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Abstract

The purpose of this paper is to study the asymptotic behavior of the solutions of certain t
differential inclusions posed in Banach spaces. In particular, we obtain the abstract result
asymptotic behavior of the solution of the boundary value problem


ut − ∆p(u) + |u|γ−1u = f on ]0,∞[ × Ω,

− ∂u
∂η

∈ β(u) on [0,∞[ × ∂Ω,

u(0, x) = u0(x) in Ω,

whereΩ is a bounded open domain inRn with smooth boundary∂Ω, f (t, x) is a givenL1-function
on ]0,∞[ × Ω, γ � 1 and 1� p < ∞. ∆p represents thep-Laplacian operator,∂

∂η
is the associated

Neumann boundary operator andβ a maximal monotone graph inR × R with 0∈ β(0).
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let X be a real Banach space. A mappingA :X → 2X will be called an operator onX.
The domain ofA is denoted byD(A) and its range byR(A). An operatorA on X is said
E-mail address:garciaf@uv.es.

0022-247X/$ – see front matter 2005 Elsevier Inc. All rights reserved.
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to beaccretiveif the inequality‖x − y +λ(z−w)‖ � ‖x − y‖ holds for allλ � 0, z ∈ Ax,
andw ∈ Ay. If, in addition,R(I + λA) is for one, hence for all,λ > 0, preciselyX, then
A is calledm-accretive. We say thatA satisfies the range condition ifD(A) ⊂ R(I + λA)

for all λ > 0. (See, for instance, [10,17] to find sufficient properties which imply the ra
condition.) Accretive operators were introduced by F.E. Browder [9] and T. Kato
independently. Those accretive operators which arem-accretive or satisfy the range co
dition play an important role in the study of nonlinear semigroups, differential equa
in Banach spaces, and fully nonlinear partial differential equations. For example, it i
known that ifX is Banach space andA :D(A) → 2X is an accretive operator which sat
fies the range condition, then the initial value problem of the form

u′(t) + A
(
u(t)

) � 0, u(0) = x0, (1)

has a unique integral solution for eachx0 ∈ D(A), which is given by the Crandall–Ligge
exponential formula [12]:

u(t) := lim
n→∞

(
I + t

n
A

)−n

(x0).

Moreover, the family

F := {
S(t) :D(A) → D(A): t � 0

}
,

whereS(t)x = limn→∞(I + t
n
A)−n(x), is a nonexpansive semigroup.

Concerning the strong convergence of semigroups, Brézis in [7] (see also [8,19]) p
that in Hilbert spaces, if the interior of the stationary points set of the semigroup gen
by −A is nonempty then, for eachx ∈ D(A), S(t)x converges strongly to a zero ofA as
t → ∞ (this result has been subsequently extended in [18] and [14]).

On the other hand, in [20] Pazy introduced a general condition on the generato
semigroupF in a Hilbert spaceH , which guarantees the strong convergence ofS(t)x as
t → ∞ for eachx in the domain ofF .

This convergence condition was subsequently extended by Nevanlinna and Reic
in 1979 and recently by Xu [22] to a Banach space setting.

In this paper, we study a special class of accretive operators which have a uniqu
and our goal is to show that for this kind of accretive operators the integral soluti
problem{

u′(t) + A(u(t)) � f (t),

u(0) = x0
(2)

converges ast → ∞, to the zero ofA. Moreover, we should mention that, in general,
above results cannot be applied in this case.

2. Preliminaries

Throughout this paper we assume thatX is a real Banach space and denote byX	 the
dual space ofX. We define the normalized duality mapping by{ }
J (x) := j ∈ X	: 〈x, j 〉 = ‖x‖2, ‖j‖ = ‖x‖ .
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Let 〈y, x〉+ := max{〈y, j 〉: j ∈ J (x)}. It is well known that an operatorA onX is accretive
if and only if 〈u − v, x − y〉+ � 0 for all (x,u), (y, v) ∈ A. (We refer the reader to [4,6,11
for background material on accretivity.)

Let F = {T (t) :C → C, t � 0} be a family of self-mappings ofC ⊂ X. We recall that
F is said to be a nonexpansive semigroup acting onC if the following conditions are
satisfied:

(a) T (0) := I , whereI is the identity mapping onC.
(b) T (s + t)x = T (s)T (t)x for all s, t ∈ [0,∞[ andx ∈ C.
(c) ‖T (t)x − T (t)y‖ � ‖x − y‖ for all x, y ∈ C andt ∈ [0,∞[.
(d) t → T (t)x is continuous int ∈ [0,∞[ for eachx ∈ C.

