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Abstract

Models for the electrical potential distribution in the interfacial region between a fixed charge membrane and an electrolyte solution
have traditionally employed the Donnan equilibrium formalism that assumes discontinuous changes in concentrations and electric
potential. In the case of the charged capillary membrane model, we propose to check rigorously the validity of this approach by solving
the linearized Poisson–Boltzmann equation for the diffuse electrical double layer at the membrane|solution interface. The comparison of
the resulting axial distribution for the electric potential with the Donnan potential drop shows that the discontinuous approach is only
valid for membrane thicknesses much greater than the Debye length of the problem.
� 2006 Elsevier B.V. All rights reserved.
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Models for porous charged membranes have usually
considered the membrane as composed by an array of iden-
tical parallel capillary pores and have assumed the Donnan
equilibrium discontinuous approach at the membrane|solu-
tion interface. The model has proved useful not only for
synthetic filters but also for biological membranes. The
membrane pores shows ionic selectivity because the electri-
cal charges attached to the pore surface create an electrical
double layer (EDL) that extends from the surface to the
center of the pore. If the concentration of the mobile ions
is low enough, the diffuse double layer theory can give a
suitable description of the radial ionic distributions across
the pore [1]. Therefore, the Gouy–Chapman approach for
the EDL at the pore surface, together with the Nernst–
Planck flux equation and the Navier–Stokes equation
describing the solution flow through the charged capillary,
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have constituted the basis of most treatments for ion trans-
port through charged capillary pores. This charged capil-
lary model has been able to describe the coupling
between the mass and electrical fluxes through charged
membranes in many experimental situations [2].

However, the theory contains several compromising
assumptions, some of which concern the spatial distribu-
tion of the electrical potential. In order to make negligible
the pore entrance (or edge) effects, the pore length is invari-
ably considered to be much larger than the Debye length.
More importantly, at the membrane|solution interface the
electric potential distribution is assumed to be discontin-
uous, as an straightforward extension of the classical
one-dimensional Donnan formalism [1]. Thus, although
considerable effort is devoted in the charged capillary
model to the radial distribution of electric potential across
the pore cross-section [2–5], this is not the case of the axial
distribution of electric potential at the membrane bound-
aries, which should also be obtained from the solution of
the Poisson–Boltzmann (PB) equation. Except for a few
studies restricted to one-dimensional membrane systems,
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where only the axial coordinate is considered [6–10], the
relationship between the discontinuous (Donnan) formal-
ism at the membrane|solution interface and that resulting
from the PB equation has not been discussed in detail. This
can be attributed to the difficulty of finding a solution of
the PB equation in the interfacial region from the charge
cylindrical pore but also in the external solutions. In this
note, such a solution is described and used to obtain quan-
titative results for the difference between the actual poten-
tial drop in the interfacial region and the approximate
result obtained from the discontinuous formalism. Thus,
for instance, the expectation that the discontinuous formal-
ism could be used for the charged capillary model in those
cases where the membrane thickness is much greater than
the Debye length characteristic of the EDL [10,11] can be
rigorously checked. The results here presented on the axial
structure of the EDL can be relevant not only for synthetic
thick membranes [12] but also for the electrical properties
of thin biological membranes and ion channels [1,13].

There are two well-known approximate solutions to the
PB equation that correspond to the limiting cases of small
and high values of the electric potential / (when compared
to the thermal potential RT/F, where F, R and T are the
Faraday constant, the gas constant, and the thermody-
namic temperature, respectively). An analytical solution
to the linearized Poisson–Boltzmann (LPB) equation exists
in the first case [2,14,15]. Although the range of validity of
this solution is limited [2], it shows the essential trends of
the problem [14,15] and will be used here for the sake
of simplicity. More general solutions to the PB equation
that make use of variational and numerical methods
[3,4,16–18] can be found in the literature.

The equilibrium electrical potential distribution in the
interfacial region between a 1:1 binary electrolyte solution
of concentration c and a semi-infinite charged cylindrical
pore of radius a is studied first (see Fig. 1a). The pore is
considered to occupy region x > 0, where x is the position
coordinate along the pore axis. A uniform surface charge
density r is smeared over the pore walls. This charge den-
sity is assumed to be small enough so that the low potential
approximation F|/|/RT� 1 remains valid. This potential
distribution must be obtained from the solution of the
LPB equation in cylindrical coordinates
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Fig. 1. Interfacial regions considered: (a) semi-infinite pore and external
solution, (b) finite pore of length L and external solutions.
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where j ” (2F2c/eRT)1/2 is the reciprocal Debye length,
e is the electrical permittivity of the solution filling the
pore, and H(x) is the step function (1 if x > 0 and 0 if
x < 0).

