

Introduction	
Bibliography	
 Duda, Hart, Stork "Pattern Classification", W Webb "Statistical Pattern Recognition", 2002. Hastie, Tibshirani, Friedman "The Elements of Springer 2001. Devroye, Gyorfi, Lugosi "A Probabilistic Theor Recognition", Springer 1996. Vapnik "The Nature of Statistical Learning", S Theodoridis, Koutroumbas "Pattern Recognition 1999. Statistical pattern recognition: a review Jain, A.K.; Duin, R.P.W.; Jianchang Mao; Statistical: a review IEEE Trans. on Pattern Intelligence, Volume 22, Issue 1, Jan. 2000 Pattern 10, 1109/34.824819 	Tiley 2001. f Statistical Learning", ry of Pattern Springer 1995. on" Academic Press, ntistical pattern Analysis and Machine age(s):4 - 37
F.J. Ferri (Univ. València) ARF Introduction	11/2009 3 / 26
Introduction	
 Machine Perception Pattern Analysis Classification/Recognition Computacional/Algorithmic/Machine Learning Data Mining 	5
• Data Winning	

Primary representation and features

Preprocessing does not usually implies a change of domain (e.g. clean images, emphasized audio signals, text files after trimming, etc. are the results).

On the other hand, in order to analyze and recognize objects, a convenient representation (features) needs to be obtained. Usually some a priori knowledge has to be known in order to obtain such representations.

Example:

a) speech recognition of "yes" or "no" answers on the phone, and b) tone detection for melody recognition are two applications with the same sensor information, similar primary representations but radically different features.

Problem definition

Given an (abstract) representation space (feature space), find a **mapping** from objects in this onto the **classification space** (a finite number of class labels) or the **regression space** another vectorial representation (usually).

In the case of classification, the mapping ${\mathcal F}$ is referred to as the classifier

$$\mathcal{F}: X \longrightarrow W = \{w_1, \ldots, w_c\}$$

The information in order to obtain \mathcal{F} is given as examples, i.e. pairs (x, w) where $x \in X$ and $w \in W$.

It must be fulfilled that $\mathcal{F}(x) = w$ for all examples (x, w).

12 / 26

A

These are objects in a 4D vector space. The meaning of each feature are measures over petals and sepals of 3 species of flowers. $W = \{w_1, w_2, w_3\}_{*}$

Examples in Matlab and PRtools

We can visualize 2D and 3D projections of the objects and define mappings for classification or regression.

Introduction

```
>> scatterd(A(:,[1 3])) ; scatterd(A(:,[1 3 4]),3)
>> wm=fisherm(A) % this is a 4D to 2D regression mapping
Fisher mapping, 4 to 2 trained mapping --> affine
>> disp(A(11,:)*wm) % mapping applied to 11th object
Iris plants, 1 by 2 dataset with 3 classes: [1 0 0]
-8.3974 0.6474
>> wc=nmc(A)*labeld % this is a classification mapping
4 to 3 trained mapping --> sequential
>> disp(A(11,:)*wc) % mapping applied to 11th object
Iris Setosa
>> B=A*wm; % Projected data from 4D to 2D
>> wcc=fisherc(B)*labeld % another classification example in 2D
>> scatterd(B),plotc(wcc) % shows objets and partition
```

```
F.J. Ferri (Univ. València)
```

Performance assessment

The solution of a particular problem is the result of a learning process: a particular mapping between X and W.

Usually the learning is done from **examples** and the goodness of the solution found has to be "measured" also using examples.

Introduction

Resubstitution estimate

We can for example use all available samples to obtain (learn) the mapping and estimate the performance on the **same** samples. This is also referred to as "apparent" error rate.

It is usual to distinguish between examples used for learning (Training set or training samples) and examples to evaluate the mapping (Test set or testing samples).

Resubstitution estimation corresponds to the particular case in which all samples are both training and testing samples.

11/2009

15 / 26

	Introduction
Error estimatio	n methods
Resubstitution	· All samples are training and testing
Holdout:	ndependent.
Cross Validatio f a	on: Multiple estimate in which samples are used (in turn) for training and testing. Final estimation is computed by averaging.
Bootstrap: 7 s f (The available samples are randomly sampled (with substitution) to extract (independent) subsets that are used for training and testing. Final estimation is done by a (corrected) average of several trials.
E Ferri (Ilniv V	(alància) ARE 11/2000 10 / 26
	Introduction
Cross-validation	n. Particular cases
Leaving-one-c	out
All examples b only example. errors is count	out one are used to learn a mapping that is applied to the The process is repeated for all examples and the number of ed.
Rotation or <i>n</i>	n-fold (stratified) cross validation
Available examused to learn a repeated for the refers to the fablock.	nples are partitioned into <i>m</i> blocks. All blocks but one are a mapping that is applied to the left block. The process is ne <i>m</i> blocks and the number of errors is counted. Stratified act that proportions of different classes are preserved in each

Error estimation

The quality of error estimation depends on several different facts:

- the effective number of examples used to learn or train the mapping.
- the (statistical) independence of the samples used for train and test.
- the number and variability of the examples used for testing.

Under some assumptions, the quality of different error estimators can be formally analyzed and characterized in terms of **bias** (deviation between the target and the estimate) and **variance** (the variability of the estimate).

F.J. Ferri (Univ. València)	ARF	11/2009	21 / 26
	Introduction		
Examples			
<pre>A=nist16 imshow(uint8(reshape(+, [Tr,Ts]=gendat(A,.6) wc=nmc(Tr) testc(Tr*wc) testc(Ts*wc) (size(Ts,1)*testc(Ts*m sum(labeld(Tr*wc)==get)</pre>	% a A(700,:),16,16))) % a class % resu % holdout en nc(Tr)) + size(Tr,1)*test labels(Tr))/size(Tr,1)	a 10-digits image da % have a loo % split data in 6 sifier (obtained fro ubstitution error (o cror (for this parti c(Tr*nmc(Ts)))/size(% cross validation % same as	taset ok 0-40% m Tr) n Tr) tion) A,1) error testc

Conditional error evaluation. Two classes

As TP + FN = 1 and FP + TN = 1 the complete (conditional) behavior of a 2-class classifier can be characterized by 2 parameters: e.g. (FP, TP).

This 2D parameter space is referred to as ROC space (from Receiver Operating Curves).

We can identify (the behavior of) some particular classifiers in this space.

