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Herein, we present two geometrical models based on an effective point-charge approach to provide a
full description of the lowest sublevels in lanthanoid single ion magnets (SIMs). The first one, named
as the Radial Effective Charge (REC) model, evaluates the crystal field effect of spherical ligands, e.g.
F−, Cl− or Br−, by placing the effective charge along the Ln–ligand axes. In this case the REC parameters
are obtained fitting high-resolution spectroscopic data for lanthanoid halides. The second model, named
as the Lone Pair Effective Charge (LPEC) model, has been developed in order to provide a realistic
description of systems in which the lone pairs are not pointing directly towards the magnetic ion. A
relevant example of this kind is provided by the bis(phthalocyaninato)lanthanoids [Ln(Pc)2]

−. We
show that a fit of the magnetic properties of the [Ln(Pc)2]

− (Ln = Tb, Dy, Ho, Er, Tm and Yb) allows
us to extract the LPEC parameters for the lanthanoid complexes coordinated to sp2-nitrogens. Finally, we
show that these effective corrections may be extrapolated to a large variety of lanthanoid and actinoid
compounds, having either extended or molecular structures.

Introduction

Over the past few years, the discovery that mononuclear metal
complexes can exhibit a single-molecule magnetic (SMM) be-
havior and new physical phenomena coming from their quantum
nature has revitalized the field of Molecular Magnetism.1 This
last generation of SMMs is commonly known as single ion
magnets (SIMs). They are usually formed by an anisotropic
lanthanoid ion placed in the crystal field created by the surround-
ing ligands. The first example of such nanomagnets was reported
by Ishikawa et al. in 2003 in a family of complexes of general
formula [Ln(Pc)2]

− with a ‘double-decker’ structure and phthalo-
cyaninato anions as ligands (Fig. 1).2 That seminal work inspired
a plethora of more complicated derivatives, e.g. triple-deckers,3

oxidized double-deckers for enhanced magnetic anisotropy4 or
substituted double-deckers for processability, among others.5

Nowadays, the concept of SIMs has been extended to a growing
number of families of mononuclear d-transition metal,6 lantha-
noid7 and actinoid8 complexes, but a general theoretical descrip-
tion concerning energy levels, wave functions and magnetic
properties is still needed. In contrast with the classical poly-
nuclear SMMs, whose properties are governed by exchange
interactions, in SIMs there is a direct relationship between the
electronic spectrum resulting from the crystal field splitting and

magnetic properties. For this reason, there is a need for develop-
ing simple models, which are able to correlate the structural and
electronic features of the metal complex with its SMM proper-
ties. Moreover, a reliable description of spin eigenvectors will
permit researchers to deal with the potential application of these
systems as spin qubits in quantum computing.1,7d,9 In fact, in this
last aspect SIMs are clearly most suitable than the cluster-type
SMMs as they exhibit a rich quantum behavior. In this context,
the implementation of quantum logic gates in nanomagnets is a
motivating challenge that has recently experienced a fast devel-
opment with both experimental and theoretical results.10,11,13

When dealing with SIMs, it is important to note that the mag-
netic anisotropy required for observing slow relaxation of the
magnetization arises from the zero-field splitting of the lantha-
noid ion J ground state caused by the crystal field. As a conse-
quence, a fairly complex Crystal Field Hamiltonian (HCF) must

Fig. 1 Left: Cs2NaYCl6:Er, showing the relative positions of Er
(magenta, octahedral), Cl (green), Na (violet), Cs (pink). Right:
[Ln(Pc)2]−.
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be properly defined for a full theoretical analysis. According to
the literature, it has been proven that even after an intense experi-
mental and theoretical effort, it has rarely been possible to
extract more than the nature, strength and orientation of the mag-
netic anisotropy.12 Static magnetic properties have been usually
reproduced using crude approximations that do not consider
most of the terms.13 In the computational field, Complete Active
Space – Self Consistent Field (CASSCF) calculations produce
good estimations of the energy levels, but are expensive and
only rarely offer general explanations.14 An inexpensive yet
realistic description of the lowest energy sublevels and their
wave functions would help to describe their magnetic properties
and to rationalize which conditions are favorable for the
discovery of new derivatives with such interesting properties.

