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By means of an extended center-manifold reduction, we derive the nonlocal complex Ginzburg-Landau
equation (NCGLE) valid for electrochemical systems with migration coupling. We carry out the stability
analysis of the uniform oscillation, elucidating the role of the nonlocal coupling in electrochemical
systems at the vicinity of a supercritical Hopf bifurcation. We apply the NCGLE to an experimental
system, an N-type negative differential resistance electrochemical oscillator, which is shown to exhibit
electrochemical turbulence for wide parameter ranges.
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The dynamics of coupled oscillatory systems is of great
relevance to physics, chemistry, and biology [1]. The cou-
pling of an ensemble of oscillators can be local, global, or
intermediate, depending on its spatial extension. In the
vicinity of a supercritical Hopf bifurcation (SHB), local
coupling can be most generally described in terms of the
complex Ginzburg-Landau equation (CGLE). Conse-
quently, much effort has been devoted to the study of the
CGLE in the last two decades [1,2]. The understanding of
intermediate and global coupling [we shall call it here
nonlocal coupling (NLC)] remains however at its infancy.
Kuramoto [3] formulated a nonlocal CGLE for a class of
three (or more) component reaction-diffusion systems that,
although having partial similarity with some chemical
oscillators with coupling mediated by diffusive chemicals,
is not directly related to any experimental system [4]. This
equation predicts novel dynamical states, such as multi-
affine turbulence [5] and chimera states [6].

NLC occurs naturally in electrochemical systems [7].
Here, the electrostatic potential at the working electrode
(WE) is a dynamical variable, and any deviation from its
average value decays with �1=r where r is the distance to
a reference position. Thus, an inhomogeneity is felt instan-
taneously by a neighboring range of locations. This effect
is called migration coupling and is synchronizing, smooth-
ing out any potential gradients tangential to the WE in the
absence of nonlinear reactions [7]. It can drive the system
to turbulent states even without any diffusing species, as
also found experimentally [8]. A further peculiar property
of migration coupling is that the coupling range can be
easily controlled by varying the distance w between the
WE and the counter electrode (CE). The coupling range is
determined by the aspect ratio � � w=L, where L is the
length of the WE [8,9]. For �! 0, the local coupling limit
is approached and the dynamics can be approximated by
the CGLE. However, for finite, i.e., realistic �, the spatial
coupling is nonlocal, and the CGLE cannot be applied.

In this Letter, we derive the nonlocal CGLE (NCGLE)
valid for a wide class of electrochemical systems of ex-
perimental interest. This is achieved rigorously by means
of an extended center-manifold reduction of the dynamics

close to a SHB. Compared to recent related work [1,3,4],
our derivation deviates substantially in the way the spatial
scaling enters. We take explicitly into account the nonlocal
kernel of the inhomogeneous dynamics in electrochemical
systems [10]. The resulting NCGLE depends on only one
additional parameter, the coupling range � (that fully
controls the nonlocal kernel, in contrast to [4]) and reduces
to the CGLE for �! 0. Although the NCGLE can be
extended to some 2D electrodes, we focus our attention
to 1D ring electrodes because of their enormous experi-
mental interest [7–12]. Our starting point is the dynamics
for the double layer potential �DL coupled to the homoge-
neous reaction kinetics governing the evolution of a vector
of chemical species c [8]

 @t�DL � f��DL; c� �
�
�
�@z����jz�WE (1)

 @tc � g��DL; c�: (2)

The last term of Eq. (1) specifies the NLC, which depends
on the electric potential in the electrolyte, ��x; z� [7,9].
The latter obeys to a very good approximation Laplace’s
equation (x and z are coordinates parallel and perpendicu-
lar to the electrode, respectively, and z �WE is the plane
of the WE; � is the dimensionless conductivity). The
dependence of Eq. (1) on�makes explicit that the distance
between WE and CE controls the NLC. This can also be
seen by writing this term as an integral over a coupling
function, H��jx� x

0j�, as discussed in [10].
 

