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Unusual subharmonic cluster patterns are observed during the oscillatory electro-oxidation of n-Si(111)

under illumination. 2D in situ imaging of the electrode by means of an ellipsometric setup allows local

variations in the oxide layer thickness to be monitored. The local oscillators exhibit an irregular

distribution of the amplitude with the extrema locked to the constant base frequency of the total current.

In addition, Ising 2-phase clustering occurs at half the base frequency. This intrinsic dynamics is described

by means of a modified complex Ginzburg-Landau equation.
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Pattern formation in spatially extended chemical [1] and
electrochemical [2] oscillators has been an active area of
research in the last two decades. Awide variety of dynami-
cal behaviors absent in individual oscillators arise as a
consequence of their mutual coupling and range from
complete incoherence to full synchronization of the local
oscillators. The introduction of an external parametric
forcing [3] or global coupling [4] enriches significantly
the dynamical scenario leading, for example, to a locking
of the oscillators to multiples of a base, natural frequency.
Depending on the forcing or feedback strength different
kinds of cluster patterns were observed.

The electro-oxidation of n-Si(111) under illumination is
known to exhibit oscillations [5]. So far it has been studied
in situmainly with space averaging methods looking at the
temporal dynamics with a variety of electrochemical and
surface sensitive techniques [6]. Despite some previous
tantalizing results, spatiotemporal pattern formation at
the semiconductor-electrolyte interface is essentially unex-
plored because satisfactory resolution of the dynamics both
in space and time was never achieved experimentally,
precluding further insight.

In this Letter, we present in situ measurements monitor-
ing the rich spatiotemporal dynamics at the Si-electrolyte
interface. Using contrast enhanced optical microscopy [7],
we obtain in situ 2D images of the thickness of an oxide
layer that forms at the interface during the electrodissolu-
tion. A surprising experimental observation is the finding
of an unusual clustering and entrainment behavior which is
intrinsic to the dynamics of the system. We elucidate the
observed behavior by means of a modified complex
Ginzburg-Landau equation including terms describing a
1:1 resonance and a nonlinear global coupling, whose
likely physical origins are a global constraint on the total
current flowing through the system and an external Ohmic
resistor.

Applying a positive voltage to a Si electrode immersed
in a F� containing electrolyte, two competing reactions
take place, the electrochemical oxidation of Si, Siþ
4OH� þ �hþ ! SiO2 þ 2H2Oþ ð4� �Þe�, and chemi-

cal etching of SiO2 by F� ions, SiO2 þ 6HF ! H2SiF6 þ
2H2O [8]. Consequently, the interfacial oxide layer thick-
ness is determined by the relative rates of the two reactions;
the interplay of these reactions is also decisive for the
occurrence of the oscillatory instability at sufficiently
positive potentials. The oxidation reaction proceeds at an
appreciable rate, only when sufficient holes are present,
necessitating the illumination of n-Si electrodes.
Our experimental setup is shown in Fig. 1. The

n-Si (111) (1–2 � cm) working electrode (WE) was posi-
tioned vertically in the middle of the cell and illuminated
homogeneously with 1:2 mW=cm2 at 0� incident angle
with a red light emitting diode (HighLED Linos, typical
wavelength 630 nm). The temporal variations of the spatial
distribution of the oxide thickness on the silicon were
monitored with an in situ ellipsomicroscopic setup [7]
adapted to our system: Blue light (HighLED, typical wave-
length 470 nm) is elliptically polarized and hits the Si
electrode at 70� incident angle. The reflected light is
passed through a lens imaging the electrode to an analog
camera (JAI CV-A50) and an analyzer (Glan Thompson

FIG. 1. Scheme of the electrochemical cell and the optical
setup used for illumination and ellipsomicroscopic imaging
(see text).
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prism) converting differences in the polarization state of
the (locally) reflected light to intensity differences. A filter
is used to keep out scattered red light. The camera images
are digitized with a frame grabber (PCI-1405, National
Instruments). The electrode had a size of 4.3 mm (x direc-
tion) times 2.1 mm (y direction) and was recorded with a
resolution of 25 �m in x and 10 �m in y direction limited
by the number of pixels of the CCD. The electrolyte was an
Ar purged, i.e., oxygen free, 0.5 MNH4F solution in a three
electrode Teflon cell. Counter electrode and reference
electrode were a Pt wire bent to a ring and a saturated
HgjHg2SO4 electrode, respectively. The potential of the
WE was controlled with a FHI-2740 potentiostat (elec-
tronic laboratory of the Fritz-Haber-Institut, Berlin,
Germany) and, together with the current, digitized with a
data acquisition board (PCI-6221, National Instruments).
Before immersing into the electrolyte, the Si wafer was
cleaned with acetone, ethanol and concentrated NH4F,
rinsed with H2O and dried with Ar. After purging O2

from the solution, the open circuit potential is 0.22 V (all
voltages are given with respect to the normal hydrogen
electrode). A 30 k� Ohmic resistor was placed between
the WE and the potentiostat, and during the experiments
the solution was stirred with a magnetic stirrer.

