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A wide variety of subharmonic n-phase cluster patterns was observed in experiments with spatially extended
chemical and electrochemical oscillators. These patterns cannot be captured with a phase model. We demon-
strate that the introduction of a nonlinear global coupling �NGC� in the complex Ginzburg-Landau equation has
subharmonic cluster pattern solutions in wide parameter ranges. The NGC introduces a conservation law for
the oscillatory state of the homogeneous mode, which describes the strong oscillations of the mean field in the
experiments. We show that the NGC causes a pronounced 2:1 self-resonance on any spatial inhomogeneity,
leading to two-phase subharmonic clustering, as well as additional higher resonances. Nonequilibrium Ising-
Bloch transitions occur as the coupling strength is varied.
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Spatially extended oscillatory media are an important
class of pattern forming systems �1–3�. The patterns are dic-
tated by the mutual interaction between the individual oscil-
lators, which may be purely diffusional. However, in many
situations, the oscillatory field experiences, also a global
coupling, giving rise to different modes of spatial organiza-
tion. The dominant dynamics induced by global coupling are
phase clusters, where the spatial domain organizes in a small
number of synchronized regions with a different phase each.
Typically, in an extended medium phase balance adjusts; i.e.,
the fraction of the system oscillating in each phase is the
same. In the simplest case, the phase difference between the
domains is 2�m /n �with m and n being small integers� �4�.
These states, which were also termed type-I clusters �5�, can
be described by phase models, and then, obviously, each
phase-balanced n-cluster state has a stationary mean field. In
experiments, however, one often observes that the mean field
exhibits a pronounced and simple periodic oscillation with
the base frequency �. This will, e.g., be the case if the global
coupling term depends nonlinearly on the pattern forming
variable or if the natural �uncoupled� oscillation exhibits
some degree of anharmonicity. As a consequence, qualita-
tively different cluster patterns emerge, where the spatial
structure oscillates with a subharmonic frequency � /n and is
superimposed by a uniform oscillation with frequency �.
These subharmonic cluster patterns were also coined type-II
clusters �5�. The superposition of harmonic and subharmonic
temporal modes causes the amplitude of the oscillation to
change considerably, rendering thus a theoretical description
based on phase equations �6� impossible. Subharmonic clus-
ters were reported in two electrochemical experiments with
global coupling, one employing the hydrogen oxidation on a
Pt electrode �5� and the other employing the anodic oxidation
of a silicon wafer �7�. Careful investigation of literature data
suggests that they also formed in the oscillatory CO oxida-
tion on Pt�110� with time delayed global feedback �8� and in
the Belousov-Zhabotinsky reaction with global feedback �9�.
Subharmonic cluster patterns emerge also when an oscilla-
tory medium is parametrically forced �4�, and in this context
much insight into their dynamics could be obtained with the
forced complex Ginzburg-Landau equation �CGLE�. In

terms of normal forms, there is, however, a significant dif-
ference between a parametric forcing close to a given reso-
nance �4� and a global coupling �10–12�: the former breaks
phase invariance and the second does not; hitherto the
mechanism leading to the subharmonic cluster patterns in the
experimental systems under global coupling without intro-
ducing a parametric forcing could not be explained. In this
Rapid Communication, we demonstrate that the CGLE aug-
mented by a nonlinear global coupling �NGC� term naturally
leads to subharmonic cluster patterns. The nonlinearity in the
global coupling term was chosen such that the oscillatory
state of the homogeneous mode �HM� is conserved, mimick-
ing therewith the experimentally observed oscillation of a
global quantity. A NGC was also introduced in the
Kuramoto-Daido phase model where the NGC described a
phase shift of a sinusoidal coupling term �13�, and it should
not be confused with the one considered here.