Effective point-charge model

In previous work, calculations based on an effective crystal field
Hamiltonian that assumes a point-charge electrostatic (PCE)
model have permitted us to estimate the whole set of diagonal
and extradiagonal crystal field parameters. Such a model para-
meterizes the crystal field effect generated by the n atoms coordi-
nated to the Ln by using n point charges placed at the
corresponding atomic positions. In particular, we have demon-
strated the adequacy of this simple model to rationalize the mag-
netic behavior of several lanthanoid SIMs, mainly those based
on polyoxometalates, and even to give some general rules to
obtain systems behaving as SMMs or as spin qubits, according
to their geometry.15 Still, a pure PCE model based on a mere
geometrical reasoning is expected to be quantitatively correct
only for ionic metal complexes. When the nature of the ligand
and the orientation of its electronic lone-pairs are taken into
account, this simple picture is not realistic and the model needs
to be improved. In this work we present an effective point-
charge model that intends to overcome this limitation.

Taking a PCE model as a starting point, further studies have
been performed to improve the description of the J-ground state
splitting caused by the crystal field. Some investigations
employed effective charges to rationalize intensity parameters of
4f–4f transitions.16 In that example, effective charges were
placed in the middle of the chemical bonds (central ion-ligands),
as this location was found to be the best to simulate the ligand
field effects and to account for the covalence effects, overcoming
the difficulties presented by the simple electrostatic approxi-
mation in overestimating the low rank ligand field parameters
and underestimating the high rank ones. Other examples with
ligand field models17–20 were based on a certain number of
adjustable parameters calculated by ab initio methods. These are
of worth, not only for elucidative purposes and comparison with
experiment, but also because they allow us to predict the ligand
field components which cannot be directly obtained from experi-
ment, that is, the odd components of the LF Hamiltonian.
Among these models, the simple overlap (SO) model postulates
that the ligand field is produced by effective charges, located in
the middle of the Ln–ligand bond, which are proportional to the
total overlap between Ln and ligand wave functions and to
charge factors.21,22 That model has been applied to a variety of
lanthanoid compounds and, in most cases, the charge factors

have been treated as adjustable parameters whose upper limit
value is given by the valence of the ligating atom.23,24

Despite all these effective corrections, when we deal with
nitrogen-coordinated ligands, both the simplest PCE and radial
effective improvements seem to be inefficient to describe the
magnetic properties of such complexes. A better description of
the ligand field would be to consider a dense cloud of tiny
charges. This, in principle, could be achieved by means of
Density Functional Theory (DFT) calculations. However, for the
sake of simplicity we keep the restriction of a single point charge
that is allowed to move away from the nitrogen nucleus. Indeed,
the effective center of charge of a lone pair is expected to be
pretty far from the nucleus. In fact, a key assumption of the
electron-pair repulsion model for molecular geometry25 is that
‘a non-bonding or lone-pair is larger and takes up more room
on the surface of an atom than a bonding pair’.

In this paper, we present a simple approach to estimate effec-
tive charges of F, Cl, Br and N atoms coordinated to lanthanoids
by following a corrected PCE model. We distinguish between a
Radial Effective Charge (REC) model, for halides, due to their
spherical character and a Lone Pair Covalent Effective Charge
(LPEC) model in the case of nitrogen. This model is used to
provide a full description of the energy level splitting and wave
functions of two examples: a high-symmetry solid-state Ho salt,
Cs2NaHoCl6, and the [Tb(Pc2)]

− SIM (Fig. 1).

Method

As pointed out above, depending on the ligand character, two
different approaches have been performed in order to fit the
experimental values namely an REC correction and an LPEC
one. In both cases, the starting point of our calculations con-
siders the atomic coordinates of the target compound. Such co-
ordinates are introduced as an input of a software code written in
portable fortran77.26 Then, we consider the standard Crystal
Field Hamiltonian to parameterize the electric field effect pro-
duced by the surrounding ligands, acting over the central ion,
which shows the general form:15

HCFðJÞ ¼
X

k¼2;4;6

Xk
q¼�k

Bq
kO

q
k ¼

X
k¼2;4;6

Xk
q¼�k

akA
q
k kr

klOq
k ð1Þ

where k is the operator order (also called rank or degree) and q is
the operator range that varies between k and −k, <rk> is the
expectation value of rk, and ak are the α, β and γ Stevens equiv-
alent coefficients for k = 2, 4, 6, respectively.27 α, β and γ are
tabulated for the ground state of each lanthanoid ion. Hence, the
CF parameters, Aq

k and Bq
k, are referred to the ground state as

well.
The Aq

k CF parameters can be calculated by the following
expression:

Aq
k ¼

4π

2k þ 1
ckqð�1Þq

XN
i¼1

Zie2Yk�qðθi; φiÞ
Rkþ1
i

ð2Þ

Ri, θi and φi are the effective polar coordinates of the point
charge and Zi is the effective point charge, associated with the
i-th ligand with the lanthanoid at the origin; e is the electron
charge and ckq is a tabulated numerical factor that relates

13706 | Dalton Trans., 2012, 41, 13705–13710 This journal is © The Royal Society of Chemistry 2012
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spherical harmonics Yk−q and Stevens equivalent operators. It is
at this point where differences between both approaches do
appear.

Radial effective charge (REC) model

In this approach the ligand is modeled through an effective point
charge situated in the axis lanthanoid-coordinated atom at a dis-
tance R, which is smaller than the real metal–ligand distance.
To account for the effect of covalent electron sharing, a radial
displacement vector (Dr) is defined, in which the polar co-
ordinate R is varied. At the same time, the charge value (q) is
scanned in order to achieve the minimum deviation between
calculated and experimental data, whereas θ and φ remain con-
stant (see Fig. 2 (left)). This model has proven to be very useful
to determine the full set of crystal field parameters, energy levels
and wave functions when a lanthanoid is surrounded by spheri-
cal charges.

Lone pair effective charge (LPEC) model

The previous approach has been demonstrated to be in-
appropriate to describe systems where nitrogen is directly
bonded to the magnetic center. As we may observe in Fig. 2
(right), the electron lone pair of nitrogen is not located along the
radial Ln–N direction, making necessary to define a new displa-
cement vector (Dh) named horizontal displacement. Both
vectors, Dh and Dr, are applied to the original position of each
nitrogen nucleus, determining the position of the effective center
of charge. Vector Dr is a segment of the distance between the
position of the lone pair and the lanthanoid nucleus, and it is
defined by the polar coordinate R. Note that this latter displace-
ment reflects, like in the REC model, the effective charge result-
ing from the sharing of the ligand electron density by the
lanthanide ion. This correction does possess physical sense due
to the fact that the nearest part of the electron cloud to the lantha-
noid induces a more marked effect than the areas placed further
away. Vector Dh is in the plane NNC containing the ligand atom
N and its two covalently bonded atoms (N and C), i.e. the paper
plane in Fig. 2. This vector is also parallel to the bisection of the
NNC angle, and reflects the effective position of the center of
charge of a lone pair. For nitrogen lone pairs, the center of
charge is expected to be at a distance between 0.5 and 1.0 Å
apart from the nucleus, but the effective “size” of this electron
cloud can easily be more than three times larger.28

Finally, the minimization procedure searches for the best com-
bination of the displacement and charge corrections to give a
local minimum for the root-mean-square (RMS) error from the
experiment (energy levels in (1) and (2) and temperature depen-
dence of the χMT product in (3)). In our calculations, we have
used a two step optimization. In the first step, we have systemati-
cally varied the horizontal displacement between 0.0 and 1.0 Å,
the radial one between 0.0 and 1.0 Å, and the charge between
0.0 and 1.5e, obtaining the absolute minimum region in this
space. In the second step, we repeated the procedure for a more
detailed exploration of the obtained point.

Results and discussion

Cs2NaYCl6:Er
3+

Elpasolite structure was chosen because of its simplicity, as the
environment of the lanthanoid is perfectly octahedral (see
Fig. 1). The splitting of the Er3+ J ground state is determined by
using the described REC model. For the determination of the
effective charge of the chloride atoms, experimental data taken
from the optical absorption and emission results reported by
Foster and Richardson29 for a doped Cs2NaYCl6:Er

3+ system
have been employed.

In this highly symmetric environment, the non-vanishing CF
terms are B0

4, B
0
6, B

4
4 and B4

6. Since there the B0
4/B

0
6 (or B4

4/B
4
6)

ratio is fixed, the number of independent parameters is fixed to
2. Thus, a fitting of the high-resolution spectroscopic data of the
Er derivative to the REC model results in an absolute error
minimum at Zi = −0.41 and dr = 0.88 Å.

