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We have recently shown [Proc. Natl. Acad. Sci. U.S.A. 107, 4528 (2010)] that the discreteness and
stochasticity of an electron transfer event on a resistively coupled nanoelectrode causes mesoscopic
fluctuations in time of the electrode potential. These fluctuations give rise to a time-average faradaic
current density substantially larger than in the macroscopic limit. The deviations result to a large
extent from the potentiostatic control, which imposes a constraint on the evolution of the electrode
potential that leads to non-normal distributions. The degree of freedom of the electrode potential
requires a resistance between nanoelectrode and metallic support. In this article, we study the de-
pendence of the mesoscopic stochastic dynamics on this resistance (assumed to be ohmic). We show
that the enhancement of the reaction rate vanishes in both limits, zero and infinite resistance. The
distribution of the electrode potential continuously transforms from a normal distribution at infinite
resistance (the galvanostatic limit), through a more and more peaked distribution with increasingly
important rare events to the deterministic behavior at zero resistance. © 2011 American Institute of
Physics. [doi:10.1063/1.3604950]

The increasing number of studies in nanotechnological
applications has led to a growing interest in chemical and
electrochemical reactions in mesoscopic systems. Consider-
ing chemical systems, the situation is much simpler than in
electrochemical systems. The evolution of the number of re-
acting chemical species in a small volume is described by the
chemical master equation;1–7 the individual reaction events
are Markovian, and the resulting stationary state obeys a nor-
mal distribution. An electrochemical reaction is usually con-
trolled from the outside, which causes the reaction events to
be non-Markovian and the distributions non-normal.8

Let us consider a nanoelectrode. This can, for exam-
ple, be a metallic nanoparticle of some ten nm in diameter.
When the nanoparticle is in an electrolyte solution which con-
tains a redox couple, it will exchange electrons with the re-
dox couple, thereby changing the electrostatic potential of the
electrode, until an equilibrium situation is established. In this
situation the electrode is at open circuit potential. The elec-
trochemical reaction can be controlled, when a voltage is ap-
plied externally. Therefore, the nanoelectrode has to be linked
to a macroscopic support, which, for example, can be accom-
plished by some molecular entities, such as alkyl chains.9–11

If the electrostatic potential of the support is different from
the one of the nanoparticle, a current will flow across the
spacer. Here, for simplicity, we assume the spacer to be-
have as an ohmic resistor. This assumption may seem rather
crude at first sight and, in general, when considering meso-
scopic elements, tunneling resistances (as discussed, for ex-
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ample, in the framework of the so-called orthodox theory12)
might provide a more accurate description. Yet, the effect we
are investigating here is independent of the precise model
for the series resistance, and it is instructive to first con-
sider the simplest case, namely, a constant (ohmic) resis-
tance. The essential point is that the electrode potential con-
stitutes a degree of freedom that can fluctuate, as we discuss
next.

There are two sources changing the electrostatic poten-
tial of the nanoparticle, the redox reactions and the poten-
tiostatic control. The redox reactions are stochastic events
causing fluctuations of the electrode potential. Note that the
fluctuations are only in time, there are no local fluctuations,
the electrostatic potential of the nanoparticle being always
uniform on the nanoelectrode. Thus, we adopt here a meso-
scopic description of the redox processes. The potentiostatic
control, on the other hand, imposes a deterministic constraint
on the electrostatic potential of the nanoparticle, driving it to-
wards the one of the support. In a physical system, one has of
course not just one nanoparticle but many of them. As long
as they are laterally isolated the picture remains exactly the
same. We envisage that the metal electrode is covered by an
insulating layer which constitutes a series resistance Re for
a nanoparticle being anchored to it. The spacer layer can be,
e.g., a self-assembled monolayer of some long-chain alkyl, or
an oxide layer with some small electronic conductivity. In the
first case, the lateral isolation of the nanoparticles is guaran-
teed (regardless of the value of Re) when the distance of the
nanoparticles is larger than a few Debye lengths, since lat-
erally the alkyl chains are completely insulating. The Debye
lengths can be lowered by increasing the concentration of the
electrolyte and is typically not larger than a nm. In the second

0021-9606/2011/134(24)/244512/8/$30.00 © 2011 American Institute of Physics134, 244512-1
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case, the interparticle distances should be an order of magni-
tude larger than the thickness of the insulating layer.