We assume that we can describe the HM in the most basic
way: a simple harmonic oscillator. Quite generally we con-
sider a reaction-diffusion system governed by a modified
complex Ginzburg-Landau equation �MCGLE� �7�,

�tW = W + �1 + ic1��x
2W − �1 + ic2��W�2W + B , �1�

where

B = − �1 + i���W� + �1 + ic2���W�2W� , �2�

W is a complex amplitude and �¯ � denotes spatial averages.
The terms on the right-hand side of Eq. �2� describe the
nonlinear effect of the average amplitude �W� on the dynam-
ics and can be thought as an expansion of a negative global
coupling to third order. Clearly Eq. �1� is invariant under
phase transformation W→Wei�. The introduction of the cu-
bic term on the spatial average of the amplitude is motivated
by analogous studies on phase ordering under a global con-
servation law �14� although in �14� �W� is constant �the real
Ginzburg-Landau equation is employed there� and in our
case it is a harmonically oscillating function. This can be
seen by taking spatial averages on both sides of Eq. �1�: we
obtain the differential equation �t�W�=−i��W� which has the
closed analytical oscillating solution,
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�W� � W0 = �e−i��t+�0�, �3�

which coincides with the HM. � is the �positive real valued�
modulus of the average amplitude and �0 is an initial phase.
The HM �Eq. �3�� is always a solution of the MCGLE �Eq.
�1��, being conserved and unaffected by other active Fourier
modes. In general, for periodic boundary conditions, we can
write W�x , t�=	n=−�

� wn�t�ei2�nx/L, where L is the length of
the system. Although each Fourier mode wn�t�ei2�nx/L is a
solution of the MCGLE, it will be unstable since the general
solution always contains the conserved HM as well. Thus,
we can factorize out the HM from the general solution and
write

W = W0�1 + w� = �e−�i�t+�0�
1 + 	
n�0

wn�t�ei2�nx/L� . �4�

We now perform a linear stability analysis of the uniform
oscillation �Eq. �3�� �2�. If we replace W=W0�1+w� in the
MCGLE and keep only terms which are linear in w and w�

�the asterisk denotes complex conjugation�, we can derive
the stability conditions for the uniform oscillation,

��1 − q2�/2 � � , �5�

1 + �2 + �1 + c2
2��3�4 + q4� − 4�2�1 + c2��

+ 2q2�2�1 + c1c2� − 1 − c1�� � 0, �6�

with q=2�n /L. There are four stability quadrants, depending
on whether one relationship, none, or both are satisfied. Only
in the latter case the uniform oscillation is stable. The first
condition requires that ���c�1 /�2=0.7071 and it is inde-
pendent of other parameters. For either � or � sufficiently
high the positive terms going as �4 and �2 in Eq. �6� domi-
nate so that it is fulfilled. For �→� the uniform oscillation
is everywhere stable. Finally, for finite � and � and 1+c1c2
	0 �which corresponds to the Benjamin-Feir unstable re-
gime of the unmodified CGLE� it is possible to violate Eq.
�6�.

Let us consider first the case where Eq. �5� is satisfied but
Eq. �6� does not hold. In most of the patterns found in this
regime, the collective oscillations to the base frequency are
always discernible even when locally the behavior of phase
and amplitude can be chaotic. They have spatially chaotic
subharmonic oscillations resembling the spatiotemporal pat-
terns found at the vicinity of multiple bifurcation points �15�.
A wide variety of standing waves is also found, as is the case
with linear global coupling �11� to which the MCGLE re-
duces when the nonlinearity of the coupling does not
strongly rule the local dynamics. By increasing either � or �
the chaotic behavior can be entirely suppressed, the uniform
oscillation �Eq. �3�� being stabilized.

Qualitatively different dynamics is obtained when Eq. �5�
is violated and Eq. �6� holds. In this regime, cluster patterns
are observed. We have carried out simulations with Eq. �1�
by using a pseudospectral method with 1024 Fourier modes,
periodic boundary conditions, and uniform noise superim-
posed to a localized pulse as initial condition and normalized
so that 
−L/2

