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Increasingly, investigators are implored to compute,
present, and discuss effect size statistics as a routine part
of any empirical report (American Psychological Asso-
ciation, 2001; Wilkinson & the Task Force on Statistical
Inference, 1999), yet they lag in compliance (Fidler,
Thomason, Cumming, Finch, & Leeman, 2004) and dis-
cussion of effect sizes in reports of psychological re-
search is not yet widespread. Many more investigators
would probably include reports of effect sizes if they un-
derstood clearly which statistics should be provided.
With respect to one common data-analytic approach—
the analysis of variance (ANOVA) when designs include
repeated measures—there is some reason for confusion.
Most of the advice given in textbooks is problematic or
limited in ways that I will describe shortly, and only re-
cently has a more generally useful effect size statistic for
such cases been proposed (Olejnik & Algina, 2003). 

In this article, I describe generalized eta squared (η2
G)

as defined by Olejnik and Algina (2003). I endorse their
recommendation that it be used as an effect size statistic
whenever ANOVAs are used, define under what circum-
stances it varies from eta squared (η2) and partial eta
squared (η2

P), and show how it can be computed easily
with the information provided by standard statistical
packages such as SPSS. Olejnik and Algina showed how
η2

G applies to between-subjects designs, analyses of co-
variance, repeated measures designs, and mixed designs
in general. In contrast, I emphasize application just to de-
signs that include repeated measures. My purposes are
to explain why η2

G is particularly important for such de-

signs (with such designs, differences among η2
G, η2

P, and
η2 can be quite pronounced) and to make its computa-
tion easily accessible to users of such designs. 

Before I describe η2
G in more detail, some general com-

ments regarding limitations are in order. Not all investi-
gations lend themselves to proportion of variance effect
size measures or other standardized effect size measures.
As Bond, Wiitala, and Richard (2003) argue, when mea-
surement units (e.g., reaction time in seconds) are clearly
understood, raw mean differences may be preferred. More-
over, η2

G assumes a traditional univariate ANOVA ap-
proach, as opposed to multivariate or multilevel ap-
proaches to designs that include repeated measures.
Finally, η2 and similar measures are often omnibus tests,
which some scholars regard as insufficiently focused to
capture researchers’ real concerns (Rosenthal, Rosnow,
& Rubin, 2000). 

At first glance, the matter of effect sizes in an ANOVA
context seems straightforward. ANOVAs partition a total
sum of squares into portions associated with the various
effects identified by the design. These portions can be
arranged hierarchically, and the various effects can be
tested sequentially (Cohen & Cohen, 1983). In the
ANOVA literature, the effect size statistic is usually called
eta squared (η2) and is the ratio of effect to total vari-
ance. Thus,

(1)

which is identical to the change in R2 of hierarchic mul-
tiple regression: 

(2)

η2, or the change in R2, seems fine in the context of many
hierarchic regressions or with a one-way ANOVA, but
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may become problematic when there is more than one
source of variance in an ANOVA.

For example, imagine that we computed η2 for factor
A, first in a one-way and then in a two-way factorial
ANOVA. In the second case, factor B may contribute
nonrandom differences to SStotal; thus, the two η2s may
not be comparable. Usually, η2

P is presented as a solution
to the comparability problem (Keppel, 1991; Tabachnick
& Fidell, 2001). In the context of factorial designs, η2

P re-
moves the effect of other factors from the denominator;
thus,

(3)

With a simple A � B factorial design, the total sum of
squares is partitioned into four components: SSA, SSB,
SSAB, and the error term, or SSs/AB (i.e., subjects nested
within cells defined by crossing factors A and B). Thus,
the η2

P denominators for the A effect, the B effect, and
the AB interaction would be SSA � SSs/AB, SSB � SSs/AB,
and SSAB � SSs/AB, respectively. In recognition of the ar-
guments for η2

P, current versions of SPSS provide η2
P and

not η2 when effect size statistics are requested. 
With a simple repeated measures design (i.e., one with

no between-subjects variables and only one within-
subjects variable), the total sum of squares is partitioned
into three components: SSs, SSP, and SSPs, where SSs is
the sum of squares between subjects. (I use A, B, C, etc. for
between-subjects factors; P, Q, R, etc. for within-subjects
factors; and s for the subjects “factor.”) Here, SSs reflects
the proportion of total score variance that can be ac-
counted for by knowing the particular subject, which
will be larger the more the repeated scores correlate
within subjects. As students are typically taught, a de-
sign with one repeated measures factor can be regarded
as a two-factor design, with subjects as the other “fac-
tor”; each subject represents a level of the factor, and the
mean square for error for the repeated measure factor is
thus the P � subjects interaction, or SSPs divided by its
degrees of freedom. The more scores correlate within
subjects, the smaller this error term will be, which gives
repeated measures designs their reputation for increased
power (Bakeman, 1992; Bakeman & Robinson, 2005). 