Givenx ∈ C, the orbit ofx underF will be the function

γ : [0,∞[ → C defined byγ (t) := T (t)x.

LetA :D(A) → 2X be an accretive operator with the range condition andf ∈ L1(0,∞,X).
If we consider the following initial value problem:{

u′(t) + A(u(t)) � f (t),

u(0) = x0,
(3)

we say that a continuous functionu : [0,∞[ → X is an integral solution of (3) ifu(0) = x0
and the inequality

∥∥u(t) − x
∥∥2 − ∥∥u(s) − x

∥∥2 � 2

t∫
s

〈
f (τ) − y,u(τ) − x

〉
+ dτ

holds whenever 0� s � t , and(x, y) ∈ A.
This concept of solution was introduced by Bénilan, who showed that for eachx0 ∈

D(A) problem (3) has a unique integral solutionu such thatu(t) ∈ D(A) for all t .
The following facts about nonexpansive semigroups can be found in [16].
A continuous functionu : [0,∞[ → C is called an almost-orbit ofF if

lim
s→∞

(
sup

t∈[0,∞[

∥∥u(t + s) − T (t)u(s)
∥∥)

= 0.

Of course, every orbit is an almost-orbit.

Lemma 1 [16]. Let X be a Banach space and letF be a nonexpansive semigroup on
subsetC of X. If u,v are almost-orbits ofF , then we have:

(a) limt→∞ ‖u(t) − v(t)‖ exists.
(b) If A is an accretive operator inX with the range condition, then the integral soluti

of the initial value problem

u′(t) + Au(t) � f (t), t � 0, u(0) = x ∈ D(A),

with f (.) ∈ L1(0,∞,X) is an almost-orbit of the nonexpansive semigroup gener

by−A.
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3. φ-accretive operators

In order to proceed, we shall first give the following definition.

Definition 2. Let X be a Banach space, letφ :X → [0,∞) be a continuous function suc
thatφ(0) = 0, φ(x) > 0 for x 
= 0 and which satisfies the following condition:

For every sequence(xn) in X such that(‖xn‖) is decreasing andφ(xn) → 0 asn → ∞,
then‖xn‖ → 0.

An accretive operatorA :D(A) → 2X with 0 ∈ Az is said to beφ-accretive at zero
whenever the inequality

〈u,x − z〉+ � φ(x − z), for all (x,u) ∈ A, (4)

holds.

Remark 3. The uniqueness of a zero for an operatorφ-accretive at zero is an immedia
consequence of (4).

On the other hand, it is an easy consequence of [13, Theorem 8] that everym-ψ -strongly
accretive operator isφ-accretive at zero withφ = ψ ◦ ‖.‖.

Recall that given a continuous functionψ :R+ → [0,∞) such thatψ(0) = 0 and
ψ(x) > 0 for x 
= 0. An accretive operatorA on X is said to beψ -strongly accretive if
for each(x,u), (y, v) ∈ A the inequality

〈u − v, x − y〉+ � ψ
(‖x − y‖)‖x − y‖

holds.

Proposition 4. LetA :D(A) → 2X be anm-accretive operator onX such that there exist
z ∈ X satisfying expression(4). ThenA is φ-accretive at zero.

Proof. SinceA is m-accretive, it is enough to consider the operatorÃ defined by

Ã :D(A) ∪ {z} → 2X,

x → Ã(x) =
{

A(x), x ∈ D(A) \ {z},
A(z) ∪ {0}, x = z ∈ D(A),

0, x = z /∈ D(A).

It is obvious, from expression (4), thatÃ is an accretive operator and thereforeA = Ã. �
Our results are stated for operatorsφ-accretive at zero, which happen to form a wid

family of operators than theψ -strongly accretive ones.
Example 5. Let X be a Banach space. Consider the following operator onX:
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T :X → 2X,

x → T (x) =
{ x

‖x‖ , x 
= 0,

BX, x = 0,

whereBX denotes the unit ball ofX. It is easy to see that this operator ism-accretive onX,
φ-accretive at zero forφ(x) = ‖x‖ but it fails to beψ -expansive for anyψ , and hence i
cannot beψ -strongly accretive.