L/2 W�x ,0�dx /L=� �the initial phase �0 is taken to
be zero�. The integration is done with an exponential time

stepping algorithm �16�. In Figs. 1�a� and 1�b� a value �
=0.66��c is considered so that now Eq. �5� does not hold
but Eq. �6� does. The spatiotemporal evolutions of the modu-
lus of the complex amplitude �W� and the phase � are plot-
ted. A spatial pattern where the L /2 translation symmetry is
broken is observed in �W� in Fig. 1�a�: the amplitude shifts
L /2 spatially at the base frequency so that the same oscilla-
tory state for each point in space is attained at a period that is
twice the one of the base frequency �. An inspection of the
phase, plotted in Fig. 1�b�, shows indeed two different spatial
domains that oscillate with different phases. We can now
perform a Fourier analysis of the complex amplitude in time,
W�x , t�=
−�

� a
�x�e−i
td
, at each position in space. In Fig.
1�c� the cumulative power spectrum of the time series
��a
�2�=
−L/2

L/2 �a
�x��2dx is shown. Two peaks arise, one at the
main frequency, �, and the other at the subharmonic one,
� /2. They correspond to the main active modes in the pat-
tern. In Figs. 1�d� and 1�e� we plot, respectively, the arrange-
ment of the phase in the complex plane corresponding to the
modes at frequencies � and � /2. Full synchronization of all
oscillators is observed in the main mode, while in the sub-
harmonic mode, a two-phase cluster exhibiting an Ising wall
is observed. The same conclusions on the clustering to the
main and the subharmonic mode were reached in �5� by
means of a Karhunen-Loeve decomposition on the experi-
mental data. It is interesting that these type-II clusters appear
at a higher value of the coupling strength compared to the
type-I clusters �5� which, in fact, do not require a NGC and it
was found already with a nonlocal CGLE with linear global
coupling �12�. The type-II clusters were also found in experi-
ments with catalytic CO oxidation on PT �110� under peri-

FIG. 1. �Color online� Spatiotemporal evolution of �a� the
modulus �W� and �b� the phase of the complex amplitude W ob-
tained from Eq. �1� for c1=0.2, c2=−0.58, �=1, L=50, and �
=0.66. �c� Space integrated power spectrum ��a�
��2� of the time
series of the amplitude W�x , t�. �d� Projection on the complex plane
of the Fourier coefficient a��� corresponding to the main frequency
of the power spectrum at 
=� and �e� of the subharmonic coeffi-
cient at half the frequency a�� /2�.

GARCÍA-MORALES, ORLOV, AND KRISCHER PHYSICAL REVIEW E 82, 065202�R� �2010�

RAPID COMMUNICATIONS

065202-2



odic uniform forcing �8� although no attempt was made to
connect them to a normal form. In Fig. 2�a� the same pattern
as in Fig. 1 is plotted after subtracting the HM. We observe
clearly the Ising walls separating the two-phase clusters, as
indicated by two dips in the amplitude �W−W0� in the spa-
tiotemporal evolution where it goes to zero. With the sub-
traction of W0 it is also apparent that the two domains are in
antiphase. If we lower the coupling strength, which as we
prove below is directly related to �2, we find a nonequilib-
rium Ising-Bloch transition. The Ising wall loses stability to a
Bloch wall as shown in Fig. 2�b�. The walls separating the
two-phase clusters in antiphase travel now with constant ve-
locity and the amplitude in the center of the walls is no
longer zero. In Fig. 2�c�, we plot �a
�2 for the patterns in
Figs. 2�a� and 2�b� �continuous and dashed curves, respec-
tively� and observe that during the transition, the subhar-
monic peak at � /2 becomes higher than the one at �. Finally,
in Fig. 2�d� we show the spatial arrangement of the phase for
the patterns in Fig. 2�a� �continuum curve� and Fig. 2�b�
�dashed curve�.