It is well-known that the solution to Eq. (1) inside the
pore far from the interface (i.e., when o2//ox2 = 0) is
[14,15]

/1ðrÞ ¼ lim
x!1

/ðr; xÞ ¼ r
ej

I0ðjrÞ
I1ðjaÞ ð4Þ

where I0 and I1 are the zeroth-order and first-order modi-
fied Bessel functions of first kind, respectively, and the ori-
gin of potentials (/ = 0) has been established in the bulk
solution (x!�1).

The general solution to Eq. (1) can be obtained by the
method of separation of variables [19] as

/ðr; xÞ ¼
Z 1

�1
CkI0ðjkrÞeikjx dk ð5Þ

where jk � j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
and the coefficients Ck are to be

determined from the boundary condition, Eq. (3). Note
that the potential cannot be written in terms of the modi-
fied Bessel function K0 because this function is not regular
at r = 0.

By writing the step function H(x) as the inverse Fourier
transform of its Fourier transform [19], Eq. (3) can be
rewritten as
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where d(k) is the Dirac’s delta function. Comparing Eq. (6)
with the radial derivative of Eq. (5) at r = a
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the coefficients Ck are obtained as
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Then, the electric potential distribution in the interfacial
region is

/ðr; xÞ ¼ /1ðrÞ
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Since

lim
n!�1

sinðknÞ
pk

¼ �dðkÞ ð11Þ

the potential / tends to zero in the external bulk solution
and to /1 deep inside the charged pore, as it should be
expected [19].

Fig. 2 shows the electric potential distribution in the
interfacial region obtained by numerical integration of
Eq. (9) for a semi-infinite pore with a fixed charge concen-
tration X ” 2r/Fa = 50 mM, ja = 1.0, and a bulk electro-
lyte concentration c = X. These dimensionless parameters
may correspond, for example, to a = 15 Å, c = 50 mM
and r = 0.326 lC cm�2. It can be seen that the pore
entrance effects extend over a distance of the order of sev-
eral Debye lengths. This smooth potential distribution
should be compared to the discontinuous one assumed in
the capillary charge model. In this model the electrical dou-
ble layer at the membrane|solution interface is not described
and the potential is assumed to jump discontinuously at
x = 0 from zero in the external side of the interface to
/1(r) inside the pore. Similarly, in the classical Donnan
approach for one-dimensional membrane systems, the
potential is assumed to jump discontinuously at the inter-
face from zero in the external side to F/D/RT ” sinh�1(X/
2c) inside the membrane. For the case c = X, this means
F/D/RT = 0.481 which obviously is intermediate between
F/1(0)/RT = 0.448 and F/1(a)/RT = 0.560 because the
Donnan potential in the one-dimensional approach is a
kind of average potential over the cross-section.

It should be noted that /(r,0) = /1(r)/2 at the interface.
That is, in the linear approximation of the PB equation, the
potential drop in the solution side of the interfacial region
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Fig. 2. Electric potential distribution (in RT/F units) for a pore with
is equal to that in the membrane side. This is no longer true
in highly charged membranes [8]. The potential distribution
in the interfacial region cannot be obtained in analytical
closed form, and the nonlinear Poisson–Boltzmann
equation
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needs then to be solved numerically. Fig. 3 shows the
numerical solution obtained by using a finite element
method (FEMLAB 3.0) for the case X = 0.4 M, c =
X/8 = 50 mM and ja = 1.0, which corresponds to a classi-
cal Donnan potential of F/D/RT = 2.09. This potential
distribution is qualitatively similar to that computed from
our analytical solution in the linear approximation,
Fig. 2, and the accuracy of the analytical approximation
has also been confirmed using FEMLAB when the linear
approximation is valid.

