Práctica 3: Configuración de protocolo OSPF.

Material necesario: maqueta de routers, cables de red y consola y ordenadores de consola.

Destacar que en los ejemplos utilizados se hace mención a uno de los routers de la maqueta, "*Lab-A> generalmente*", pero que puede generalizarse al resto "*Lab-B>*", "*Lab-C>*",

COMPLETAR LAS TABLAS:

Protocolo de	Tipo de protocolo	Desarrollado	Características /Notas
enrutamiento	(vector distancia,	por:	
	estado enlace,		
	híbrido)		
OSPF (Open			
Shortest Path First)			

Práctica: Configurar el protocolo OSPF

Habilitar el OSPF para todas las conexiones **FastEthernet, Ethernet y** serie utilizando routing jerárquico, con múltiples áreas. El área 0, correspondiente al área backbone (troncal) se corresponde con toda la red (líneas serial), mientras que cada LAN (medio compartido) se corresponde con áreas enumeradas desde la LAN 1 de Ethernet 0 correspondiente al router Lab_A a la LAN compartida por Lab_D y Lab_E (de izquierda a derecha en la maqueta). De este modo tendremos 5 áreas más el área 0. En el router Lab_A se configurarán además del área 0, dos áreas más (área 1 y área 2) para cada una de las LANs, en el router Lab_B el área 3 y 0, en el router Lab_C el área 4 y 0 y por último los routers Lab_D y Lab_E compartirán el área 5 y la 0 (como se ve en el mapa de topología).

La configuración del proceso de enrutamiento OSPF, se realizará utilizando los comandos siguientes:

Router(config)#router ospf xxx Router(config-router)#network d.d.d.d m.m.m.m area zzz

Donde :

- xxx es un número o identificativo de proceso que ejecuta OSPF interno para el router, que puede valer por ejemplo "1" (o cualquier valor, *no tiene que ver con el sistema autónomo de IGRP*),
- *d.d.d.d* son direcciones base de red de redes directamente conectadas,
- *m.m.m.m* es una wildcard, es decir tiene el significado inverso de la máscara, 1's en vez de 0's, y
- zzz es el identificador del área, para el backbone debe ser 0.

Por lo que por ejemplo para el router Lab_A:

Lab_A(config)#router ospf 1 Lab_A (config-router)#network 205.7.5.0 0.0.0.255 area 1 Lab_A (config-router)#network 192.5.5.0 0.0.0.255 area 2 Lab_A (config-router)#network 200.200.200.0 0.0.0.3 area 0 Lab_A (config-router)#network 201.100.11.0 0.0.0.3 area 0 Lab_A (config-router)#network 201.100.11.0 0.0.0.3 area 0

Una vez configurado el protocolo de enrutamiento en cada uno de los routers, proceder a examinar la configuración que se está ejecutando en el router Lab_A (o **el que estés configurando**).

Responde a la siguiente pregunta:

¿Añadió la IOS automáticamente líneas bajo Lab_A OSPF 1?

Ahora, vamos a establecer algunas pruebas en la red, que nos permitirán comprobar la buena ejecución del protocolo, a la vez que se comprobará si existe conectividad entre cada uno de los elementos de la maqueta.

Test de conectividad

Comprueba la conectividad entre los routers mediante el comando Ping (comprueba también *show ip route*)

Mostrar adyacencias OSPF

Utiliza el comando show ip ospf neighbor, Observar la información que nos da.

Utiliza el comando show ip ospf neighbor detail para obtener más información.

¿Qué diferencias encuentras respecto al comando anterior sin detalle?

¿Puedes distinguir las diferentes prioridades utilizadas para establecer el DR (Designated Router) cuando hay más de dos routers a elegir en un área? ______(Recuerda que el DR se corresponde con la prioridad más alta y el BDR (Backup DR) con la inmediatamente inferior)

Configurar Timers OSFP

Vamos a cambiar los valores de los intervalos de tiempos de **hello** y **dead**. Los valores de hello y dead tienen que ser los mismos para que los routers intercambien información entre ellos.

Por defecto el intervalo dead es cuatro veces el valor del intervalo hello, de forma que los routers tengan cuatro posibilidades de enviar un hello, antes de ser considerados como caídos. Esta relación se puede cambiar, si el dead es menor de cuatro veces el hello se aumentará el riesgo de que un router sea declarado caído (dead) sin que realmente lo esté.

Los comando a utilizar son los siguientes, y hay que configurar cada interface.