At intermediate illumination strengths and voltages [9]
regular relaxation oscillations of the total current were ob-
served [Fig. 2(f)]. In parallel, the spatially averaged ellip-
somicroscopic light intensity hRi oscillates sinusoidally
and is phase-locked to the current oscillations [Fig. 2(e)].
In contrast to the regular time series of the averaged quan-
tities, snapshots of the electrode [Figs. 2(a) and 2(b)] reveal
that the oxide layer thickness forms an intricate and time-
dependent labyrinthine pattern. The two images are taken
at two successive maxima of the average oxide layer
thickness. As most easily seen in the encircled areas, in
successive oscillations the bright and dark regions ex-
change their positions, suggesting that the overall dynam-
ics is not simple periodic with the period of the total
current. More insight into the spatiotemporal dynamics is
obtained when looking at the temporal evolution along the
1D cut shown in Fig. 2(c). In this representation, one
obtains the impression that a uniform oscillation with the
base frequency is superimposed on an irregular pattern that
changes in time. The characteristics of the dynamics be-
come apparent when looking at the level of the local time
series [Fig. 2(d)]. The local oscillation amplitude evolves
irregularly in time and is different for each oscillator
shown. However, the extrema of R for all individual oscil-
lators are locked to the ones of the average signal hRi (a
few extrema disappear due to a large modulation of the
local oscillation). The envelope of the complex dynamics
of each individual oscillator contains harmonic contribu-
tions with half the base frequency (i.e., the one of the
homogeneous oscillation). This is clearly seen when per-
forming a Fourier transform of the time series RðtÞ of each

local oscillator. In Fig. 3(a) the amplitude of the Fourier
transform a is displayed for the data of Fig. 2(c) as a
function of frequency. Two main peaks are observed for
all time series: the one at the base frequency (17 mHz), a1,
and a subharmonic one at half the base frequency
(8.5 mHz), a1=2. To get an understanding of the 2D spatial

distribution of these modes, we use a frequency demodu-
lation technique [10]. In Fig. 3(b), the spatial distribution
ja1j of the amplitude of the mode at the base frequency is
shown. The amplitude for this mode is homogeneously
distributed, all oscillators being also clustered to the
same phase, as can be seen in Fig. 3(d). This is evident
also from Figs. 3(f) and 3(g), where the phase histogram
and the distribution of a1 in the complex plane are given,
respectively. The behavior of this mode is related to the
locking of the amplitude extrema of all individual oscil-
lators to the average signal. The subharmonic Fourier
mode a1=2 is shown in Figs. 3(c) (amplitude) and 3(e)

(phase). Two domains having the same amplitude but
opposite phase are entangled in a labyrinthine pattern.

FIG. 2 (color online). Spatiotemporal data during n-Si electro-
dissolution at a voltage U ¼ 11:65 V. (a),(b) Ellipsomicroscopic
snapshots of the Si electrode taken at subsequent maxima of the
average light intensity hRi. (c) Spatiotemporal evolution of
Rðx; tÞ for the 1D cut indicated in (a). (d) Local time series of
RðtÞ for the three points indicated in (c). (e) Time evolution of
hRi. (f) Time evolution of the total current.
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From the phase histogram Fig. 3(h) and the representation
of a1=2 in the complex plane Fig. 3(i), we see that 2-phase

clustering occurs, with Ising walls (i.e., boundaries where
ja1=2j ¼ 0) separating the clustered domains where the

phase abruptly changes by � radians. These 2-phase clus-
ters are phase balanced; i.e., there is the same amount of
oscillators in each phase.

The illumination strength limits the number of electron-
hole pairs available for the oxidation of Si and introduces a
constraint on the maximum total current. Making the plau-
sible assumption that electrical quantities, such as the
concentration of holes at the surface, always remain uni-
formly distributed but oscillate in time, these self-induced
oscillations could act like a harmonic forcing. On the other
hand, it is known that an external resistor introduces a
global coupling [2]. Thus, there are two global sources
that affect the dynamics. The local oscillators are entrained
to the base mode leading to locking of the amplitude
extrema. A theoretical model to describe the main ob-
servations above is provided by a modified complex
Ginzburg-Landau equation

@tW ¼ W þ ð1þ ic1Þ@2xW � ð1þ ic2ÞjWj2W þ B; (1)

where

B ¼ �� ð1þ i�ÞhWi þ ð1þ ic2ÞhjWj2Wi: (2)