To clarify all these results, we can replace W=W0�1+w�
�Eq. �4�� in the MCGLE so that we obtain a description of
the spatiotemporal evolution of a general inhomogeneity w.
By using also Eq. �3� and the fact that �w� and �w�� both
vanish we obtain the following expression:

�tw = �� + i��w + �1 + ic1��2�x
2w − �1 + ic2��2��w�2w + w��

+ C , �7�

where

C = �1 + ic2��2��2�w�2 + w2� − 2�w�2 − w2� , �8�

�=1−2�2, and �=�−2c2�2. Equation �7� is, again, a CGLE
modified by a term which is proportional to �2w�. This term
introduces a 2:1 resonance as in the well-studied parametric
CGLE �4,17,18�. There is, however, a further modification in
our case through the term C that adds a wide variety of
interesting behavior and further resonances as shown below.
Let us look for fixed points corresponding to two-phase clus-
ters by replacing w=Rei
 in Eq. �7�. The term C vanishes in
such a situation and we are left with the equation 0= ��
+ i��− �1+ ic2��2�R2+e−i2
�, which is invariant upon a
change 
→
+�, so that if 
 is a solution, so is 
+�. Mul-
tiplying this equation by its complex conjugate and solving
for R and 
 we obtain a pair of solutions w�=Rei
�, where
R2= ��+c2�+��1+c2

2�2�4− ��−c2��2� / �1+c2
2��2, 
−

= 1
2arcsin��c2�−�� / �1+c2

2��2�, and 
+=
−+�. These solu-
tions correspond to two-phase clusters which are contained
for a given � in �b����c. They arise through a saddle-
node bifurcation at �b

2= �c2��� /�1+c2
2, where the borders of

the 2:1 resonance tongues are located �17�. Equation �7� con-
tains, indeed, more fixed points than the ones considered
above for the 2:1 resonance. For fixed points Re
� corre-
sponding to two-phase clusters, C in Eq. �7� vanishes. How-
ever, this is a particular case. There can exist fixed points as
well for which, for example, globally, ��w�2�− �w�2 and �w2�
cancel out each other and then C=−�1+ ic2��2w2. These
other fixed points coexist with the ones related to two-phase
clusters, and there exist higher order resonances as well be-
cause of the NGC in the inhomogeneities present in C. In-
deed, in the same stability regime of the MCGLE as before,

FIG. 2. �Color online� Spatiotemporal evolution of the modulus
of the amplitude �W−W0� �left� and phase �right� after subtracting
the HM and of the projection of the subharmonic a�� /2� Fourier
coefficient on the complex plane. �a� �=0.66; �b� �=0.42. �c�
Space integrated power spectrum ��a
�2� of the time series of the
amplitude and �d� spatial arrangement of the phase for the patterns
in �a� �continuous line� and �b� �dashed line�. Other parameter val-
ues as in Fig. 1.

FIG. 3. �Color online� Spatiotemporal evolution of the modulus
of the amplitude �W−W0� �left� and phase �right� after subtracting
the HM and of the projection of the subharmonic a�2� /3� Fourier
coefficient on the complex plane. �a� �=0.6; �b� �=0.5. �c� and �d�
Space integrated power spectrum ��a
�2� of the time series of the
amplitude for patterns �a� and �b�, respectively. Other parameter
values are c1=−0.5, c2=0.5, �=1, and L=100.
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we can find parameter values, where an Ising-Bloch transi-
tion in six-phase clusters is observed at a subharmonic peak
at two third of the base frequency. This is shown in Fig. 3
where we observe again that the Ising-Bloch transition oc-
curs when the subharmonic peak at 2� /3 becomes higher
than the main peak at � by lowering the coupling strength �.
This is a remarkable aspect of the NGC present in the
MCGLE. While with the parametrically forced CGLE higher
resonances are required to reproduce such behavior �18�, in
the MCGLE they arise naturally from the NGC, which, in
turn, is simply related to the conservation of the oscillatory
state of the HM. Indeed, in experiments with electrochemical
systems under global coupling a wide variety of clustering
behavior was observed, including five-phase clusters without

breaking phase invariance. In this Rapid Communication,
we have provided a simple and general explanation for this
possibility, going well beyond electrochemical systems, and
we have shown how the conservation of the oscillatory state
of the HM allows the phase invariance to be preserved while
allowing the excitation of phase-balanced subharmonic clus-
tering states. Since the 2:1 resonance is the main one arising
from the NGC, it is now also evident why it is prevalent in
parameter space.