Router(config-if)**#ip ospf hello-interval** *seconds* Router(config-if)**#ip ospf dead-interval** *seconds*

Ejemplo:

Lab_A(config)#interface s0 Lab_A (config-if)#ip ospf hello-interval 5 Lab_A (config-if)#ip ospf dead-interval 20

Comprobar los valores de lo los timers con:

show ip ospf interface s0

Verificar la configuración de la interface OSPF

Comando show ip ospf interface fastethernet 0 sobre los routers

En el caso de que haya más de un router en el área objeto de estudio, se habrá determinado un router como DR y otro router como DBR, esto por tanto afectará a la 5. Por tanto, se sugiere la introducción de cambios en las prioridades de tal forma que permitan la elección de un router u otro en base a la modificación de su prioridad. En las áreas donde solo hay un router este se comporta como DR. Tened en cuenta que el área 0 no dispone de DR y BDR

Configurar un router para que sea elegido como el DR

En el area 5, para que sea elegido el Lab_E

Lab_E (config) #interface fastethernet 0 Lab_E (config-if) #ip ospf priority 50

Lab_D (config) #interface fastethernet 0 Lab_D (config-if) #ip ospf priority 2

Comprobar los cambios de prioridad:

Lab_D (config) #show ip ospf interface fastethernet 0 Lab_E (config) #show ip ospf interface fastethernet 0

Ver el proceso de elección de OSPF

Lab_D#debug ip ospf events

¿Qué router fue elegido como DR?

¿BDR? ____ ¿Por qué?

Vuelve a escribir undebug all para desactivarlo.

PROBAR ESTOS COMANDOS

A) Prueba el comando show ip protocol y haz un resumen de la información reportada

B) Prueba el comando show ip ospf y haz un resumen de la información reportada

C) Prueba el comando show ip ospf database y haz un resumen de la información reportada

Prueba el comando **clear ip route*** y a continuación ejecuta **show ip route** ¿Qué ha pasado?

vuelve a ejecutar los comandos A) B) y C)

¿Hay alguna diferencia?

Llegados a este punto, vamos a tratar de establecer el mecanismo de autentificación permitido para este tipo de protocolo de enrutamiento. Como ya sabemos la autentificación MD5 crea un boletín de mensajes, que no es otra cosa que la mezcla de datos basada en la contraseña y el contenido del paquete. El router receptor utiliza la contraseña compartida y el paquete para recalcular el boletín. Si el boletín coincide, el router cree que el origen del paquete y su contenido no han sido manipulados. El boletín de mensaje es como una marca de agua que no puede falsificarse.

Por tanto, se debe configurar una clave de boletín de mensaje en la interfaz del router OSPF.

AUTENTIFICACIÓN OSPF

A continuación se tratará de establecer el proceso de autentificación entre vecinos, de tal forma que si en un router configuramos ésta para su interface serial, esta autentificación deberá ser compartida por el router vecino en la interfaz serial que comparten.

Antes de nada probar con el comando **show ip ospf** si se está soportando autentificación en cada uno de los routers.

Ejecutar el comando de adyacencias show ip ospf neighbor y observar los resultados.

Poneros de acuerdo en establecer una contraseña común entre cada par de routers. Intentar en principio que esta sea distinta para cada línea serial entre dos routers.

Por ejemplo, para que compartan información los router Lab_A y Lab_E, a través de la línea serial 1:

```
Lab_A#configure terminal
Lab_A (config)#interface serial 1
Lab_A (config-if)#ip ospf message-digest-key 1 md5 7 AERAE
Lab_A (config-if)#router ospf 1
Lab_A (config-router)#area 0 authentication
```

```
Lab_E#configure terminal
Lab_E (config)#interface serial 1
Lab_E (config-if)#router ospf 1
Lab_E (config-router)#area 0 authentication
```

Donde AERAE es la contraseña que se utiliza.

IMPORTANTE:

Fijaros que la línea "ip ospf message-digest-key 1 md5 7 AERAE", SÓLO se introduce en uno de los routers, poneros de acuerdo en quien introduce esa línea.jjjjjjjjjjjjjjjjjjjjjj

Para el resto de conexiones serial de los routers usaremos claves parecidas. Entre Lab_A y Lab_B, **AERAB** Entre Lab_B y Lab_C, **AERBC** Entre Lab_C y Lab_D, **AERCD**

De nuevo:

Verificar adyacencias show ip ospf neighbor

¿Qué sucede ahora después de introducir la autentificación con respecto a la anterior situación?

Mostrar la tabla de enrutamiento show ip route.

Cambiar las contraseñas a una en común por todos los routers (por ejemplo LAB), y probar de nuevo los comandos show ip ospf neighbor y show ip route.