�
�
�
�@z����jz�WE � �

Z
WE
H��jx� x0j�

� 	�DL�x
0� ��DL�x�
dx

0: (3)

Through this approach, the migration coupling does not
depend on ��x; z�, and therefore Eq. (1) is mathematically
closed. For a 1D ring WE, we have [10]

 H��jx� x
0j� �

�

4�2sinh2���x�x
0�

2� �
�
��jx� x0j�

�
: (4)
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This function is represented for different � values in the
inset of Fig. 1. Its Fourier transform is

 H�q�� � �q coth�q�� �
1

�
: (5)

In the limit �! 0, the NLC becomes local (diffusion-like,
�q2) with ‘‘diffusion coefficient’’ ��=3. In the limit �!
1, Eq. (5) is, however, linear in q.

Let us now concentrate on the dynamics described by
Eqs. (1) and (2). We define a vector X with �DL in its first
entry and the concentrations of chemical species in the
others. We denote the homogeneous dynamics by F�X; ��
where � is a control parameter. The NLC term now
correlates X in space, and Eqs. (1) and (2) read

 @tX � F�X; �� � K
Z

WE
H��jx� x0j�	X�x0� �X�x�
dx0

(6)

where K is a matrix with K11 � � and all other elements
are zero. We expand this dynamics in the vicinity of the
steady state X0 in terms of the deviation u � X�X0

 @tu � Lu� K
Z

WE
H��jx� x

0j�	u�x0� � u�x�
dx0

�Muu� Nuuu� . . . (7)

where Lij �
@Fi�X0�
@X0

j
, �Muu�i �

P
j;k

1
2!
@2Fi�X0�
@X0

j @X
0
k
ujuk, and

�Nuuu�i �
P
j;k;l

1
3!

@3Fi�X0�

@X0
j @X

0
k@X

0
l
ujukul. We focus on the dy-

namics close to a SHB in which a pair of complex con-
jugated eigenvalues crosses the imaginary axis (� � 0).
For small�, the critical eigenvalue �c becomes �c � �0 �
��1 and the Jacobian L � L0 ��L1 so that we have
LjU � �jU, Lj �U � ��j �U (j � 0, 1), �0 � i!0 � U�L0U,
�1 � �1 � i!1 � U�L1U, where U and U� (UU� � 1) are

right and left eigenvectors, respectively, and the bar de-
notes complex conjugation. In a spatially extended system,
the relevant eigenvalues governing the dynamics close to
criticality are thus contained in a circle centered in the
critical eigenvalue with radius proportional to j�j. We
define the small parameter " through 	"2 � � where 	 �
sgn�. Close to criticality, u, L,M, andN, can be expanded
in powers of " as u �

P
1
k�1 "

kuk, L �
P
1
k�0 	

k"2kLk,
M �

P
1
k�0 	

k"2kMk, N �
P
1
k�0 	

k"2kNk. The depen-
dence of �c on � to first order suggests the introduction
of an additional ‘‘slow’’ time variable 
 � "2t and, hence,
@t ! @t � "2@
. For nonvanishing �, the dispersion rela-
tionship of the NLC Eq. (5) depends to dominant order
linearly in q � 2�n=L and 1=�; i.e., it is proportional to
the inverse of the characteristic length of the system. This
contrasts with the spatial coupling caused by diffusion in
reaction-diffusion systems, which in Fourier space depends
on the squared inverse of the system length [1]. The NLC
yields branches of eigenvalues separated by a distance of
order �L�1 and only the ones within a circle of radius j�j
are relevant to the dynamics. Therefore, we scale space and
coupling range, respectively, as s � j�jx � "2x and ~� �
j�j� � "2�. Then, the coupling function Eq. (4) trans-
forms as H��jx� x0j� ! "4H ~��js� s