Proposition 6. Let Ω be a bounded open domain inRn with smooth boundary∂Ω and
1< q < ∞. Considerg :Ω × R → R a function such that

(a) g(. , .) satisfies Carathéodory’s conditions(i.e., the mapζ → g(x, ζ ) is continuous for
almost allx and the mapx → g(x, ζ ) is measurable for everyζ ) and there existλ > 0
andR > 0 such thatg(x, ζ )ζ � λ|ζ |2 whenever|ζ | > R.

(b) g(x, .) :R → R is increasing,g(x,0) = 0 andg(x, ζ ) 
= 0 wheneverζ 
= 0.
(c) The mappingu ∈ Lq(Ω) → g(x,u(x)) ∈ Lq(Ω) is well defined.

Then the operatorB :Lq(Ω) → Lq(Ω) defined byB(u)(x) := g(x,u(x)), x ∈ Ω , is m-φ-
accretive at zero onLq(Ω).

Proof. It is well know thatB is anm-accretive operator onLq(Ω).
Thus, we will only prove thatB is φ-accretive at zero. To see this, consider the func

φ(u) = ‖u‖2−q
q

∫
Ω

g
(
x,u(x)

)
u(x)

∣∣u(x)
∣∣q−2

dx.

Hence, since (see, for instance, [11]) the normalized duality map onLq(Ω) is given by

J (u) = ‖u‖2−q
q |u|q−2u,

we have that〈
B(u),u

〉
+ = φ(u).

Having this in mind, it will be sufficient to see thatφ satisfies the condition of Definition 2
It is not difficult to see thatφ satisfies the following:

(i) φ(0) = 0 andφ(x) > 0 wheneverx 
= 0.
(ii) With respect to the continuity ofφ we argue as follows: Let(un) be a sequenc

in Lq(Ω) such that converges tou ∈ Lq(Ω) in Lq(Ω). We have to see tha
limn→∞ φ(un) = φ(u).

We know that given(uk) a subsequence of(un), there exists(uks ) subsequence of(uk)

such that

(a) uks (x) → u(x) a.e.

(b) |uks (x)| � h(x) for all s ∈ N and a.e. withh ∈ Lq(Ω).
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We can use thatg(. , .) satisfies Carathéodory’s conditions and thus we derive that

g
(
x,uks (x)

)
uks (x)

∣∣uks (x)
∣∣q−2 → g

(
x,u(x)

)
u(x)

∣∣u(x)
∣∣q−2 a.e.

On the other hand, it is clear that∣∣g(
x,uks (x)

)
uks (x)

∣∣uks (x)
∣∣q−2∣∣ � g

(
x,h(x)

)
h(x)

∣∣h(x)
∣∣q−2 a.e.

Since, by Hölder’s inequality, the right-hand side of the above inequality is an integ
function, then the dominated convergence theorem allows us to conclude the con
of φ.

Now, we only need to show that if(un) is a sequence ofLq(Ω) such that(‖un‖q) is
decreasing andφ(un) → 0 asn → ∞, then‖un‖q → 0.

Indeed, suppose

lim
n→∞φ(un) = lim

n→∞‖un‖2−q
q

∫
Ω

g
(
x,un(x)

)
un(x)

∣∣un(x)
∣∣q−2

dx = 0. (5)

Let us notice that (5) implies that either‖un‖q → 0, asn → ∞, or

lim
n→∞

∫
Ω

g
(
x,un(x)

)
un(x)

∣∣un(x)
∣∣q−2

dx = 0. (6)

Since clearly the results hold if‖un‖q → 0, we may assume (6). In this case,

‖un‖q
q =

∫
Ω

|un|q =
∫

|un|>R

|un|q +
∫

|un|�R

|un|q,

whereR is given in the hypothesis of the proposition.
Now, we shall check both terms of the right-hand side of the above equality.
Sinceg(x, ζ )ζ � λ|ζ |2 whenever|ζ | > R. We have∫

|un|>R

∣∣un(x)
∣∣q � 1

λ

∫
|un|>R

∣∣un(x)
∣∣q−2

un(x)g
(
x,un(x)

)
, (7)

which, by (6) and (7), means that

lim
n→∞

∫
|un|>R

|un|q = 0.

