2U1 × �3 × U2), (28)

where (�i)αβ = −d(Ui (χ))αβ − χε
(∇α(Ui )εβ − ∇β(Ui )εα

)
. As ∇ dα1 is a symmetric tensor

and d(dα1)
2 = 2(∇dα1, dα1), we can use expression (28) with χ = dα1 and the second

structure equations (25) to compute d(dα1)
2. Thus we obtain

d(dα1)
2 = − 1

γ3
(dα1)

2

(
dγ3 +

1

2
(γ1γ2 − γ2γ3 − γ1γ3) dα1

)

− (d ln γ1, dα1) dα1 + i
√

2

(
α3

γ3
− α1

γ1
− α2

γ2

)
dα1. (29)

If dα1 is not a null vector lemma 4 applies and dγ3 ∧ dα1 = 0. Then, from (29) we have:

Lemma 5. Let g be a class I1 vacuum solution with the Weyl tensor having an eigenvalue α1

such that (dα1)
2 �= 0. Then the function (dα1)

2 satisfies d(dα1)
2 ∧ dα1 = 0.

Finally we will prove now that dα1 cannot be a null vector. Let us suppose (dα1)
2 = 0.

Then, from lemma 1, dα1 would be a combination of the vectors Ui (dα1), and from (27) we
have

(dα1, dγi) = 0. (30)

Using (7) to express λi in terms of γi and dα1, the equations (9) for the vacuum case can be
written as

− i√
2
(d(γj + γk), dα1) − i√

2
(γj + γk)�α1 + γjγk(dα1)

2 = 2αi

for every cyclic permutation of i, j, k. Now, if (dα1)
2 = 0 and taking into account (30), we

have (γj + γk)�α1 = i 2
√

2αi . Solving these equations we obtain

γ2 = α2

α3
γ3, γ1 = α1

α3
γ3. (31)

On the other hand, taking into account (30) and (dα1)
2 = 0, equation (29) says that

α3
γ3

− α1
γ1

− α2
γ2

= 0. But from (31) we arrive at α3 = 0, which is not compatible with the
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vacuum condition as a consequence of the Szekeres–Brans theorem. Therefore, dα1 cannot
be a null vector. We summarize these results and lemmas 4 and 5 in the following

Proposition 5. Let g be a class I1 vacuum solution with a non-constant Weyl eigenvalue α1.
Then, it holds:

(i) (dα1)
2 �= 0

(ii) d(dα1)
2 ∧ dα1 = 0

(iii) dγk ∧ dα1 = 0 where γk are the functions given in (24).

The properties of the vacuum solutions of class I1 summarized in proposition 5 give us
the basic elements to analyse this family of metrics when a non-constant eigenvalue α1 exists.
Indeed, dα1 being a non-null vector, we can use (3) with x = dα1 to eliminate Ui from the
second structure equations (25) and we obtain that those equations become

dUi (dα1) = µ̄i(α1) dα1 ∧ Ui (dα1) + ν̄i (α1)Uj (dα1) ∧ Uk(dα1), (32)

where the functions µ̄i and ν̄i are given by

µ̄i = µ̄i(α1) ≡ −d ln γi

dα1
+

√
2αi

γi(dα1)2
, ν̄i = ν̄i (α1) ≡ − i

(
2αi

γi(dα1)2
+

γjγk

γi

)
.

If Ui (dα1) satisfy the second structure equations (32), we can use (2) to find the metric
tensor as

g = 1

(dα1)2

(
dα1 ⊗ dα1 − 2

∑
Ui (dα1) ⊗ Ui (dα1)

)
. (33)

This seems a hard task, not because of the procedure, but because real coordinates must be
adapted to the complex 1-formsUi (dα1). In this work we do not go on to the explicit integration
of the vacuum Einstein equation, but some results of this kind will be presented elsewhere
[32]. At this point, it is clear that the integration of the system (32) and, consequently, the
gravitational field which is a solution of it, depends strongly on the number of the Ui (dα1)

that are integrable 1-forms. We will see in the next section that this condition determines the
group of isometries of the spacetime. So it seems suitable to give an invariant classification
of type I1 spacetimes that takes into account these restrictions:

Definition 3. We will say that a type I1 vacuum metric with dα1 �= 0 is of class I1A

(A = 0, 1, 2, 3) if there are exactly A integrable 1-forms in the set {Ui (dα1)}.