This correction obtained for the Er case has been applied
without any modification to calculate the energy levels of the
whole series, from Tb to Yb. The agreement between the REC
model and the experiment is excellent. Moreover, the Er-based
correction can also provide excellent results for the uranium ana-
logue. The worst agreement with the Er-based correction has
been found for the Dy derivative, so we chose this case for illus-
tration. Fig. 3 compares the experimental energy levels of
Cs2NaYCl6:Dy

3+ with the basic PCE prediction and with the
REC model. As we can see, the PCE model totally fails to quan-
titatively describe the energy spectrum for Dy. In contrast, the
REC model closely reproduces the experimental energy spec-
trum. Thus, the energies of the first excited levels are accurately
calculated by the model, while those corresponding to the higher
energy levels differ from the experimental energies by less than
a 15%.

We find that the parameters are not completely independent.
For the whole series, the minimal errors (in the ranges 0 < Zi <
1.5, 0 < Dr < 1.5) are found near the relation:

Dr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Zi þ 0:25
� 0:4

r
ð3Þ

Calculations over the same structure with Br− and F− have
also been carried out following the same model with Cs2NaYF6:
Yb3+ and Cs2NaYBr6:Yb

3+. For F−, one obtains Zi = −0.20 and
Dr = 1.03 Å as correcting parameters. For Br−, the parameters
are Zi = −0.45 and Dr = 0.90 Å. With these new data, and

Fig. 2 Types of orientations between the electronic pair of a ligand and
a lanthanoid cation. Left: the lone pair is directly oriented towards the
lanthanoid cation. Right: the lone pair is not directly oriented towards
the lanthanoid cation. The node in B0

2 is shown as a solid line.

This journal is © The Royal Society of Chemistry 2012 Dalton Trans., 2012, 41, 13705–13710 | 13707
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assuming a monotonous variation for the F–Cl–Br series, we
estimate for Cl− the parameters Zi = 0.26 and Dr = 1.00 Å.

[Tb(Pc2)]
−

For the study of the LF effect of the phthalocyaninato ligand, the
LPEC correction is required. Here we need to emphasize the
difference between our present fitting procedure and the one
originally used by Ishikawa et al.30 Previous work used the
ligand field terms as fitting parameters, and to avoid overparame-
trization, a linear dependence of all three diagonal parameters
with the number of electrons was simply assumed. Instead, our
fitting parameters are only the position and value of the point
charges. That enables us to introduce a richer Hamiltonian
without such overparametrization problems and without assum-
ing arbitrary variations of the ligand field terms. Still, for simpli-
city, and because of the lack of crystal structures for the whole
series, we slightly idealize the structure by assuming a C4 sym-
metry but keeping the experimental torsion angle between the
two phthalocyaninato ligands. This idealization will only affect
small extradiagonal terms that will alter the mixing but have
almost no effect on the χMT values. In this simplified environ-
ment, the non-vanishing CF terms are B0

2, B
0
4, B

0
6, B

4
4 and B4

6.
With this assumption and after applying displacement vectors
and charge scanning, one generally obtains an excellent agree-
ment with the experimental χMT curves of the whole series (see
Fig. 4). The limitations of this three-parameter simultaneous fit
of six experimental curves are reflected in the poor agreement of
the low-temperature behavior of the dysprosium compound;
alternate fits (not shown) are better for dysprosium but worse
overall. The procedure results in the following set of parameters:
Zi = −0.63, horizontal displacement Dh = 0.195 Å and radial dis-
placement Dr = 0.48 Å. Compared with the nuclear positions of
the nitrogen atoms, this horizontal displacement means that the
effective barrier has crossed the node at the “magic” polar angle
θ = 54.73°. This translates into a sign change of the ZFS

parameter D (where D = 3B0
2) so that it is negative for Tb3+

accounting for the SMM behavior observed in this compound.
The total displacement of approximately 0.6 Å is well within the
expected volume of the electron cloud, not very far from its
charge centroid. In fact, for nitrogen lone pairs, the center of
charge is expected to be at a distance between 0.5 and 1.0 Å
apart from the nucleus, but the effective “size” of this electron
cloud can easily be, depending on its definition, more than three
times larger.31 The effective charge Z is also reasonable, and in
full agreement with previous DFT calculations, which resulted in
a natural bond orbital charge qNBO = −0.7 for [Y(Pc)2]

−.32 Note
that while this correction is generally a clear improvement for
(sp2)N ligands over the simple PEC model, the theoretical treat-
ment of markedly different ligands such as the azide radical
N2

3− would benefit from a dedicated correction following the
same procedure.