Concerning the other term, we have∫
|un|�R

|un|q �
∫

|un|�R

Rq−1|un| � Rq−1
∫
Ω

|un|. (8)

Thus to obtain the proof it is sufficient to prove that

lim
n→∞

∫
Ω

|un| = 0, (9)
which is true.
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Otherwise, we can find a subsequence(unk
) of (un) and a positive numberr > 0 such

that limk→∞
∫
Ω

|unk
| = r . Nevertheless, by (6) and the properties ofg it is easy to see tha

there exists a subsequence(unks
) of (unk

) such thatunks
→ 0 a.e., moreover, since(‖un‖q)

is decreasing, then(‖unk
‖q) is bounded, and thus we may apply Vitali’s theorem to ob

that lims→∞
∫
Ω

|unks
| = 0, which is a contradiction. �

Remark 7. It is an easy consequence of both Theorem 16.4 of [6] and Definition 2
if X is a smooth Banach space,A :D(A) → 2X an m-accretive operator onX such that
0 ∈ Az andB :X → X is a continuous operator onX with 0 = Bz which isφ-accretive at
zero. ThenA + B :D(A) → 2X is anm-φ-accretive at zero.

4. Strong asymptotic behavior

Let A :D(A) → 2X be aφ-accretive operator at zero onX with the range condition. I
we consider the initial value problem{

u′(t) + A(u(t)) � 0, t ∈ [0,∞[,
u(0) = x0,

(10)

it is well known that ifx0 ∈ D(A), then such problem has a unique integral solution. S
solution is given by Crandall–Liggett’s formula, so we have that

u(t) := S(t)(x0) = lim
n→∞

(
I + t

n
A

)−n

(x0).

Although a useful method to study the asymptotic behavior of semigroups of non
contractions is the Lyapunov method introduced by Pazy in [21], we will use the
developed in [18,22] to obtain the following result. For such result we shall also nee
concept of strong solution for problem (10). That is (see [4, p. 110]):

A continuous functionu : [0,∞[ → X is said to be a strong solution of problem (10) i
is Lipschitz on every bounded sub-intervals of[0,∞[, a.e. differentiable onR+, u(0) = x0,
u(t) ∈ D(A) a.e., andu′(t) + A(u(t)) � 0 for almost everyt ∈ R

+.

Theorem 8. Let X be a Banach space, ifA is an operator onX φ-accretive at zero with
the range condition and such that problem(10) has a strong solution for eachx ∈ D(A),
andF := {S(t) :D(A) → D(A): t � 0} is the nonexpansive semigroup generated by−A

via the exponential formula, then every almost-orbit ofF is strongly convergent to the ze
of A.

Proof. SinceA is φ-accretive at zero, thenA has a unique zeroz ∈ D(A).
Let u : [0,∞[ → X be an almost-orbit ofF and consider the following initial valu

problem:{
w′

s(t) + A(ws(t)) � 0,
ws(0) = u(s).
(11)
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If we assume thatu(s) ∈ D(A) for a fixeds � 0, then the unique solution of problem (1
will be ws(t) = S(t)u(s) and moreover, by hypothesis, it will be a strong solution. Th
fore, there existsw′

s(t) a.e. and moreover it satisfies−w′
s(t) ∈ Aws(t) a.e. Then, there

existsj (t) ∈ J (ws(t) − z) such that〈−w′
s(t),ws(t) − z

〉
+ = 〈−w′

s(t), j (t)
〉

= 1

h

〈
ws(t − h) − ws(t), j (t)

〉 + 〈
ξ(t, h), j (t)

〉
,

where limh→0 ξ(t, h) = 0.
Since‖j (t)‖ = ‖ws(t) − z‖ an elemental calculus yields:〈

ws(t − h) − ws(t), j (t)
〉 = 〈

ws(t − h) − z − ws(t) + z, j (t)
〉

= −∥∥ws(t) − z
∥∥2 + 〈

ws(t − h) − z, j (t)
〉

� 1

2

(∥∥ws(t − h) − z
∥∥2 − ∥∥ws(t) − z

∥∥2)
.