We consider next the electric potential distribution
across a charged cylindrical pore of length L separating
two identical 1:1 electrolyte solutions of concentration c

(see Fig. 1b). The origin x = 0 is now taken at the center
of the pore. The boundary condition Eq. (3) must be
replaced by
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and can be written as [19]
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X = 50 mM, ja = 1.0, and a bulk electrolyte concentration c = X.
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Fig. 3. Electric potential distribution (in RT/F units) for a pore with X = 0.4 M, ja = 1.0, and a bulk electrolyte concentration c = X/8 = 50 mM. The
solution has been obtained by solving Eq. (12) by means of a finite element method.
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Comparing this equation with Eq. (7), the coefficients Ck

are obtained as

Ck ¼
r

ejkI1ðjkaÞ
sinðkjL=2Þ

pk
ð15Þ

and the electric potential distribution is given by Eq. (5) as
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¼ 2r
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where h(r,k) = h(r,�k), is given in Eq. (10).
-1.0 -0.8 -0.6 -0.4 -0.2 0
0.0

0.1

0.2

0.3

0.4

0.5

x

F
|φ

(0
,x

)|
/R

T
 5 

10 
20 

50 

Fig. 4. Axial distribution of the electric potential across pores of different
parameters are the same as in Fig. 2. The curve corresponding to the disconti
Fig. 4 shows the axial distribution of the electric poten-
tial across pores of different lengths and equal radii,
ja = 1.0, and fixed charge concentration X = c = 50 mM,
as obtained by numerical integration of Eq. (16). A depar-
ture for the potential at the pore center from the value that
it has for a semi-infinite pore is noticed for pores with
jL < 10.

Fig. 5 shows the electric potential distribution obtained
by numerical integration of Eq. (16) for a pore of L = 5a,
ja = 1.0, and X = c = 50 mM. Again, this smooth poten-
tial distribution should be compared to that assumed in
the charged capillary model, where the potential jumps
discontinuously from zero at the external solution to
.0 0.2 0.4 0.6 0.8 1.0
/L 

lengths (values of jL shown) and equal radii, ja = 1.0. The rest of the
nuous approach (dashed line) is also shown for comparison.
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Fig. 5. Distribution of the electric potential for a pore of length L = 5/j and radius a = 1.0/j (each curve corresponds to values of r/a: 1.0, 0.8, 0.6, 0.4, 0.0
from top to bottom). The rest of the parameters are the same as in Fig. 2. Curves corresponding to the discontinuous approach (dashed lines) are also
shown for comparison.
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/1(r) inside the pore. The latter are shown as dashed lines
in Fig. 5. It is apparent that the discontinuous formalism
provides a very poor description of the axial dependence
of the potential, and it also overestimates the potentials
inside the pore.

Table 1 gives the ratio /(0,0)//1(0) for different pore
lengths. Obviously, in the limit L!1, i.e., when the
charged pore extends over the whole x axis, the potential
/(r,x) reduces to /1(r) because of Eq. (11). For the linear
solution it is observed that the potential at the pore center
deviates by more than 5% from /1 when the pore length is
smaller than 7/j, i.e., seven Debye lengths. This deviation
is less noticeable in the nonlinear solution, which is due
to the increase of both the fixed charge concentration
and the concentration of mobile ions inside the pore, and
leads to a more abrupt potential variation at the interface.

In this short communication we have solved analytically
the linear Poisson–Boltzmann equation in the cylindrical
interfacial region between a charged pore and the external
solutions. The analytical solution is given in an integral
form that allows us to calculate the potential distribution
rather easily. This is a significant improvement over the
state-of-the-art. Both, the classical one-dimensional Don-
nan approach and the two-dimensional capillary charged
Table 1
Ratio of the potential at the pore center to that calculated for an infinitely
long pore, /1(0) for different pore lengths and the same parameters as in
Figs. 2 and 3 for the linear and nonlinear solutions, respectively

jL /(0,0)//1(0) /(0,0)//1(0) (nonlinear)

20 1.000 1.000
15 1.000 1.000
7.5 0.980 1.000
5.0 0.921 1.000
3.0 0.767 0.945
1.5 0.492 0.752
model assume discontinuous changes in the potential at
the membrane|solution interface. In the latter case, this is
particularly discouraging because a strong effort is made
to describe the equilibrium electrical double layer in the
radial direction and then the electrical double layer in the
axial direction is disregarded. This is justified because edge
effects are negligible when the pore length is much larger
than the pore radius. However, it is also true that the cap-
illary charge model is sometimes applied to short pores and
that an analytical solution that describes the complete
axial–radial distribution was not previously available. In
a preliminary attempt to analyze the importance of edge
effects in short pores, we have also studied the potential dis-
tribution in finite-length pores. Significant deviations from
the predictions of the discontinuous formalism occur for
less than ca. 10 Debye lengths for low surface charge den-
sities (low surface potentials). We believe that the analyti-
cal solution obtained here can be useful in ion transport
studies through synthetic membranes and biological ion
channels.
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