Clearly, the resistance of the spacer between the nanopar-
ticles and the support weights the impact of the stochastic
reaction events for the electrode potential. For negligible re-
sistance the electrostatic potential of the nanoparticle is equal
to the one of the support. Hence, in this limit the electrode
potential of the nanoparticle is fully controlled by the exter-
nally applied voltage. In the other limit of infinite resistance
and infinite voltage at the support the electrode potential has
maximal freedom to vary, but the current is fully determined
by the external parameters (applied voltage and series resis-
tance). This limit corresponds to a constant current control.
In between these two limits fluctuations of the electrode po-
tential can lead to drastic changes of the current density at a
nanoelectrode compared to the macroscopic case.

In this paper we discuss how the distribution of the elec-
trostatic potential of the nanoelectrode can be tuned between
the deterministic regime and a normal distribution by vary-
ing the magnitude of the ohmic resistor. The important im-
plications on the reaction rate occur at intermediate values of
resistance where the events are non-Markovian and the distri-
butions are long-tailed.

Redox processes on macroelectrodes in an electrolyte so-
lution are well described by the kinetic Butler-Volmer the-
ory which treats the concentrations of chemical species and
the faradaic current coming from redox processes as deter-
ministic variables. This description is thus fully given by the
specification of concentrations of chemical species, the elec-
trode potential, and kinetic constants. According to the Butler-
Volmer electrochemical equation, the rate constant of an
electrochemical reaction ρ depends exponentially on the elec-
trode potential:13

k(mac)
ρ (E) = k0

ρecρ (E−E0). (1)

Here E0 is the redox potential of the reaction, the preexponen-
tial factor k0

ρ does not depend on the electrode potential and

cρ = −α|nρ |F
RT for reduction reactions and cρ = (1−α)|nρ |F

RT for
oxidation reactions, α is the transfer coefficient, n the number
of electrons transferred, F the Faraday constant, R the ideal
gas constant, and T the temperature. In this paper we will
consider α = 0.5 and T = 300K .

For nanoelectrodes as described above, this description
does not hold any longer: Electrochemical reactions are es-
sentially stochastic events8 as is the case with purely chemical
reactions where no electron transfer processes are present.1, 2

Hence, rigorously, the state of the system cannot be given in
terms of concentrations and a fixed value of the electrode po-
tential E , but is determined by probability distributions of
numbers of particles and of the electrode potential and the
electrochemical kinetics of the system is, consequently, de-
scribed by the time evolution of the probability distributions.
This description is provided by the electrochemical master
equation8 which is the generalization of the chemical master
equation3–5 to redox processes. For sufficiently large systems,
the probability distribution of the variables coincides with the
first moment of the distribution, and the deterministic descrip-
tion is valid. When the probabilistic nature of the reactions

becomes significant, which, according to our investigations
starts already at (disk) electrode sizes of a few ten nanometer
in diameter,8 the fluctuations in the electrode potential cause
a drastic change of the average current density at a nanoelec-
trode. Thus, the Butler-Volmer rate constant Eq. (1) becomes
meaningless, and the following definition of the rate constant
on nanoelectrodes was introduced:8

k(nano)
ρ ≡ k0

ρ〈ecρ (E−E0)〉, (2)

where the cornered brackets denote time averages taken af-
ter the system has settled down to constant mean values of
the variables. Note that in this paper only time averages are
considered.