On the other hand, since the mappingt → ‖ws(t) − z‖ is Lipschitzian, it will be also
differentiable almost everywhere. Consequently,

0�
〈−w′

s(t), j (t)
〉
� −1

2

d

dt

∥∥ws(t) − z
∥∥2

. (12)

Moreover, sincet → ‖ws(t) − z‖ is decreasing, the functiont → 1
2

d
dt

‖ws(t) − z‖2

is Lebesgue integrable on[0,∞). Hence by (12) we know that the functiont →
〈−w′

s(t), j (t)〉 is also Lebesgue integrable on[0,∞). Then

lim inf
t→∞

〈−w′
s(t), j (t)

〉 = 0,

which means that there exists a sequence(tn) with tn → ∞ such that

lim
n→∞

〈−w′
s(tn), j (tn)

〉 = 0. (13)

SinceA is φ-accretive at zero, we know that

φ
(
ws(t) − z

)
�

〈−w′
s(t), j (t)

〉
and, since the sequence(‖ws(tn) − z‖) is decreasing, by (13) we derive

lim
n→∞

∥∥ws(tn) − z
∥∥ = 0.

Finally, since the functiont → ‖ws(t) − z‖ is decreasing, we conclude that

lim
t→∞

∥∥ws(t) − z
∥∥ = 0.

If we suppose thatu(s) ∈ D(A), then there exists a sequence(xn) ⊆ D(A) such thatxn →
u(s). If we call un(t) = S(t)xn, by the above argument we have

lim
t→∞un(t) = z.

Now, let us see that limt→∞ ‖ws(t)−z‖ = 0. Indeed, givenε > 0 we know that there exist
n1 ∈ N such that∥ ∥ ε
∥u(s) − xn1

∥ <
2
.
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Consequently, takingt � t0,∥∥ws(t) − z
∥∥ �

∥∥ws(t) − un1(t)
∥∥ + ∥∥un1(t) − z

∥∥
�

∥∥u(s) − xn1

∥∥ + ∥∥un1(t) − z
∥∥ � ε.

The above argument shows that limt→∞ ‖ws(t) − z‖ = 0 for any fixeds > 0.
On the other hand, sinceu is an almost-orbit ofF , we have that∥∥S(t)u(s) − u(s + t)

∥∥ � ϕ(s) → 0 ass → ∞.

Hence,∥∥u(t + s) − z
∥∥ �

∥∥u(t + s) − S(t)u(s)
∥∥ + ∥∥S(t)u(s) − z

∥∥ � ϕ(s) + ∥∥ws(t) − z
∥∥.

Therefore,

lim sup
t→∞

∥∥u(t + s) − z
∥∥ � ϕ(s) → 0 ass → ∞. (14)

Now, sinceu(.) andz are almost-orbits ofF , by Lemma 1 we know that limt→∞ ‖u(t)−z‖
exists.

Consequently, by using this fact and (14) we obtain that

lim
t→∞

∥∥u(t) − z
∥∥ = 0. �

Corollary 9. Let X be a Banach space. Suppose thatA ⊆ X × X is an m-ψ -strongly
accretive operator onX. Suppose that problem(10) has a strong solution for eachx ∈
D(A). Then, for eachx ∈ D(A), the integral solutionu(.) of the problem{

u′(t) + A(u(t)) � f (t), t ∈ [0,∞[,
u(0) = x,

(15)

wheref (.) ∈ L1(0,∞,X), converges strongly to the zero ofA as t → ∞.

Proof. This corollary is a consequence of Lemma 1 and both [13, Theorem 8], and
rem 8. �
Corollary 10. LetX be a Banach space with the Radon–Nikodym property(RN for short).
Suppose thatA ⊆ X × X is an m-accretive operator satisfying condition(4) for some
z ∈ X. Then for eachx ∈ D(A) the integral solutionu(.) of problem(15) converges
strongly toz as t → ∞.

Proof. First, we may notice that sinceA is m-accretive then, by Proposition 4, 0∈ A(z).
Second, sinceX has the RN property, then the integral solution of problem (10) i

fact a strong solution whenever the initial data is inD(A) (see [4]).
Third, sincef (.) ∈ L1(0,∞,X), by Lemma 1, the integral solution of problem (15)

an almost-orbit of the semigroup generated by−A via Crandall–Liggett.
Finally, we may apply Theorem 8 and thus we obtain the result.�

As an immediate consequence of Proposition 6 and the above corollary, we obtain
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Corollary 11. Let B :Lq(Ω) → Lq(Ω) be the operator given in Proposition6. Then, for
eachx ∈ Lq(Ω), the integral solutionu(.) of the problem{

u′(t) + B(u(t)) = f (t), t ∈ [0,∞[,
u(0) = x,

(16)

wheref (.) ∈ L1(0,∞,Lq(Ω)), converges strongly inLq(Ω) to 0 as t → ∞.