6. Class I1 vacuum solutions with non-constant eigenvalues: symmetries

Let us consider now a type I metric that admits a Weyl eigenvalue α1 with non-null gradient,
(dα1)

2 �= 0. The orthogonal frame {dα1,Ui (dα1)} is built up with invariants and so these
1-forms and their square (dα1)

2 must be invariant with respect to every Killing field ξ . On the
other hand, if ξ is a vector field such that dα1,Ui (dα1) and (dα1)

2 are ξ -invariant, then it must
be a Killing field because of (33). Thus, we arrive at the following result:

Lemma 6. Let g be a type I metric such that an eigenvalue of the Weyl tensor exists satisfying
(dα1)

2 �= 0, and let Ui be the principal bivectors. Then, ξ is a Killing field if, and only if, it
satisfies

Lξ dα1 = Lξ Ui (dα1) = Lξ (dα1)
2 = 0.

In the case of a vacuum class I1 spacetime with a non-constant eigenvalue α1, the function
(dα1)

2 �= 0 depends on α1 as proposition 5 states. So, the vector fields orthogonal to dα1 are
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those that leave invariant the scalar (dα1)
2. But as the space orthogonal to dα1 is generated by

the vectors Ui (dα1), every Killing field ξ must be a combination of them. Then, lemma 6 can
be stated for the I1 case as:

Proposition 6. Let g be a class I1 vacuum metric such that dα1 �= 0. A vector ξ is a Killing
field if, and only if, it satisfies:

(i) ξ ∧ U1(dα1) ∧ U2(dα1) ∧ U3(dα1) = 0.
(ii) Lξ Ui (dα1) = 0.

If we consider three functions depending on α1, mi(α1), then the 1-forms Mi = mi(α1)Ui (dα1)

also satisfy the conditions (i) and (ii) of proposition 6. Moreover mi(α1) exist such that the
equations (32) can be written for the 1-forms Mi = mi(α1)Ui (dα1) as the exterior system

dM1 = δ1M2 ∧ M3, dM2 = δ2M3 ∧ M1, dM3 = δ3M2 ∧ M1, (34)

where δi takes the value 0 if Ui (dα1) is integrable and 1 if this does not hold. Thus, the
1-forms Mi = mi(α1)Ui (dα1) can be considered as the dual 1-forms of the reciprocal group
of a transitive group G3 of isometries. Moreover, the (complex) Bianchi type will depend on
the integrable character of every U1(dα1). Thus, taking into account definition 3 we have:

Theorem 3. The class I1 vacuum solutions with a non-constant Weyl eigenvalue admit a G3

group of isometries. The Bianchi type depends on the subclasses I1A.

These results allow us to analyse in detail the Bianchi type of every class I1A and to study
when a Killing 2-form can be aligned with the Weyl tensor.

6.1. Class I10 vacuum solutions

If none of the directions Mi is vorticity free, we can choose every δi of (34) to take value 1.
So, complex coordinates exist such that the 1-forms Mi take the canonical expression of the
reciprocal group of the (complex) Bianchi type VIII that corresponds to the real types VIII
and IX [31]. But the system can also be integrated in complex coordinates to get

M1 = − i

2
[ex dz + e−x(2 dy − y2 dz)]

M2 = 1

2
[ex dz − e−x(2 dy − y2 dz)] (35)

M3 = i(dx − y dz).

In this coordinate system the (complex) Killing fields can be expressed as

ξ = (k2 + 2k1z)∂x + (y(2k1 + k2) − 2k1)∂y + (k1z
2 + k2z + k3)∂z. (36)

To see if an aligned Killing 2-form exists we must impose a Killing field to be orthogonal
to two connection 1-forms. As every connection 1-form takes the direction of one of the Mi ,
we must see if there is a Killing field which is orthogonal to two of the 1-forms Mi . But from
the general expression of a Killing field (36) if ξ is orthogonal to M3 then ξ = 0. The only
possibility is ξ to be orthogonal to M1 and M2. But as ex and e−x are independent, we also
obtain ξ = 0. So, we can conclude:

Proposition 7. Every vacuum solution of class I10 admits a G3 of Bianchi type VIII or IX. In
such a spacetime there is no Killing 2-form aligned with the Weyl tensor.
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6.2. Class I11 vacuum solutions

Let us suppose that one of the 1-forms Mi , say M2, is integrable. Then, the exterior system
(34) becomes the system satisfied by the dual 1-forms of the reciprocal group of the (complex)
Bianchi type VI which corresponds to the real types VI or VII. Both cases can be integrated
at once in complex coordinates {x, y, z} to obtain

M1 + M3 = e−z dx, M1 − M3 = ez dy, M2 = dz. (37)

In this coordinate system, the field

ξ = (k1 + k3x)∂x + (k2 − k3y)∂y + k3∂z (38)

is a (complex) Killing field for arbitrary values of the constants ki .
To see if there is a Killing field with an aligned Killing 2-form, we must impose a Killing

field to be orthogonal to two of the 1-forms Mi . A straightforward calculation shows that in
this case

(ξ,M2) = k3

(ξ,M1) = (k1 + k3x) e−z + (k2 − k3y) ez

(ξ,M3) = (k1 + k3x) e−z − (k2 − k3y) ez.