Furthermore, comparing Eqs. (1) and (2) and recalling
that in the macroscopic limit the instantaneous electrode po-
tential coincides always with the first moment of the distribu-
tion, it can be seen that because of the stochastic behavior of
the electrode potential on a nanoelectrode, every elementary
electrochemical reaction occurs faster than predicted by the
macroscopic Butler-Volmer kinetic theory

k(nano)
ρ ≥ k(mac)

ρ . (3)

The stronger the fluctuations, the stronger the inequality
holds, the equality being valid in the macroscopic limit � →
∞, where � is the system size of the nanosystem. Note that
the inequality implies that the reaction rates are compared at
equal mean electrode potential 〈E〉, however, the fluctuations
may lead also to a shift of 〈E〉.8

To compare reaction rates on nanoelectrodes to the ones
on macroelectrodes we introduce the enhancement factor Qρ

of reaction ρ as

Qρ ≡ k(nano)
ρ

k(mac)
ρ

= 〈ecρ E 〉
ecρ 〈E〉 ≥ 1. (4)

In this article, we study how k(nano)
ρ , or Qρ , are influenced

by the experimental parameters of the system, in particular the
series resistance, and relate their values to the stationary dis-
tributions of the instantaneous values of the fluctuating elec-
trode potential.

The structure of the article is as follows. First we present
an outline of the general results and the tools to quantify the
enhancement of the electrochemical kinetics at the nanoscale,
introducing the electrochemical master equation and the al-
gorithm employed in the simulations. Then we provide an
analytical theory valid in the weak noise situation, which
gives insight into the simulation results. Then we discuss how
the resistance Re affects the stochastic dynamics. We consider
both a single irreversible reaction and a reversible redox reac-
tion. Finally, we also study the enhancement of the electro-
chemical kinetics for a single reversible redox reaction under
open circuit conditions.

I. ELECTROCHEMICAL MASTER EQUATION
AND OUTLINE OF THE ALGORITHM EMPLOYED
IN THE SIMULATIONS

Charge transfer in an electrochemical cell under an ex-
ternally applied potential difference U can be understood
in terms of the equivalent circuit depicted in Figure 1. The
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FIG. 1. Equivalent circuit for a macroscopic electrochemical cell. The total
current I through the external ohmic resistance Re splits at the interface in
two components: the faradaic IF and the capacitive Icap currents.

total current flowing through the system I splits into two
components, a capacitive one Icap involved in the charging
of the double layer and a faradaic one IF coming from elec-
trochemical reactions involving electron transfer to/from the
electrode. At the interface, the electric charge is conserved.
Hence, Icap = I − IF , and, therefore,14

C
dE
dt

= −iF (E) + U − E

Re A
, (5)

where C is the double layer capacitance per unit area, A
is the electrode area, and iF is the faradaic current density.
At high electrolyte concentration the Gouy-Chapman-Stern
model predicts a constant value for C , independent of E ,13 as
we assume in all the following. This is also a valid approxima-
tion for mesoscopic nanoparticle sizes. Any stationary state is
characterized by E = constant. Eq. (5) provides the macro-
scopic evolution law for the electrode potential that behaves
then deterministically: when the value of the electrode poten-
tial is known at a certain time, it is also known at any future
or past time by means of integration of Eq. (5).

In general, the dynamics of the electrode potential is cou-
pled to the one of the chemical species at the interface (given
by a vector c) through a (generally nonlinear) vector function
f(E, c) in the following way:

C
dE
dt

= −iF (E, c) + U − E

Re A
, (6)

dc
dt

= f(E, c), (7)

the stationary state is then given by a constant value for all
mesoscopic variables, E and c. At the nanoscale, this deter-
ministic description does not longer hold.8 A reaction event
occurs always at random, and this randomness needs to be
incorporated in the dynamical description. Each electrochem-
ical reaction in a network labeled with ρ can be represented
formally as

s∑
i=1

νi
<ρ Ni + n<ρe− →

s∑
i=1

νi
>ρ Ni + n>ρe−. (8)

Here the index i runs over the different chemical species in-
volved in a given reaction ρ, and Ni is the number of parti-
cles of species i . The stoichiometric numbers νi

ρ = νi
>ρ − νi

<ρ

control the number of molecules of each species formed or

consumed each time the reaction takes place. The number of
electrons transferred is similarly given by nρ = n>ρ − n<ρ . If
we assume that after a time τρ a reaction ρ involving a trans-
fer of nρ electrons takes place, the electrode potential evolves
discretely as