Ph. Bénilan and M.G. Crandall introduce in [5] the concept of completely accr
operator. This class of operators, in the particular case ofL1(Ω) with Ω bounded, can b
defined as follows: An operatorA ⊆ L1(Ω) × L1(Ω), is said to becompletely accretiveif
one of the following conditions holds:

(i) For λ > 0, (u, v), (x, y) ∈ A andj ∈ J0,∫
Ω

j (u − x) �
∫
Ω

j
(
u − x + λ(v − y)

)
,

where

J0 = {
convex lower-semicontinuous mapsj :R → [0,∞]

satisfyingj (0) = 0
}
.

(ii) For (u, v), (x, y) ∈ A andp ∈ P0,∫
Ω

p(u − x)(v − y) � 0,

where

P0 = {
p ∈ C∞(R): 0� p′ � 1, supp(p′) is compact and 0/∈ supp(p)

}
.

Corollary 12. Let Ω be a bounded subset inRn with smooth boundary∂Ω . Consider
the Banach spaceX = L1(Ω). If A :D(A) ⊆ X → 2X is m-completely accretive an
φ-accretive at zero, then, for eachx ∈ D(A), the integral solutionu(.) of problem(15)
converges strongly to the zero ofA.

Proof. This is a consequence of Theorem 8, since in this case the homogeneous p
has a strong solution whenever the initial data belongs toD(A) (see [5, Theorem 4.2]).�

5. Application

The present section is devoted to apply the abstract results of the previous sectio
concrete example of an initial value problem for a partial differential equation.

Throughout this section we will assume thatΩ is a bounded open domain inRn with

smooth boundary∂Ω . It will be further assumed thatϕ :Ω × R → R satisfies:
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(a) For almost allx ∈ Ω , r → ϕ(x, r) is continuous and nondecreasing.
(b) For everyr ∈ R, x → ϕ(x, r) is in L1(Ω).
(c) ϕ(x,0) = 0, ϕ(x, r) 
= 0 wheneverr 
= 0 and there existλ > 0 andα � 2 such that

ϕ(x, r)r � λ|r|α .

Example 13. The functionϕ(x, r) = |r|γ−1r satisfies the above conditions whene
γ � 1.

Consider the following nonlinear boundary value problem:


ut − div(|Du|p−2Du) + ϕ(x,u) = f on ]0,∞[ × Ω,

− ∂u
∂η

∈ β(u) on [0,∞[ × ∂Ω,

u(0, x) = u0(x) in Ω,

(17)

wheref (t, x) is a givenL1-function on]0,∞[ × Ω , 1 � p < ∞, ∂
∂η

is the associate

Neumann boundary operator, i.e.,∂u
∂η

= 〈|Du|p−2Du,η〉, with η the unit outward norma
on ∂Ω , Du the gradient ofu, β a maximal monotone graph inR × R with 0 ∈ β(0) and
ϕ :Ω × R → R satisfies conditions (a)–(c) as above.

In order to obtain the asymptotic behavior of the solution of problem (17), we shal
study a perturbation result on completely accretive operators which will be useful fo
goal.

Proposition 14. LetA be anm-completely accretive operator inL1(Ω) such that0∈ A(0),
and letϕ :Ω ×R → R be a function satisfying conditions(a)and(b) as above. If we defin
the single-valued operatorBϕ in L1(Ω) as follows: D(Bϕ) := {u ∈ L1(Ω): ϕ(. , u(.)) ∈
L1(Ω)} and for everyu ∈ D(Bϕ), Bϕ(u(x)) := ϕ(x,u(x)), then A + Bϕ is an m-
completely accretive operator onL1(Ω). Moreover, if D(A) = L1(Ω) we have that
D(A + Bϕ) = L1(Ω).