V.G.-M. acknowledges support from the Institute of Ad-
vanced Study of the Technische Universität München. The
support by the cluster of excellence Nanosystems Initiative
Munich is gratefully acknowledged.

�1� A. S. Mikhailov and K. Showalter, Phys. Rep. 425, 79 �2006�.
�2� Y. Kuramoto, Chemical Oscillations, Waves and Turbulence,

Springer Series in Synergetics �Springer, Berlin, 1984�.
�3� V. Garcia-Morales and K. Krischer, Phys. Rev. Lett. 100,

054101 �2008�.
�4� P. Coullet, J. Lega, B. Houchmanzadeh, and J. Lajzerowicz,

Phys. Rev. Lett. 65, 1352 �1990�; P. Coullet and K. Emilsson,
Physica D 61, 119 �1992�; C. Elphick, A. Hagberg, and E.
Meron, Phys. Rev. Lett. 80, 5007 �1998�; P. Kaira, P. S.
Bodega, C. Punckt, H. H. Rotermund, and D. Krefting, Phys.
Rev. E 77, 046106 �2008�; A. L. Lin, A. Hagberg, E. Meron,
and H. L. Swinney, ibid. 69, 066217 �2004�; A. L. Lin et al.,
Phys. Rev. Lett. 84, 4240 �2000�.

�5� H. Varela et al., Phys. Chem. Chem. Phys. 7, 2429 �2005�; H.
Varela, A. Bonnefont, and K. Krischer, ChemPhysChem 4,
1348 �2003�.

�6� K. Okuda, Physica D 63, 424 �1993�.
�7� I. Miethe, V. Garcia-Morales, and K. Krischer, Phys. Rev. Lett.

102, 194101 �2009�; I. Miethe, Ph.D. thesis, TU München,
2010 �http://mediatum2.ub.tum.de�.

�8� M. Bertram et al., J. Phys. Chem. B 107, 9610 �2003�; M.
Pollmann, M. Bertram, and H. H. Rotermund, Chem. Phys.
Lett. 346, 123 �2001�.

�9� V. K. Vanag, A. M. Zhabotinsky, and I. R. Epstein, J. Phys.
Chem. A 104, 11566 �2000�.

�10� K. Krischer, in Advances in Electrochemical Sciences and En-
gineering, edited by D. M. Kolb and R. C. Alkire �Wiley-

VCH, Weinheim, 2003�, p. 89; N. Mazouz et al., J. Electro-
chem. Soc. 145, 2404 �1998�; F. Plenge, H. Varela, and K.
Krischer, Phys. Rev. Lett. 94, 198301 �2005�; Phys. Rev. E
72, 066211 �2005�; F. Plenge, Y. J. Li, and K. Krischer, J.
Phys. Chem. B 108, 14255 �2004�; K. Krischer et al., Electro-
chim. Acta 49, 103 �2003�.

�11� G. Veser et al., Phys. Rev. Lett. 71, 935 �1993�; F. Mertens, R.
Imbihl, and A. Mikhailov, J. Chem. Phys. 101, 9903 �1994�;
M. Falcke, H. Engel, and M. Neufeld, Phys. Rev. E 52, 763
�1995�; M. Falcke and H. Engel, J. Chem. Phys. 101, 6255
�1994�; D. Battogtokh and A. Mikhailov, Physica D 90, 84
�1996�; M. Kim et al., Science 292, 1357 �2001�; R. Imbihl,
Prog. Surf. Sci. 44, 185 �1993�.

�12� V. Garcia-Morales and K. Krischer, Phys. Rev. E 78, 057201
�2008�.

�13� M. Rosenblum and A. Pikovsky, Phys. Rev. Lett. 98, 064101
�2007�; Y. Baibolatov, M. Rosenblum, Z. Z. Zhanabaev, and
A. Pikovsky, Phys. Rev. E 82, 016212 �2010�.

�14� M. Conti, B. Meerson, A. Peleg, and P. V. Sasorov, Phys. Rev.
E 65, 046117 �2002�.

�15� D. Lima, A. De Wit, G. Dewel, and P. Borckmans, Phys. Rev.
E 53, R1305 �1996�.