E j+1 = E j + U − E j

ReC A
τρ − nρe0

C A
, (9)

where the term proportional to τρ comes from the external po-
tentiostatic control and the one proportional to nρ (e0 denotes
here the elementary charge of the electron) from the faradaic
current of reaction ρ.8 The numbers of electrons transferred
and the number of molecules of the chemical species are con-
trolled by the electrochemical master equation

d P(N, t)

dt
=

∑
ρ

[Wρ(N − νρ)P(N − νρ) − Wρ(N)P(N)],

(10)
where P(N, t) is the probability of having specific numbers
of chemical species N = (NA, NB ...) = �c at a specific time
and

Wρ(N) = W 0
ρ ecρ E (11)

are the so-called propensities, controlling the transition rates
from one state to another where W 0

ρ is given by

W 0
ρ = �k0

ρe−cρ E0
s∏

i=1

ν〈ρ∏
m=1

Ni − m + 1

�
. (12)

In contrast to chemical systems, in electrochemical systems
the propensities in Eq. (11) depend on time, since the elec-
trode potential E changes in time between reaction events
as a consequence of the external control. Since the times be-
tween reaction events τρ are very small, we can assume that
the change in the potential because of the external control is
given by U−E j

ReC A τρ . After τρ a reaction event takes place in-
volving an electron transfer, which justifies the microscopic
evolution law in Eq. (9).

Following the approach suggested in Refs. 1, 2, 15, and
16, we generalized Gillespie’s algorithm to reaction steps in-
volving electron transfer processes.8 The algorithm proceeds
as follows. First, an input value is given for the electrode
potential and the numbers of chemical species. Then the
propensities are calculated for these input values. After that, a
random number rρ is generated from the uniform distribution
for each reaction ρ. Then a waiting time τρ is calculated for
each reaction from8

τρ = ReC A

cρ(U − E j )
ln

[
1 + cρ(U − E j )

ReC AW 0
ρ ecρ E j

ln

(
1

rρ

)]
.

(13)
The reaction with the minimal waiting time is then selected
to advance. The electrode potential is updated according to
Eq. (9) and all particle numbers involved in the selected re-
action are updated according to their stoichiometric numbers
Ni → Ni + νi

ρ . Then the new propensities are calculated and
the algorithm proceeds again as sketched above with the next
iteration. Tenths of millions of iterations are usually required
to settle at the stationary steady state from an arbitrary ini-
tial condition and to perform meaningful time averages on the
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time series that can be thus obtained. In all simulations per-
formed in this paper the stationary state is unique and stable.

Our algorithm reduces to Gillespie’s one when there are
no electron transfer processes involved, i.e., if only chemical
reaction steps are considered. In the electrochemical master
equation, as explained above, the electrode potential is also a
stochastic variable coupled to the particle numbers. Because
of the external potentiostatic control, deviations of Gaussian-
ity are expected: the constant applied voltage acts as an exter-
nal drive and a privileged direction appears in the system. In
open circuit conditions, however, externally applied voltage
and external resistance are absent and the equivalent circuit in
Fig. 1 reduces to the capacitor and the faradaic impedance.
In this situation, which is totally symmetrical, Eq. (13)
reduces to

τρ = 1

W 0
ρ ecρ E j

ln

(
1

rρ

)
. (14)

Although the electrode potential fluctuates in such a case,
there is no other source for its change than the stochastic re-
action events. Therefore, and because the electrode potential
E only changes after reaction events, the stationary distribu-
tions are normal as well. A similar expression is obtained in
the limit Re → ∞ by applying L’Hopital’s rule to Eq. (13).
In the limit Re → 0, as can be seen from Fig. 1, the electrode
potential E is fixed to the externally applied potential U for
every step j and Eq. (13) reduces to

τρ = 1

W 0
ρ ecρU

ln

(
1

rρ

)
, (15)

which yields, again, normal distributions for the particle num-
bers of the chemical species (the electrode potential being no
longer a fluctuating stochastic variable). For deviations from
Gaussianity then, a potentiostatic control in the system with a
finite external resistance Re, is needed. Below we explore and
substantiate this statement.