Assume the repeated measures factor is age, as it would
be in a longitudinal design. If the only factor is age, its
effect size per η2 would be the ratio of SSP to the sum of
SSs, SSP, and SSPs (i.e., SStotal), but its effect size per η2

P
would be the ratio of SSP to the sum of SSP and SSPs; that
is, for η2

P the effect of subject would be removed from
the denominator. In this case, η2

P would be larger than η2,
which, from a “bigger-is-better” standpoint, might seem
desirable; nevertheless, the “correction” of η2

P renders
the effect size for age from a longitudinal design not
comparable with a similar effect size for age from a
cross-sectional design. 

The issue of comparability of effect sizes derived from
studies with similar factors but different designs (i.e.,
cases in which a factor is between subjects in one study

and within subjects in another) has been addressed re-
cently by Olejnik and Algina (2003). They propose an η2

G
(described in detail in the next few paragraphs): an effect
size statistic that provides comparable estimates for an
effect even when designs vary. Such comparability is im-
portant not just for meta-analyses but also for the less
formal literature reviews incorporated in the introduc-
tory sections of our research reports when we want to
compare the strength of a particular factor on a specific
outcome across studies, even though the designs in which
the variables are embedded may vary. Comparability
across studies is precisely what we want in our literature;
thus, η2

G seems clearly the best choice for an effect size
statistic when ANOVAs are at issue. Still, no statistic can
solve all problems. As Olejnik and Algina wrote, no ef-
fect size measures can be comparable when different
populations are sampled. Thus, estimates of age effects
in studies on 3- to 7-year-old children, for example, can-
not be compared to similar estimates when 8- to 11-year-
old children are studied. But, other things being equal,
η2

G assures comparability of effect sizes when factors are
included in different designs, regardless of whether a
given factor is between subjects or within subjects. 

η2
G differs from η2 and from η2

P in its denominator.
Whereas η2 includes all component sums of squares in
its denominator, η2

P and η2
G include only some of them,

although typically η2
G includes more than η2

P. Computa-
tion of η2

G is based on the point of view that variability
in the data arises from two sources: The first includes
factors manipulated in the study, and the second includes
individual differences (Olejnik & Algina, 2003; as Gillett,
2003 [p. 421] noted, individual difference factors are
also called stratified by Glass, McGaw, & Smith, 1981;
organismic by Cohen & Cohen, 1983; and classification
by Winer, Brown, & Michaels, 1991). As Olejnik and
Algina note, individual differences (i.e., measured fac-
tors) can be attributable to stable or transient character-
istics of participants, such as an individual’s gender or
motivational state, and research designs can vary in the
extent to which sources of individual differences are es-
timated or controlled. However, for comparability across
between-subjects and within-subjects designs, variation
due to individual differences (which was not created by
the investigator) should remain in the denominator,
whereas variation due to manipulated factors (which was
created by the investigator) should be removed when ef-
fect sizes are being estimated. 

The effect size parameter defined by Olejnik and Al-
gina (2003) is 

(4)

where σ 2
measured includes variance due to individual dif-

ferences and where δ � 0 if the effect involves one or
more measured factors, either singly or combined in an
interaction (they would already be included in σ 2

measured)
and δ � 1 if the effect involves only manipulated factors.
Thus, the denominator for the effect size parameter in-
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cludes all sources of variance that involve a measured
factor and excludes all that involve only manipulated
factors. The exceptions are cases in which the effect in-
volved only manipulated factors, in which case its asso-
ciated variance is also included in the denominator. η2

G is
then estimated as

(5)

Specifically, for designs that include repeated measures,
not just sums of squares for subjects, but also those for
all subjects � repeated measures factor interactions would
be included in the denominator (see Tables 1–3). 