�16� S. M. Cox and P. C. Matthews, J. Comput. Phys. 176, 430
�2002�.

�17� A. Yochelis et al., Europhys. Lett. 69, 170 �2005�.
�18� C. Elphick, A. Hagberg, and E. Meron, Phys. Rev. E 59, 5285

�1999�.

GARCÍA-MORALES, ORLOV, AND KRISCHER PHYSICAL REVIEW E 82, 065202�R� �2010�

RAPID COMMUNICATIONS

065202-4

http://dx.doi.org/10.1016/j.physrep.2005.11.003
http://dx.doi.org/10.1103/PhysRevLett.100.054101
http://dx.doi.org/10.1103/PhysRevLett.100.054101
http://dx.doi.org/10.1103/PhysRevLett.65.1352
http://dx.doi.org/10.1016/0167-2789(92)90154-F
http://dx.doi.org/10.1103/PhysRevLett.80.5007
http://dx.doi.org/10.1103/PhysRevE.77.046106
http://dx.doi.org/10.1103/PhysRevE.77.046106
http://dx.doi.org/10.1103/PhysRevE.69.066217
http://dx.doi.org/10.1103/PhysRevLett.84.4240
http://dx.doi.org/10.1039/b502027a
http://dx.doi.org/10.1002/cphc.200300922
http://dx.doi.org/10.1002/cphc.200300922
http://dx.doi.org/10.1016/0167-2789(93)90121-G
http://dx.doi.org/10.1103/PhysRevLett.102.194101
http://dx.doi.org/10.1103/PhysRevLett.102.194101
http://mediatum2.ub.tum.de
http://dx.doi.org/10.1021/jp0341927
http://dx.doi.org/10.1016/S0009-2614(01)00936-8
http://dx.doi.org/10.1016/S0009-2614(01)00936-8
http://dx.doi.org/10.1021/jp002390h
http://dx.doi.org/10.1021/jp002390h
http://dx.doi.org/10.1149/1.1838650
http://dx.doi.org/10.1149/1.1838650
http://dx.doi.org/10.1103/PhysRevLett.94.198301
http://dx.doi.org/10.1103/PhysRevE.72.066211
http://dx.doi.org/10.1103/PhysRevE.72.066211
http://dx.doi.org/10.1021/jp037955z
http://dx.doi.org/10.1021/jp037955z
http://dx.doi.org/10.1016/j.electacta.2003.04.006
http://dx.doi.org/10.1016/j.electacta.2003.04.006
http://dx.doi.org/10.1103/PhysRevLett.71.935
http://dx.doi.org/10.1063/1.468482
http://dx.doi.org/10.1103/PhysRevE.52.763
http://dx.doi.org/10.1103/PhysRevE.52.763
http://dx.doi.org/10.1063/1.468379
http://dx.doi.org/10.1063/1.468379
http://dx.doi.org/10.1016/0167-2789(95)00232-4
http://dx.doi.org/10.1016/0167-2789(95)00232-4
http://dx.doi.org/10.1126/science.1059478
http://dx.doi.org/10.1016/0079-6816(93)90086-B
http://dx.doi.org/10.1103/PhysRevE.78.057201
http://dx.doi.org/10.1103/PhysRevE.78.057201
http://dx.doi.org/10.1103/PhysRevLett.98.064101
http://dx.doi.org/10.1103/PhysRevLett.98.064101
http://dx.doi.org/10.1103/PhysRevE.82.016212
http://dx.doi.org/10.1103/PhysRevE.65.046117
http://dx.doi.org/10.1103/PhysRevE.65.046117
http://dx.doi.org/10.1103/PhysRevE.53.R1305
http://dx.doi.org/10.1103/PhysRevE.53.R1305
http://dx.doi.org/10.1006/jcph.2002.6995
http://dx.doi.org/10.1006/jcph.2002.6995
http://dx.doi.org/10.1209/epl/i2004-10327-x
http://dx.doi.org/10.1103/PhysRevE.59.5285
http://dx.doi.org/10.1103/PhysRevE.59.5285