II. WEAK NOISE THEORY FOR ELEMENTARY
REACTION STEPS. SIMULATION RESULTS

A. Irreversible one-electron transfer reaction

Let us first consider an irreversible oxidation reaction

A → B + e−, (16)

where A and B are two chemicals. For this reaction, the
(macroscopic) faradaic current density is iF = Fk+ecE where
k+ ≡ k̃+[A] is the kinetic rate constant, making explicit its
dependence on the concentration of chemical species [A] (we
assume in the following a macroscopic reservoir in contact
with the nanoelectrode so that the concentrations of chemicals
[A] and [B] are kept constant). Considering a nanoelectrode
in a macroscopic electrolyte solution thus implies that, as long
as no adsorption processes occur, the number of molecules
is not a fluctuating variable. We assume for simplicity and
without loss of generality that the redox potential is zero. The
value of the electrode potential of a macroscopic system at the

stationary state E∗ can be calculated from Eq. (5) as

Fk+ecE∗ = U − E∗

Re A
, (17)

where c = F/(2RT ). For the instantaneous electrode po-
tential and the total instantaneous current density flowing
through the circuit, the following expression holds:

U − E

Re A
= i. (18)

If we now assume small fluctuations around the macroscopic
steady state (low noise limit), we have on the one hand

Fk+〈ecE 〉 = U − 〈E〉
Re A

= 〈i〉 = 〈iF 〉 (19)

since 〈icap〉 = 0 and, on the other hand, from Eq. (5)

Fk+ec〈E〉 = exp

〈
ln

(
U − E

Re A
− C

dE
dt

)〉
. (20)

The enhancement factor Q satisfies

ln Q =
〈
ln

U − 〈E〉
U − Ẽ

〉
≥ 0, (21)

where we have defined the fluctuating quantity

Ẽ = E + Re AC
dE
dt

(22)

which, of course, satisfies, 〈Ẽ〉 = 〈E〉 as well as

U − Ẽ

Re A
= iF . (23)

If we subtract Eq. (23) from Eq. (19) we have

Ẽ − 〈E〉
Re A

= 〈iF 〉 − iF . (24)

By using Eq. (19), we can rewrite the enhancement factor as

ln Q =
〈
ln

1

1 − λ/Re

〉
≥ 0, (25)

where

λ = Ẽ − 〈E〉
F Ak+〈ecE 〉 = Ẽ − 〈E〉

A〈iF 〉 (26)

has dimensions of resistance. We denote in the following λ as
“fluctuation resistance.” By expanding the logarithm in pow-
ers of λ/Re, taking into account that 〈λ〉 = 0 and keeping only
second order terms in λ/Re we obtain

Q = e〈λ2〉/(2R2
e ) ≥ 1. (27)

From the latter expression we see that, since λ is
bounded, the enhancement factor tends to unity as Re → ∞.
Since in the limit Re → 0 the electrode potential E no longer
fluctuates and is given by the externally applied potential U ,
we expect that λ = 0 in such a case and therefore Q = 1
as well. The dependence of Q on the resistance is there-
fore nonmonotonic and is expected to attain its maximum
value at some intermediate value of the series resistance when
Re 	

√
〈λ2〉/2.
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FIG. 2. Electric circuit elements in stochastic electrochemical dynamics (low
noise limit) for the faradaic path: a fluctuation resistance λ arises in parallel
with the negative ohmic resistance Re .

Interpreting λ as a resistance allows for a better un-
derstanding of the dynamics of fluctuations in electrochem-
ical systems. We note that Eq. (26) can be written, by using
Eq. (24) as

λ = −Re
iF − 〈iF 〉

〈iF 〉 . (28)

Eqs. (24), (26), and (28) are consistent with the circuit ele-
ments in Fig. 2. There we see that we can split the faradaic
current into two parallel paths, the average faradaic current
and its fluctuating part. The former pathway contains the fluc-
tuation resistance λ, and the latter one the negative series
resistance −Re. Thus, the larger λ the larger is the current
through the negative ohmic resistance in the parallel branch
and, therefore, the larger the fluctuation in the faradaic cur-
rent both in absolute and relative value. The fluctuation in the
electric current enhanced in this way leads to higher Q values
in Eq. (27). From Eq. (28), the enhancement factor is just the
exponential of half the relative mean square deviation of the
faradaic current