Applying the whole-series fit to the Terbium derivative, we
obtain a well-isolated ground state doublet composed of
|+6> and |−6>, with the rest of the sublevels excited by more
than 300 cm−1 and bunched up in a window of less than
150 cm−1. This picture is coherent with its known SIM proper-
ties, allowing the slow relaxation of the magnetization. Ishikawa
provided essentially the same description. In that study, the first
excited sublevel lies at about 400 cm−1 and the lowest substrates
are |+6> and |−6>. A crucial difference between both energy
level schemes is the effect of the fourth-range extradiagonal
parameters (B4

4 and B4
6). These parameters enable a mixing

between the |+6> and |−6> doublet at zero field. Indeed, with a
pseudoaxial LF Hamiltonian all doublets have pure MJ values,
while our approach quantifies the Hamiltonian extradiagonal
terms and thus the MJ mixing. In this case, this mixing arises
from three consecutive steps when applying the fourth-range
parameters, whose operators contain the fourth power of the
staircase operator e.g. O4

4 = 1/2(J 4+ + J 4−). Thus, the applications
of these parameters mix |+6> with |+2>, then with |−2> and
finally, with |−6>, and analogously, |−6> is mixed with |+6>,
passing through the same MJ states. That is the reason why the
mixing is very weak and cannot give rise to a noticeable tunnel
splitting, as does occur in other examples of the literature.33 In a
different manner, it also means that a minimal longitudinal

Fig. 3 Observed energy sublevel data of Cs2NaYCl6:Dy
3+ compared

with REC (Er-based correction) and PCE models.

Fig. 4 Simultaneous fitting of the experimental magnetic properties of
the series of [Ln(Pc)2] SIMs from the LPEC model: Dy ( ), Ho ( ),
Tb ( ), Er ( ), Tm ( ) and Yb ( ).

13708 | Dalton Trans., 2012, 41, 13705–13710 This journal is © The Royal Society of Chemistry 2012
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magnetic field – necessary to find a level crossing where tunneling
is not forbidden by the nuclear spins – will recover the purity of
the MJ states. Due to these peculiarities, [Tb(Pc2)]

− is an interest-
ing example where the SIM behavior is not destroyed by extra-
diagonal terms allowing a mixing within the ground state.

Tables 1 and 2 show the energy level scheme for the Tb and
Dy derivatives, as well as the main terms of the wave functions.
For space reasons, we skip a detailed comparison between our
energy level scheme and the associated wave functions (Tables
S1 through S4 in ESI†) for the rest of the metals and the results
reported in ref. 33. Here we just highlight the key similarities
and differences for each lanthanoid. A first general difference is
that our calculations consistently result in smaller energy level
splitting, ranging from 450 cm−1 for Tb to 275 cm−1 for Ho and
Er, compared with Ishikawa’s nearly 600 cm−1 for Tb and about
400 cm−1 for Ho and Er. As already pointed above, a second
general difference is the presence of the fourth-range extradiago-
nal parameters, which have more or less pronounced conse-
quences depending on the nature of the ground state.

Conclusions

In a previous work, we developed an inexpensive point-charge
evaluation of the ligand field Hamiltonian, which provided a

useful theoretical general tool for the rational design of SIMs
and spin qubits based on mononuclear lanthanoid complexes.18

Here we went a step further and presented two alternative
improvements to this model in order to take into account not
only the geometrical arrangement of the coordinated ligands, but
also their orbital details. We have shown that a Radial Effective
Charge (REC) model is sufficient for spherical ligands such as
halides. In fact, this model has provided an excellent description
of the low-lying energy level splitting and associated wavefunc-
tions in lanthanoid compounds based on these ligands. In turn, we
have shown that a Lone Pair Effective Charge (LPEC) model is
needed for ligands, which coordinate through a non-radial lone
pair, such as the sp2 nitrogen atoms of the phthalocyaninato anion.