Proof. First, we will prove thatBϕ is completely accretive onL1(Ω).
Indeed, considerp ∈ P0, and(u,ϕ(. , u(.))), (v,ϕ(. , v(.))) ∈ Bϕ .
Since, for almost allx ∈ Ω , ϕ(x, .) is nondecreasing, we have(

ϕ
(
x,u(x)

) − ϕ
(
x, v(x)

))(
u(x) − v(x)

)
� 0 a.e. (18)

On the other hand, sincep(0) = 0 andp is nondecreasing we know thatp(x)x � 0, hence
p(u(x) − v(x))(u(x) − v(x)) � 0 and therefore by (18) it is clear that(

ϕ
(
x,u(x)

) − ϕ
(
x, v(x)

))
p
(
u(x) − v(x)

)
� 0 a.e.,

thus we may conclude that∫
Ω

p
(
u(x) − v(x)

)(
ϕ
(
x,u(x)

) − ϕ
(
x, v(x)

))
� 0.

Second, by [5, Corollary 2.4], we have thatA + Bϕ is completely accretive onL1(Ω).
Third, sinceA is m-completely accretive and 0∈ A(0), then by [5, Proposition 2.2]

A satisfies the conditions of [1, Corollary 3.1], and therefore we can conclude thatA + Bϕ
is m-completely accretive.
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Finally, let us see that ifD(A) = L1(Ω) thenD(A + Bϕ) = L1(Ω). For this purpose
it will be enough to show thatL∞(Ω) ⊆ D(A + Bϕ).

Foru ∈ L∞(Ω), sinceA+Bϕ is anm-accretive operator, givenn ∈ N there existsun ∈
D(A + Bϕ) such thatun = (I + 1

n
(A + Bϕ))−1u, thenun = (I + 1

n
A)−1(u − 1

n
Bϕ(un)).

SinceA + Bϕ is completely accretive we know (see [5]) that‖un‖∞ � ‖u‖∞ therefore
u − 1

n
Bϕ(un) → u in L1(Ω), asn → ∞.

On the other hand, if we denoteJA
1/n := (I + 1

n
A)−1, sinceD(A) = L1(Ω), there exists

a sequence(sm) in D(A) such thatsm → u in L1(Ω), asm → ∞, hence

‖un − u‖1 =
∥∥∥∥JA

1/n

(
u − 1

n
Bϕun

)
− u

∥∥∥∥
1

�
∥∥∥∥JA

1/n

(
u − 1

n
Bϕun

)
− JA

1/nu

∥∥∥∥
1
+ ∥∥JA

1/nu − u
∥∥

1

�
∥∥∥∥1

n
Bϕun

∥∥∥∥
1
+ ∥∥JA

1/nu − JA
1/nsm

∥∥
1 + ∥∥JA

1/nsm − u
∥∥

1

�
∥∥∥∥1

n
Bϕun

∥∥∥∥
1
+ ‖u − sm‖1 + ∥∥JA

1/nsm − u
∥∥

1.

Consequently

lim sup
n→∞

‖un − u‖1 � 2‖sm − u‖1,

which means thatun → u in L1(Ω), asn → ∞. �
Theorem 15. Let A be anm-completely accretive operator inL1(Ω) such that0 ∈ A(0),
and letϕ :Ω × R → R satisfying conditions(a)–(c)as above. ThenA + Bϕ is an m-φ-
completely accretive at zero operator onL1(Ω).

Proof. It is clear that 0∈ (A + Bϕ)(0). Moreover, since by Proposition 14,A + Bϕ is m-
completely accretive onL1(Ω), we only have to see thatA + Bϕ is φ-accretive at zero on
L1(Ω).

Indeed, consider(x,u) ∈ A+Bϕ , thenu = v+Bϕ(x), where(x, v) ∈ A. Since 0∈ A(0)

we know that〈v − 0, x − 0〉+ � 0, which means that there exists

j ∈ J (x) = ‖x‖1
{
j : j ∈ L∞(Ω), |j | � 1, andjx = |x| a.e.

}
such that〈v, j 〉 � 0.

Consequently, Hölder’s inequality yieldsK > 0 such that

〈u − 0, x − 0〉+ � 〈u, j 〉 �
〈
Bϕ(x), j

〉 = ‖x‖1

∫
Ω

ϕ
(
t, x(t)

)
j

= ‖x‖1

∫
{t∈Ω: x(t) 
=0}

ϕ
(
t, x(t)

) x(t)

|x(t)|

� λ‖x‖1

∫ ∣∣x(t)
∣∣α−1 � K‖x‖α

1 .
Ω
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Therefore, if we defineφ(x) = K‖x‖α
1, we obtain thatA + Bϕ is φ-accretive at zero.