Olejnik and Algina (2003) introduced a useful con-
vention. They represented manipulated factors with up-
percase letters (A, B, C, etc.) and individual difference
factors with lowercase letters (a, b, c, etc.). I have intro-
duced the additional convention that within-subjects fac-
tors be represented with the letters P, Q, R, and onward.
These would not appear as lowercase letters; because
they are associated with times or situations that the in-
vestigator has chosen for assessment and not with indi-
vidual measures on which participants might be blocked,
repeated measures factors are regarded as manipulated
by definition. The subjects factor, whose interactions
serve as error terms in within-subjects designs, is not
manipulated, and so appears as a lowercase s. Thus, not
just designs, but all their component sums of squares can
be represented economically with the correct combina-
tion of upper- and lowercase letters. Several examples of
simple designs that include repeated measures are given
in Tables 1–3, along with the component sums of squares

that are included in each design and the formulas for the
F ratios, η2

Ps, and η2
Gs associated with their effects. 

The uppercase manipulated, lowercase measured con-
vention permits Equation 5 to be restated as follows: The
denominator for η2

G contains all sums of squares whose
representations contain a lowercase letter or letters (al-
ternatively, the denominator is the total sum of squares
reduced by any sums of squares whose representation
consists only of uppercase letters), with the added pro-
viso that the sum of squares for the effect must be in-
cluded in the denominator (again, see Tables 1–3). An
implication of Equation 5 is that, when designs include
repeated measures, η2

G will be smaller than η2
P; as was

noted earlier, the denominator for η2
G is larger because it

includes sums of squares for subjects and for all sub-
jects � repeated measures factor interactions. For exam-
ple, with two repeated measures (a PQ design), the de-
nominator for the P effect is SSP � SSPs for η2

P but the sum
of SSP, SSs, SSPs, SSQs, and SSPQs (i.e., SST � SSQ � SSPQ)
for η2

G (see Table 1). η2
P removes other sources of indi-

vidual differences, which, as Olejnik and Algina (2003)
argue, renders it not directly comparable across studies
with between-subjects and within-subjects designs. 

η2
G is easily computed from information given by stan-

dard statistical packages such as SPSS. For example, the
general linear-model repeated measures procedure in SPSS
provides sums of squares for any between-subjects ef-
fect, any between-subjects error, and all within-subjects
effects, including error (i.e., interactions with the subjects
factor), from which η2

G can be computed (specify Type I,
or sequential, sum of squares if any between-subjects
groups have unequal ns). For example, Adamson, Bake-
man, and Deckner (2004) analyzed percentages of times

η
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Table 1
Computation of Partial Eta Squared (ηη 2

P) and Generalized Eta Squared (ηη2
G) for A, P, AP, aP, and PQ Designs

Design Effect F Ratio η2
P η2

G

A SSA MSA/MSs/A SSA/(SSA � SSs/A) SSA/(SSA � SSs/A)
SSs/A —

P SSs —
SSP MSP/MSPs SSP/(SSP � SSPs) SSP/(SSP � SSs � SSPs)
SSPs —

AP SSA MSA/MSs/A SSA/(SSA � SSs/A) SSA/(SSA � SSs/A � SSPs/A)
SSs/A —
SSP MSP/MSPs/A SSP/(SSP � SSPs/A) SSP/(SSP � SSs/A � SSPs/A)
SSPA MSPA/MSPs/A SSPA/(SSPA � SSPs/A) SSPA/(SSPA � SSs/A � SSPs/A)
SSPs/A —

aP SSa MSa/MSs/a SSa/(SSa � SSs/a) SSa/(SSa � SSs/a � SSPa � SSPs/a)
SSs/a —
SSP MSP/MSPs/a SSP/(SSP � SSPs/a) SSP/(SSP � SSa � SSs/a � SSPa � SSPs/a)
SSPa MSPa/MSPs/a SSPa/(SSPa � SSPs/a) SSPa/(SSPa � SSa � SSs/A � SSPs/a)
SSPs/a —

PQ SSs —
SSP MSP/MSPs SSP/(SSP � SSPs) SSP/(SSP � SSs � SSPs � SSQs � SSPQs)
SSPs —
SSQ MSQ/MSQs SSQ/(SSQ � SSQs) SSQ/(SSQ � SSs � SSPs � SSQs � SSPQs)
SSQs —
SSPQ MSPQ/MSPQs SSPQ/(SSPQ � SSPQs) SSPQ/(SSPQ � SSs � SSPs � SSQs � SSPQs)
SSPQs —