0j�. The spatial inte-
gral of the coupling function contributes with "2 indicating
that the nonlocal coupling is weak. This indeed makes
possible the application of center-manifold theory [4]. By
replacing all the above "-dependent quantities in Eq. (7)
and by equating terms with equal powers of ", we obtain

 �@t � L0�uk � Bk �k � 1; . . . ;1� (8)

where, to third order in ", we have

 B 1 � 0 B2 � M0u1u1 (9)

 B 3 � ��@
 � 	L1�u1 � 2M0u1u2 � N0u1u1u1

� K
Z

WE
H ~��js� s

0j�	u1�s
0� � u1�s�
ds

0 (10)

the NLC entering at third order. If we write Bk�t; 
; s� �P
1
l��1B�l�k �
; s�e

il!0t, the linear Eqs. (8) satisfy a solvabil-
ity condition for any k

 U � B�1�k �
; s� � 0 (11)

which allows us to calculate the uk’s iteratively. The
solutions for u1 and u2 follow then from Eqs. (8) and (9)
as u1 � WUei!0t � �W �U e�i!0t and u2���L0�
2i!0�

�1M0UU�W2e2i!0t� �W2e�2i!0t��2L�1
0 M0U �UjWj2.

By replacing these expressions in (10) and by using
Eq. (11) for k � 3, we obtain
 

@
W � 	�1W � gjWj2W � ~K
Z

WE
H ~��js� s

0j�

� 	W�s0� �W�s�
ds0 (12)
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FIG. 1 (color online). Dispersion curves obtained from
Eq. (14) for the values of � indicated in the graph, c1 �
�1:03, c2 � 2:68. Inset: H� calculated from Eq. (4) for L � 20.
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where ~K � ~K0 � i ~K00 � U�KU and g � g0�
ig00 � 4U�M0	UL�1

0 M0U �U� �U�L0 � 2i!0�
�1M0UU
 �

3U�N0UU �U (g0 > 0 at a SHB). By introducing scale trans-
formations: 
! ��1

1 
, s! ~K0s=�1, ~�! ~K0 ~�=�1, W !���������������
�1=jg

0j
p

exp�i!1
=�1�W, and writing x, t, and � instead
of s, 
, and ~�, we arrive at the NCGLE
 

@tW � W � �1� ic2�jWj2W � �1� ic1�

�
Z

WE
H��jx� x0j�	W�x0� �W�x�
dx0 (13)

where c1 � ~K00= ~K0, c2 � g00=g0. Compared to the CGLE,
the NCGLE depends on the additional parameter � that
controls the range of the coupling. The homogeneous
dynamics of electrochemical systems also depends on �
through the parameter �c � �=� [9]. Experimentally, ad-
justing � to keep �c constant allows the effect of � to be
studied without changing the values of c1 and c2.

We have performed the stability analysis of the uniform
oscillation with the NCGLE. The eigenvalue spectrum for
phase-like fluctuations has the form

 ��q�p ���1�H
�q�
� �

8><
>:1�

����������������������������������������������������������
1�

H�q�� 	�1� c
2
1�H

�q�
� � 2�


�1�H�q�� �
2

vuuut
9>=
>;

(14)

where H�q�� is given by Eq. (5) and � � 1� c1c2 (see

supporting material [13]). To have an instability, ��q�p > 0

and, therefore (since H�q�� < 0 for q > 0), we have �< 0.
� also controls the stability of the uniform solution in the
CGLE with � � 0 yielding the so-called Benjamin-Feir
(BF) line in the c1 � c2 plane. In the case of the NCGLE,
the dispersion relation depends also on �. Its effect on the
spectrum can be seen in Fig. 1 for constant c1 and c2. When
�< 0, we enter in the phase turbulent regime, and any q
lower than a wave number qm given by qm coth�qm�� �
1
� �

2j�j
1�c2

1
will destabilize the uniform oscillation. For small

�, qm coth�qm�� �
1
� � �q2

m=3 and therefore qm ��������������
6j�j

��1�c2
1�

r
. With increasing �, qm decreases as ���1=2,

and the band of unstable wave numbers (the interval q 2
	0; qm
) is compressed (see Fig. 1). The spatiotemporal
structures have then larger characteristic lengths. For
very high �, we have qm coth�qm�� �

1
� � qm, and qm �

2j�j
1�c2

1
no longer depends on� (the NLC saturates). Note that,

as clear from the inset in Fig. 1, the coupling function can
have a global contribution, in which case only a few wave
numbers are unstable. We have simulated the NCGLE by
using a pseudospectral method with 512 Fourier modes,
periodic boundary conditions, and an exponential time
stepping algorithm [14]. The spatiotemporal evolutions
of the modulus of the amplitude jWj for two different �

values are shown in Fig. 2. They confirm the conclusion
from the above stability analysis: For larger �, the spatial
structures are larger and the density of space-time defects
is lower. Each defect is enclosed in a dark region of Fig. 2
where jWj is low. These results are fully consistent with
very recent experimental findings in which electrochemi-
cal turbulence was reported [8], the density of defects
found to decrease with increasing �. When the NLC has
a global contribution, turbulence can even be suppressed
giving rise to spatially coherent structures. Several initial
conditions were considered (a localized pulse in Fig. 2) and
yielded similar asymptotic solutions.

We now calculate the coefficients c1 and c2 of the
NCGLE, Eq. (13) from the dynamics of a N-type negative
differential resistance (N-NDR) electrochemical oscillator
[11] at the SHB. This two-variable N-NDR model was
considered, for example, for the reduction of IO�4 on an
Au electrode. It is given by Eqs. (1) and (2) with [11]

 f��DL; c� � �k��DL; c� � �c�U��DL� (15)

 g��DL; c� � 	�k��DL; c� � 1� c
�: (16)

Here, �c � �=�, � � 10�4, and k��DL; c� � 7:293�
10�5c��3

DL � 472:5�2
DL � 55932�DL�. All quantities re-

quired to evaluate c1 and c2 are given in the supporting
information [13]. In Fig. 3, we show the SHB curve in the
U� �c parameter plane. Since instabilities of the homo-
geneous steady state with nontrivial wave numbers are not
possible inN-NDR systems [7], c1 and c2 can be calculated
from the steady states at the SHB. The resulting curve is
shown in Fig. 4. We find a parameter range in which the
system is in the turbulent regime. At low applied voltage
U, the uniform oscillation is stable. As U is increased, the
� � 0 line is crossed, and the instability develops. The
inset in Fig. 4 shows that a further increase in U pushes the

FIG. 2 (color online). Spatiotemporal evolution of the modulus
of the amplitude jWj for c1 � �1:03, c2 � 2:68, L � 100, and
� � 1 (left) and 50 (right). Low jWj: dark.
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system deeper into the unstable region, the defect turbu-
lence becoming stronger. These results are fully consistent
with the experiments in which the density of defects was
found to increase with U [8]. U plays a crucial role in
driving the system far from equilibrium, and its increased
value can be generally conjectured to lead to more dissi-
pative turbulent states.

In summary, we have rigorously derived the NCGLE
valid for electrochemical oscillators with migration NLC.

This equation extends the validity range of the CGLE to
synchronizing NLC as found in these oscillators. The
effect of the NLC has been elucidated by means of the
stability analysis of the uniform oscillation. We found that
a larger coupling range leads to a lower density of space-
time defects and a larger characteristic length of the spa-
tiotemporal structures. The dynamics of a N-NDR electro-
chemical oscillator has been also mapped onto the
NCGLE, and we have shown that this system exhibits
electrochemical turbulence in wide parameter ranges. All
results found for this system shed light on very recent
experimental results [8] in which transitions from limit-
cycle oscillations to electrochemical turbulence were
reported.
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