From here it is easy to show that there is no Killing field that is orthogonal to two of the
connection 1-forms. So, we have shown:

Proposition 8. Every vacuum solution of class I11 admits a G3 of Bianchi type VI or VII. In
such spacetime there is no Killing 2-form aligned with the Weyl tensor.

6.3. Class I12 vacuum solutions

Let us suppose that M1 and M2 are integrable. The exterior system (34) can be easily integrated
in complex coordinates to get

M1 = dx, M2 = dy, M3 = −x dy + dz (39)

which correspond to the reciprocal group of a Bianchi type II. Moreover, for arbitrary values
of the constants ki the field

ξ = k1∂x + k2∂y + (k1y + k3)∂z

is a (complex) Killing field.
A straightforward calculation shows that the only Killing field that is orthogonal to two

connection 1-forms is ξ = ∂z. But as z is a complex coordinate we cannot conclude that it
defines a unique real Killing field and so we cannot ensure that an aligned (real) Killing 2-form
exists. Thus, at this point we can state:

Proposition 9. Every vacuum solution of class I12 admits a G3 of Bianchi type II. If Uj (dα1) is
the unique non-integrable 1-form, then Uj is the only principal bivector that could be aligned
with a Killing 2-form.

6.4. Class I13 vacuum solutions

If all of the 1-forms Mi are integrable, the system (34) says that three complex functions {xi}
exist, such that

Mi = dxi. (40)

This corresponds to a commutative group G3 of isometries.
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Moreover, for every pair of connection 1-forms a complex Killing field exits such that its
Killing 2-form is aligned with it. But as happened before we cannot conclude here that a real
aligned Killing 2-form exists. At this point we can state:

Proposition 10. Every vacuum solution of class I13 admits a G3 of Bianchi type I. Every
principal bivector Ui could be aligned with a Killing 2-form.

7. Type I vacuum solutions with constant eigenvalues

If a type I metric satisfies dαi = 0, the Bianchi identities (13) imply

λ2 = (2α1 + α2)
2

(α1 + 2α2)2
λ1, λ3 = (α1 − α2)

2

(α1 + 2α2)2
λ1 (41)

and so we have that the metric always belongs to class I1. This fact can be stated as

Proposition 11. Every type I spacetime with vanishing Cotton tensor and constant Weyl
eigenvalues is of class I1.

Using (8), conditions (41) can be stated in terms of the connection 1-forms as

	3
1 = − i

√
2
α1 − α2

α1 − α3
U1

(
	2

1

)
, 	3

2 = − i
√

2
α2 − α1

α2 − α3
U2

(
	2

1

)
. (42)

Putting (41) in (9) with Q = 0, we obtain

α1
2 + α1α2 + α2

2 = 0, (λ1, λ1) = −α1

4
, ∇ · λ1 = 0. (43)

The first of these equations states that trW2 = 0 and so, the four Debever vectors define a
symmetric frame as was established in [4]. Moreover, as (λ1, λ1) = −α1

4 and using (7) we
deduce (

	2
1

)2 = −α2
2

α1
= −α3

where the first expression of (43) has been used to eliminate α2
2. So,

(
	2

1

)2 �= 0, and we can
consider the orthogonal frame

{
	2

1,Ui

(
	2

1

)}
, where every 1-form has, up to a factor 2, the

same constant modulus
√−α3. Taking into account (42), the second structure equations (5)

with Q = 0 just become

d	2
1 = i

√
2 	2

1 ∧ U3
(
	2

1

)
dU1

(
	2

1

) = i
√

2
α3

α2
U1

(
	2

1

) ∧ U3
(
	2

1

)
(44)

dU2
(
	2

1

) = i
√

2
α1

α2
U2

(
	2

1

) ∧ U3
(
	2

1

)
.

As the Weyl eigenvalues are constant, the integrability conditions of (44) state dU3
(
	2

1

) = 0.
Then, the exterior system can easily be integrated in complex coordinates {x, y, z,w} to obtain

	2
1 = exp(−i

√
2w) dx, U1

(
	2

1

) = exp

(
−i

√
2
α3

α2
w

)
dy

U2
(
	2

1

) = exp

(
−i

√
2
α1

α2
w

)
dz, U3

(
	2

1

) = dw.