In [2,3] the following problem is studied:


ut − div(|Du|p−2Du) = 0 on]0,∞[ × Ω,

− ∂u
∂η

∈ β(u) on [0,∞[ × ∂Ω,

u(0, x) = u0(x) in Ω.

(19)

In order to obtain the solution of (19) forp > 1 in [2, Theorem 2.1], anm-completely
accretive operatorAβ,p in L1(Ω) is introduced such that 0= Aβ,p(0) and with dense do
main. On the other hand, in [3, Theorem 5], it is studied the above problem forp = 1 by
using anm-completely accretive operatorAβ,1 such that 0= Aβ,1(0) and with dense do
main. Thus the abstract Cauchy problem inL1(Ω) corresponding to (19) reads as follow{

u′(t) + Aβ,pu(t) = 0, 0< t < ∞,

u(0) = u0.
(20)

On the other hand, given a functionϕ which satisfies conditions (a)–(c) as above,
Theorem 15 we know thatB := Aβ,p + Bϕ , whereD(B) = D(Aβ,p) ∩ D(Bϕ), is anm-φ-
completely accretive at zero operator onL1(Ω).

Thus problem (17) may be rewritten as{
u′(t) + Bu(t) = f (t), 0< t < ∞,

u(0) = u0,
(21)

whereu(.) is regarded as a function from[0,∞[ to L1(Ω). �
Theorem 16. If u0 ∈ Lq(Ω), f ∈ L1((0,∞),Lq(Ω)) and u is the integral solution o
problem(21), thenu(t) converges inLq(Ω) to 0, ast → ∞.

Proof. Caseq = 1. It is clear that the operatorB is under the conditions of Theorem 1
and it has dense domain (see Proposition 14), therefore we may apply Corollary
obtain the result.

Case1 < q < ∞. First, sinceD(B) = L1(Ω) and B is m-completely accretive by
[5, Proposition 3.4], it is clear thatLq(Ω) = D(B) ∩ Lq(Ω) = D(B)L

q(Ω).
Now, we have to notice that ifA is anm-completely accretive operator onL1(Ω) and

1� q < ∞, then the restrictionAq of A to Lq(Ω) is m-accretive onLq(Ω) (see [5]).
Therefore, sinceB is in such conditions, we know that its restrictionBq to Lq(Ω) is

m-accretive. Thus, following the argument in the proof of Theorem 15, by Corollar
we only need to show thatBϕ,q (it means the restriction ofBϕ to Lq(Ω)) is φ-accretive at
zero inLq(Ω).

Givenu ∈ D(Bϕ,q), we obtain

〈
Bϕ,q(u),u

〉
+ = ‖u‖2−q

q

∫
Ω

ϕ
(
x,u(x)

)
u(x)

∣∣u(x)
∣∣q−2

dx

� λ‖u‖2−q
q

∫ ∣∣u(x)
∣∣q+α−2

dx.
Ω
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Now by Hölder’s inequality, we obtain that there existsK > 0 such that〈
Bϕ,q(u),u

〉
+ � K‖u‖α

q .

Then, it is sufficient to take the functionφ(x) = K‖x‖α
q . �

To finish this section, we are going to study the abstract result on the asymptotic b
ior of the solutions of the following problem:


ut − div(|Du|p−2Du) + g(x,u) = f on ]0,∞[ × Ω,

− ∂u
∂η

∈ β(u) on [0,∞[ × ∂Ω,

u(0, x) = u0 ∈ Lq(Ω),

(22)

where (1� p < ∞ and 1< q < ∞), g :Ω × R → R is as in Proposition 6.
Problem (22) can be read as the following abstract Cauchy problem:{

u′(t) + (Aβ,p,q + B)u(t) = f (t), 0< t < ∞,

u(0) = u0,
(23)

whereAβ,p,q means the restriction of the operatorAβ,p to Lq(Ω), B is the operator given
in Proposition 6 andf ∈ L1((0,∞),Lq(Ω)). From Proposition 6 and Remark 7 it
clear thatAβ,p,q + B is anm-φ-accretive at zero operator onLq(Ω). Hence since 0=
(Aβ,p,q + B)(0), we can apply Corollary 10 and thus we can conclude that the int
solution of problem (23) goes to zero ast → ∞.
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