Note—“A” represents a manipulated between-subjects factor, “a” represents a measured between-subjects factor, “P” and
“Q” represent within-subjects factors, and “s” represents the subjects factor.
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infants and mothers spent in a state they call symbol-
infused supported joint engagement using a mixed sex �
age design. For this aP design (see Table 1), where a �
infant’s sex and P � infant’s age, the sums of squares
computed by SPSS were 23.7 and 195.8 for the a and s/a
between-subjects terms, respectively, and 310.0, 4.0, and
131.6 (rounded) for the P, Pa, and Ps/A within-subjects
terms, respectively. Thus, for the sex effect η2

P � 23.7/
(23.7 � 195.8) � .11 and η2

G � 23.7/(23.7 � 195.8 �
4.0 � 131.6) � .07, whereas for the age effect η2

P �
310.0/(310.0 � 131.6) � .70 and η2

G � 310.0/(310.0 �
23.7 � 195.8 � 4.0 � 131.6) � .47. As was expected,
η2

G gives smaller values than η2
P, but both indexes indi-

cate that the age effect was more than six times stronger
than the sex effect. 

It is more difficult to recover effect size statistics from
already published articles, a situation that rightly trou-
bles meta-analysts. Usually, investigators provide F ra-
tios, from which η2

P but not η2
G can be computed: 

(6)

If all factors are manipulated between subjects, there is
no problem. In such cases, η2

G is identical to η2
P, which

can be computed from F ratios. If all factors are between
subjects but only some are manipulated, then computa-

tion of η2
G requires that the investigator provide an ANOVA

of source table—a practice that, unfortunately, seems
less common now than it was in the past. 

The greatest number of difficulties occur when de-
signs include one repeated measure or more. Even when
investigators include a source table, often the table in-
cludes only within-subjects and not between-subjects in-
formation. A total sum of squares could be computed if
a standard deviation for all scores were given, but almost
always means and standard deviations are given sepa-
rately for the repeated measures, if they are provided at
all. In such cases, investigators who wish to compare
their effect sizes with those of other studies in the liter-
ature may have no choice but to rely on η2

P computed
from F ratios. In some cases—and assuming properly
qualified interpretation—this may not be a bad alterna-
tive if it is the only one available. 

After all, there is no absolute meaning associated with
either η2

P or η2
G (except for zero values); their values gain

meaning in relation to the findings of other, similar stud-
ies. If we focus on a pair of variables (e.g., the effect of
age on receptive language or externalizing behavior) and
compare effect sizes across studies with similar designs,
it would not much matter which effect size statistic we
used. However, if we want to apply common guidelines
or if designs vary across studies, then η2

G is the effect size
statistic of choice (S. Olejnik, personal communication,

ηP
2 effect

effect error

=
×

× +
F df

F df df
.

Table 2
Computation of Partial Eta Squared (ηη 2

P) and Generalized Eta Squared (ηη2
G) for ABP, aBP, and abP Designs

Design Effect F Ratio η2
P η2

G

ABP SSA MSA/MSs/AB SSA/(SSA � SSs/AB) SSA/(SSA � SSs/AB � SSPs/AB)
SSB MSB/MSs/AB SSB/(SSB � SSs/AB) SSB/(SSB � SSs/AB � SSPs/AB)
SSAB MSAB/MSs/AB SSAB/(SSAB � SSs/AB) SSAB/(SSAB � SSs/AB � SSPs/AB)
SSs/AB —
SSP MSP/MSPs/AB SSP/(SSP � SSPs/AB) SSP/(SSP � SSs/AB � SSPs/AB)
SSPA MSPA/MSPs/AB SSPA/(SSPA � SSPs/AB) SSPA/(SSPA � SSs/AB � SSPs/AB)
SSPB MSPB/MSPs/AB SSPB/(SSPB � SSPs/AB) SSPB/(SSPB � SSs/AB � SSPs/AB)
SSPAB MSPAB/MSPs/AB SSPAB/(SSPAB � SSPs/AB) SSPAB/(SSPAB � SSs/AB � SSPs/AB)
SSPs/AB —