(45)

The 1-forms (45) define an orthogonal frame built up with invariants. So, ξ is a Killing field
if, and only if, it leaves the frame unchanged, Lξ	

2
1 = 0, Lξ Ui

(
	2

1

) = 0. If we write ξ as a
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linear combination of the coordinate fields {∂x, ∂y, ∂z, ∂w}, we find that for arbitrary values of
the constants ki , the fields

ξ = k4∂w + (−i
√

2k4x + k1)∂x +

(
−i

√
2

α3

α2
k4y + k2

)
∂y +

(
−i

√
2

α1

α2
k4z + k3

)
∂z (46)

are Killing fields, and so, a G4 exists. Then, the spacetime is the Petrov homogeneous vacuum
solution [31, 33]:

Proposition 12. The only type I vacuum solution with Weyl constant eigenvalues is the Petrov
solution, and so it admits a four-dimensional group of isometries.

This proposition provides a intrinsic (depending solely on the metric tensor) characterization
of the Petrov homogeneous vacuum solution.

Indeed, the Petrov solution can be found as the only one satisfying [33]: (i) vacuum, (ii)
existence of a simply transitive group G4 of isometries. The first condition is intrinsic because
it imposes a restriction on a metric concomitant, the Ricci tensor. Nevertheless, the second
one imposes equations that mix up, in principle, elements other than the metric tensor (Killing
vectors of the isometry group). Proposition 12 substitutes this last non-intrinsic condition
for an intrinsic one: the Weyl tensor is Petrov type I with constant eigenvalues. Moreover,
the characterization can also become explicit because the metric concomitants admit known
explicit expressions in terms of the metric tensor [35]. More precisely, if we consider that
Weyl constant eigenvalues is equivalent to constant Weyl symmetric scalars, we have:

Theorem 4. Let Ric(g) and W ≡ W(g) be the Ricci and the self-dual Weyl tensors of a
spacetime metric g. The necessary and sufficient conditions for g to be the Petrov homogeneous
vacuum solution are

Ric(g) = 0, (trW2)3 �= 6(trW3)2, d trW2 = d trW3 = 0. (47)

If we want to study the alignment of the Killing 2-forms with the Weyl tensor, we can
compute the product of the Killing tensors with the connection 1-forms taking into account
(45) and (42). Thus, we obtain(

ξ, 	2
1

) = 0 ⇐⇒ −i
√

2k4x + k1 = 0(
ξ, 	3

1

) = 0 ⇐⇒ −i
√

2
α3

α2
k4y + k2 = 0

(
ξ, 	3

2

) = 0 ⇐⇒ −i
√

2
α1

α2
k4z + k3 = 0.

So, for every pair of connection 1-forms there is a Killing field which is orthogonal to them.
In order to see if an aligned Killing 2-form exists, we should have to prove if the complex
Killing field defines only a real one. At this point we can state:

Proposition 13. The Petrov homogeneous vacuum solution could admit a Killing 2-form
aligned with every Weyl principal bivector.

8. Concluding remarks

The results in this work show that the alignment of the Papapetrou field associated with the
Killing vector of a type I vacuum solution with an isometry imposes strong complementary
restrictions on the metric tensor, namely, it admits a G3 or a G4 group of isometries. In
contrast, we know [26] that in the type D vacuum case the Kerr–NUT family has a Papapetrou
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field aligned with the Weyl principal 2-planes, and this family admits only a G2, the minimum
group of isometries of a type D vacuum solution.

Our study is based in showing that the type I vacuum metrics with an aligned Papapetrou
field belong to the more degenerate class I1 of an invariant classification of type I spacetimes.
All these metrics admit at least a group G3 of isometries and the Bianchi type can also be
characterized in terms of invariant conditions imposed on the Weyl tensor. The full integration
of the vacuum equations is an ongoing study which will be presented elsewhere [32]. We are
obtaining some known spatially homogeneous vacuum solutions, such as the Kasner or Taub
metrics [31], as well as their counterparts with timelike orbits. Some solutions with timelike
orbits which are not orthogonal to a Weyl principal direction have also been found. The
explicit expression of these metrics in a coordinate system is necessary in order to complete
the results obtained here on the type I metrics with aligned Papapetrou fields.

We have shown here that a type I vacuum metric with Weyl constant eigenvalues admits a
group G4 of isometries and, consequently, it is the Petrov homogeneous vacuum solution [33].
This result allows us to give an intrinsic and explicit identification of the Petrov solution in
theorem 4. Elsewhere [34] we have pointed out the interest in obtaining a fully intrinsic and
explicit characterization of a metric or a family of metrics. We have also explained the role
that the covariant determination of the Ricci and Weyl eigenvalues and eigenvectors plays in
this task [35]. In a natural sequel to the present paper [32] we will integrate vacuum equations
by using a method which allows us to label every solution. In this way we will obtain an
intrinsic and explicit algorithm to identify every type I vacuum metric admitting an aligned
Papapetrou field.
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