W is a complex amplitude and h� � �i denotes spatial aver-

ages. The real part of the complex amplitude, Wr � ReW,
describes the dynamics of the interfacial oxide thickness.
Since the experimentally observed behavior in two dimen-
sions possesses the same essential features as in the one
dimensional cuts, we consider for simplicity a 1D model,
with x denoting the spatial direction along one cut of the
2D sample. The first term in Eq. (2) describes a parametric
forcing close to a 1:1 resonance [11]. The second and third
terms describe the nonlinear effect of the global signal hWi
on the dynamics of the system and can be thought of as an
expansion of a negative global coupling to third order. The
introduction of such global dynamics, with cubic terms on
the spatial average of the amplitude, is motivated by analo-
gous studies on phase ordering under a global conservation
law [12]. While hWi is constant in [12] (the real Ginzburg-
Landau equation is employed therein), in our case it is a
periodically oscillating function as observed in our experi-
ments [see Figs. 2(e) and 2(f)]. Consequently, hWi needs to
be a periodic function in the most general description to
reflect this constraint, and so it is in Eq. (1). This can be
seen by taking spatial averages on both sides of Eq. (1): We
obtain the differential equation @thWi ¼ �� i�hWi which
has the closed analytical oscillating solution hWi ¼
i�½expð�i�tÞ � 1�=�þ hWi0 expð�i�tÞ where hWi0 is
the initial spatial average. From this solution we observe
that � specifies the frequency of the homogeneous oscil-
lation. It is to be noted that neither the parametric-force-
like term nor the global-feedback-like ones in Eq. (1)
correspond to an experimental time-dependent manipula-
tion of the system but arise intrinsically from its dynamics;
i.e., these terms are self-induced in the system.
We have carried out simulations with Eq. (1) by using a

pseudospectral method with 1000 Fourier modes, no flux
boundary conditions and uniform noise superimposed on a
localized pulse as initial condition. The integration is
carried out by means of an exponential time stepping al-
gorithm [13]. The spatiotemporal evolution of the real part
of the complex amplitudeWr is shown in Fig. 4(a). We ob-
serve an irregular pattern like in the experiment [Fig. 2(c)].
Further analysis also reveals a high degree of organization.
In Fig. 4(b) we see, for example, that any individual
oscillator has complicated modulations in the amplitude
that render the spatial pattern irregular. Yet all extrema are
locked to the ones of the average signal hWri ¼ RehWi,
possessing the same base periodicity. Also in the simula-
tions, the spatial pattern is irregular because of complicated
modulations in the amplitude from the subharmonic
modes. This is also a most prominent feature in the experi-
mental data [Figs. 2(d) and 2(e)]. The average signal slaves
the individual oscillators although the modulation of the
amplitude displays a complicated behavior. Performing a
Fourier analysis of the simulated time series for each
oscillator, we find two main peaks in the power spectrum
as in Fig. 3(a), one at frequency � and the other at the sub-
harmonic �=2. This is the case for all local oscillators. In

FIG. 3 (color online). Fourier transform of the data shown in
Fig. 2 and amplitude and phase distributions of the coefficients
of the main frequencies. (a) Amplitude of the Fourier transform
a of the local time series of R along the 1D cut in Fig. 2(c). (b),
(c) 2D distribution of the amplitude of the main Fourier mode
a1ðx; yÞ and of the subharmonic mode a1=2ðx; yÞ, respectively.
(d),(e) 2D distribution of the phase of the main Fourier mode
a1ðx; yÞ and of the subharmonic mode a1=2ðx; yÞ, respectively.
(f),(h) Phase histogram for all spatial points of a1 and a1=2,

respectively. (g),(i) Representation in the complex plane of a1
and a1=2, respectively.
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Fig. 4(e) (left), it is shown that phase locking occurs at the
base frequency � for the base Fourier mode a1 of the time
series for all oscillators, which conforms with the obser-
vation made in Figs. 3(f) and 3(g). In Figs. 4(c) and 4(d),
we plot the phase and amplitude, respectively, of the
Fourier coefficient a1=2 of the time series of Wr at the

subharmonic frequency �=2 for all points in space. We
see that clustering into two different phases occurs. The
cluster domains are separated by Ising walls. The cluster-
ing is even more apparent in Fig. 4(e) (right), where a1=2 is
shown in the complex plane. Phase balance holds, with the
same amount of oscillators in each phase [cf. Fig. 3(i)]. The
simulations revealed that the nonlinear global coupling is
responsible for all oscillators being locked at their extrema
while the 1:1 resonance �, which is intrinsic to the Si
oxidation dynamics, contributes to the observed subhar-
monic 2-phase clustering.

In this Letter we have presented in situ measure-
ments resolving the rich spatiotemporal dynamics at a
semiconductor-electrolyte interface using ellipsomicros-
copy. We have observed the formation of unusual subhar-
monic cluster patterns during the oscillatory electro-
oxidation of n-Si(111) whose properties have been eluci-
dated by means of a modified complex Ginzburg-Landau
equation.
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FIG. 4 (color online). (a) Spatiotemporal evolution of the real
value Wr of the complex amplitude W obtained from Eq. (1) for
c1 ¼ �10, c2 ¼ 1:5, � ¼ 1:55 and � ¼ 3:1. (b) Local time
series of Wr;i for three individual oscillators i and time series

of the spatial average hWri. (c) 1D distribution of the phase of the
first subharmonic Fourier mode a1=2 of the time series at fre-

quency �=2. (d) 1D distribution of the amplitude for the first
subharmonic Fourier mode a1=2 of the time series at frequency

�=2. (e) Representation in the complex plane of a1ðxÞ (left) and
a1=2ðxÞ (right).
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