aBP SSa MSa/MSs/aB SSa/(SSa � SSs/aB) SSa/(SSa � SSaB � SSs/AB � SSPa � SSPaB � SSPs/aB)
SSB MSB/MSs/aB SSB/(SSB � SSs/aB) SSB/(SSB � SSa � SSaB � SSs/AB � SSPa � SSPaB � SSPs/aB)
SSaB MSaB/MSs/aB SSaB/(SSaB � SSs/aB) SSaB/(SSaB � SSa � SSs/AB � SSPa � SSPaB � SSPs/aB)
SSs/aB —
SSP MSP/MSPs/aB SSP/(SSP � SSPs/aB) SSP/(SSP � SSa � SSaB � SSs/AB � SSPa � SSPaB � SSPs/aB)
SSPa MSPa/MSPs/aB SSPa/(SSPa � SSPs/aB) SSPa/(SSPa � SSa � SSaB � SSs/AB � SSPaB � SSPs/aB)
SSPB MSPB/MSPs/aB SSPB/(SSPB � SSPs/aB) SSPB/(SSPB � SSa � SSaB � SSs/AB � SSPa � SSPaB � SSPs/aB)
SSPaB MSPaB/MSPs/aB SSPaB/(SSPaB � SSPs/aB) SSPaB/(SSPaB � SSa � SSaB � SSs/AB � SSPa � SSPs/aB)
SSPs/aB —

abP SSa MSa/MSs/ab SSa/(SSa � SSs/ab) SSa/(SSa � SSb � SSab � SSs/ab � SSPa � SSPb � SSPab � SSPs/ab)
SSb MSb/MSs/ab SSb/(SSb � SSs/ab) SSb/(SSb � SSa � SSab � SSs/ab � SSPa � SSPb � SSPab � SSPs/ab)
SSab MSab/MSs/ab SSab/(SSab � SSs/ab) SSab/(SSab � SSa � SSb � SSs/ab � SSPa � SSPb � SSPab � SSPs/ab)
SSs/ab —
SSP MSP/MSPs/ab SSP/(SSP � SSPs/ab) SSP/(SSP � SSa � SSb � SSab � SSs/ab � SSPa � SSPb � SSPab � SSPs/ab)
SSPa MSPa/MSPs/ab SSPa/(SSPa � SSPs/ab) SSPa/(SSPa � SSa � SSb � SSab � SSs/ab � SSPb � SSPab � SSPs/ab)
SSPb MSPb/MSPs/ab SSPb/(SSPb � SSPs/ab) SSPb/(SSPb � SSa � SSb � SSab � SSs/ab � SSPa � SSPab � SSPs/ab)
SSPab MSPab/MSPs/ab SSPab/(SSPab � SSPs/ab) SSPab/(SSPab � SSa � SSb � SSab � SSs/ab � SSPa � SSPb � SSPs/ab)
SSPs/ab —

Note—“A” and “B” represent manipulated between-subjects factors, “a” and “b” represent measured between-subjects factors, “P” rep-
resents a within-subjects factor, and “s” represents the subjects factor.
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April 1, 2004). Common guidelines can be useful; for
example, it is now routine to characterize zero-order cor-
relations of .1 to .3 as small, those of .3 to .5 as medium,
and those .5 and over as large, as Cohen (1988) recom-
mended. Cohen (1988, pp. 413–414), who did not con-
sider repeated measures designs explicitly, defined an η2

(which is not the same as Cohen’s f 2) of .02 as small, one
of .13 as medium, and one of .26 as large. It seems ap-
propriate to apply the same guidelines to η2

G as well.
Still, within an area of research in which designs do not
vary, investigators can develop their own common guide-
lines for η2

P, and so it can still prove an effective, if local,
effect size statistic. 

An additional qualification should be stated. Like R2,
η2 overestimates the population proportion of variance
explained. Still, reports often rely on the sample statis-
tics R2 and η2 because their formulas are simple and
straightforward and because the overestimation becomes
fairly negligible as sample size increases. Nonetheless,
just as adjusted R2 corrects for the overestimation of R2,
ω 2 corrects for the overestimation of η2 (Hays, 1963;
Keppel, 1991). Interested readers may wish to consult
Olejnik and Algina (2003) regarding the computation of
ω 2, but before they conclude that ω 2 is preferable to η2

they should read Keppel and Wickens (2004), who wrote
that although “the partial ω 2 statistics are straightfor-
ward to define theoretically, they are difficult to use
practically” (p. 427).

For some simple designs, there are no differences be-
tween η2

G, η2
P, and η2. For a one-way between-subjects

ANOVA, no matter whether the factor is manipulated or

measured (A or a), values for η2
G are the same as those for

η2
P and η2. For factorial designs with between-subjects

manipulated factors (AB, ABC, etc.), η2
G and η2

P are the
same—but if any between-subjects measured factors are
included, η2

G is less than η2
P. Likewise, although η2

G and
η2 are the same for a within-subjects ANOVA with a sin-
gle factor (P), in this case and for all other within-subjects
or mixed designs, η2

G is less than η2
P.