Compared with the approach initially used by Ishikawa to
extract the crystal field parameters from a fit of the magnetic
properties of the series [Tb(Pc2)]

−, our approach presents impor-
tant advantages. The main one is that here the fitting parameters
are not the crystal field parameters. Instead, they refer to mole-
cular parameters such as the effective charge on the ligand and
its distance to the lanthanoid, which have a clear chemical
meaning. This has two relevant consequences. First, it facilitates
distinguishing meaningful solutions from mathematical artifacts
by chemical common sense. Second, it allows the application of
these tabulated parameters, which are characteristic of each
ligand, to any other non-ideal structures to produce the complete
set of off-diagonal ligand field terms without any free parameter.
Indeed, we obtain corrections (Table 3) for F−, Cl−, Br− and
(sp2)N which can be used to enhance in a simple and affordable
way the quality of a point-charge model. This makes our results
useful for a wide variety of lanthanoid compounds, being easily
extrapolated to the case of actinides (mononuclear uranium com-
plexes, for example).

Acknowledgements

The present work has been funded by the Spanish MINECO
(grants MAT2011-22785, MAT2007-61584, and the CONSOLI-
DER project on Molecular Nanoscience), the EU (Project
ELFOS and ERC Advanced Grant SPINMOL), and the General-
idad Valenciana (Prometeo and ISIC excellence Programmes).
A.G.-A. acknowledges funding by project ELFOS.
J.-J. B. thanks the Spanish MECD for a FPU predoctoral grant.

Notes and references

1 J. M. Clemente-Juan, E. Coronado and A. Gaita-Ariño, Chem. Soc. Rev.,
2012, DOI: 10.1039/c2cs35205b.

2 N. Ishikawa, M. Sugita, T. Ishikawa, S. Y. Koshihara and Y. Kaizu,
J. Am. Chem. Soc., 2003, 125, 8694.

Table 1 Energies and modulus of the contribution of each MJ to the
wave-functions of the ground state multiplets of TbPc2

Energy (cm−1) Wave function

0 0.79·|−6> 0.61·|6>
0 0.61·|−6> 0.79·|6>
321 0.01·|−4> 1.00·|0> 0.01·|4>
339 0.03·|−5> 1.00·|−1> 0.03·|3>
339 0.03·|−3> 1.00·|1> 0.03·|5>
342 1.00·|−5> 0.03·|−1>
342 0.03·|1> 1.00·|5>
383 0.71·|−2> 0.71·|2>
391 0.71·|−2> 0.71·|2>
440 1.00·|−3> 0.03·|1>
440 0.03·|−1> 1.00·|3>
450 0.71·|−4> 0.71·|4>
450 0.71·|−4> 0.71·|4>

Table 2 Energies and modulus of the contribution of each MJ to the
wave-functions of the ground state multiplets of DyPc2

Energy (cm−1) Wave function

0 1.00·|−11/2> 0.01·|−3/2>
0 0.01·|3/2> 1.00·|11/2>
42 1.00·|−13/2> 0.03·|−5/2>
42 0.03·|5/2> 1.00·|13/2>
70 1.00·|−9/2> 0.01·|−1/2>
70 0.01·|1/2> 1.00·|9/2>
167 0.03·|−13/2> 1.00·|−7/2>
167 1.00·|7/2> 0.03·|15/2>
252 0.03·|−15/2> 0.99·|−5/2> 0.15·|3/2>
252 0.15·|−3/2> 0.99·|5/2> 0.03·|15/2>
313 0.01·|−11/2> 0.99·|−3/2> 0.15·|5/2>
313 0.15·|−5/2> 0.99·|3/2> 0.01·|11/2>
341 0.01·|−9/2> 1.00·|−1/2> 0.03·|7/2> 0.03·|15/2>
341 0.03·|−15/2> 0.03·|−7/2> 1.00·|1/2> 0.01·|9/2>
347 1.00·|−15/2> 0.03·|−7/2> 0.03·|1/2>
347 0.03·|−1/2> 0.03·|7/2> 1.00·|15/2>

Table 3 Summary of the effective charge corrections found for the
different ligands

Zi Dh (Å) Dr (Å)

F− −0.20 n.a. 1.03
Cl− −0.26 n.a. 1.00
Br− −0.45 n.a. 0.90
(sp2)N −0.63 0.195 0.48

This journal is © The Royal Society of Chemistry 2012 Dalton Trans., 2012, 41, 13705–13710 | 13709
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