In summary, investigators who report results of
ANOVAs, including those with one or more repeated
measures factors, are encouraged to report η2

G as defined
by Olejnik and Algina (2003). This statistic is easily
computed, as we have demonstrated here. Unlike η2 or
η2

P, its value is comparable across studies that incorpo-
rate the factor and outcome of interest, regardless of
whether the factor is between or within subjects; thus,
common guidelines can be applied to the size of the ef-
fect of the designated factor on the specific outcome.
This is only the first step. More important than simply
reporting effect size statistics is their discussion. As
Schmidt (1996) has reminded us, for our science to ac-
cumulate we need to pay attention to effect sizes and,
with time, develop a sense of the typical strength with
which a pair of variables is associated in a given area of
research. Too often, current articles, when summarizing
the literature, merely present effects as present or absent
(usually meaning statistically significant or not). Dis-
cussion of their typical size, meaning, and practical sig-
nificance, which η2

G affords, would be a significant ad-
vance, and for that reason is a method that deserves to be
more widely known and utilized. 

Table 3
Computation of Partial Eta Squared (ηη 2

P) and Generalized Eta Squared (ηη2
G) for APQ and aPQ Designs

Design Effect F Ratio η2
P η2

G

APQ SSA MSA/MSs/A SSA/(SSA � SSs/A) SSA/(SSA � SSs/A � SSPs/A � SSQs/A � SSPQs/A)
SSs/A —
SSP MSP/MSPs/A SSP/(SSP � SSPs/A) SSP/(SSP � SSs/A � SSPs/A � SSQs/A � SSPQs/A)
SSPA MSPA/MSPs/A SSPA/(SSPA � SSPs/A) SSPA /(SSPA � SSs/A � SSPs/A � SSQs/A � SSPQs/A)
SSPs/A —
SSQ MSQ/MSQs/A SSQ/(SSQ � SSQs/A) SSQ/(SSQ � SSs/A � SSPs/A � SSQs/A � SSPQs/A)
SSQA MSQA/MSQs/A SSQA/(SSQA � SSQs/A) SSQA/(SSQA � SSs/A � SSPs/A � SSQs/A � SSPQs/A)
SSQs/A —
SSPQ MSPQ/MSPQs/A SSPQ/(SSPQ � SSPQs/A) SSPQ/(SSPQ � SSs/A � SSPs/A � SSQs/A � SSPQs/A)
SSPQA MSPQA/MSPQs/A SSPQA/(SSPQA � SSPQs/A) SSPQA/(SSPQA � SSs/A � SSPs/A � SSQs/A � SSPQs/A)
SSPQs/A —

aPQ SSa MSa/MSs/a SSa/(SSa � SSs/a) SSa/(SSa � SSs/a � SSPa � SSPs/a � SSQa � SSQs/a � SSPQa � SSPQs/a)
SSs/a —
SSP MSP/MSPs/a SSP/(SSP � SSPs/a) SSP/(SSP � SSa � SSs/a � SSPa � SSPs/a � SSQa � SSQs/a � SSPQa � SSPQs/a)
SSPa MSPa/MSPs/a SSPa/(SSPa � SSPs/a) SSPa /(SSPa � SSa � SSs/a � SSPs/a � SSQa � SSQs/a � SSPQa � SSPQs/a)
SSPs/a —
SSQ MSQ/MSQs/a SSQ/(SSQ � SSQs/a) SSQ/(SSQ � SSa � SSs/a � SSPa � SSPs/a � SSQa � SSQs/a � SSPQa � SSPQs/a)
SSQa MSQa/MSQs/a SSQa/(SSQa � SSQs/a) SSQa/(SSQa � SSa � SSs/a � SSPa � SSPs/a � SSQs/a � SSPQa � SSPQs/a)
SSQs/a —
SSPQ MSPQ/MSPQs/a SSPQ/(SSPQ � SSPQs/a) SSPQ/(SSPQ � SSa � SSs/a � SSPa � SSPs/a � SSQa � SSQs/a � SSPQa � SSPQs/a)
SSPQa MSPQa/MSPQs/a SSPQa/(SSPQa � SSPQs/a) SSPQa/(SSPQa � SSa � SSs/a � SSPa � SSPs/a � SSQa � SSQs/a � SSPQs/a)
SSPQs/a —

Note—“A” represents a manipulated between-subjects factor, “a” represents a measured between-subjects factor, “P” and “Q” represent within-
subjects factors, and “s” represents the subjects factor.
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