Q = exp

( 〈i2
F 〉 − 〈iF 〉2

2〈iF 〉2

)
. (29)

In Figure 3, the enhancement factor Q is shown as a
function of � and for several values of the external resis-
tance Re A. These results are obtained from simulations of
the electrochemical master equation employing the extended
Gillespie algorithm sketched above. When the system size is
small � 	, Q becomes significantly higher than unity, indi-
cating an enhanced electrochemical kinetics and thus prov-
ing our general statement Eq. (2). For lower values of Re this
enhancement is higher, according to our prediction given by
Eq. (27). In addition, for lower Re the fluctuations begin to be
important in the mesoscopic kinetics at a higher system size
�, and the associated enhanced kinetics can therefore be no-
ticeable already for disk-shaped electrodes with a diameter of
≈ 30-50 nm (the upper bound would be attained by lowering
also U as discussed in Ref. 8).

Fluctuations are also responsible for a shift in the
stationary value of the time averaged electrode potential
E ≡ limt→∞〈E〉 with respect to the macroscopic value
E∗ ≡ limt→∞,�→∞〈E〉. In the low noise limit (� large),
this shift δ = E − E∗ has a negative value and is given by

10
3

10
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10
5

0

50

100

150

200

Ω

Q

0.003

0.3
0.03

FIG. 3. Enhancement factor Q for an oxidation reaction as a function of the
number of sites � for the values of Re A (given in � cm2) indicated in the
figure. The electrode area is given by A = a0� with a0 = 7.55 Å2. Other
parameter values: C = 0.05 F m−2, k+ = 10−5 mol s−1 m−2, U = 0.2 V.

(see Ref. 8)

δ = −σ 2c2

2

Re AFk+ecE

1 + cRe AFk+ecE , (30)

where σ 2 ≡ 〈E − 〈E〉〉2 is the variance of the distribution of
the instantaneous electrode potential. In Figure 4 δ is shown
as a function of the system size � for three values of the
series resistance Re A. It is observed that for � large δ < 0
according to the prediction by Eq. (30). In the limit Re → ∞,
δ → − σ 2c2

2 , being negative for all system sizes. This is ob-
served in Figure 4: the value Re A = 0.3 � cm2 already ap-
proaches this limit, and the minimum of the curve becomes
broader compared to larger values of the resistance. For lower
system sizes and finite series resistances, however, higher mo-
ments of the distribution of the electrode potential become
important and Eq. (30) is no longer valid and the displace-
ment can be positive, as shown by the simulations.

B. Reversible one-electron transfer reaction

We consider now a reversible reaction where both for-
ward (oxidation) and backward (reduction) processes are
taken into account

A
k̃+�̃
k−

B + e−. (31)

Here A and B are two chemicals. Note that we consider al-
ways the kinetically controlled part of the current-voltage
characteristic and therefore, diffusion is neglected. We con-
sider, for simplicity, the same values for the kinetic rates
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FIG. 4. Displacement of the average stationary electrode potential δ = E −
E∗ for an oxidation reaction as a function of � and for the values of Re A
(given in � cm2) indicated in the figure. Other parameter values as in Fig. 3.
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k+ and k− = k̃−[B] of the forward and backward reactions,
respectively. We substantiate now an observation made in
Ref. 8 that in the overpotential (underpotential) regime one
can simply consider separately contributions from the for-
ward and the backward processes, whose main features are
described in Sec. II A. Considering again first a macroelec-
trode, the value of the electrode potential at the stationary
state E∗ now reads, from Eq. (5)

Fk+ecE∗ − Fk−ecE∗ = U − E∗

Re A
. (32)

If we now assume small fluctuations around the macroscopic
steady state (low noise limit), we have

Fk+〈ecE 〉 − Fk−〈e−cE 〉 = U − 〈E〉
Re A

≡ 〈i→
F 〉 + 〈i←

F 〉.
(33)

We also have

Fk+ecE − Fk−e−cE = U − Ẽ

Re A
≡ i→

F + i←
F . (34)

Subtracting both equations leads to

Ẽ − 〈E〉
Re A

= 〈i→
F 〉 − i→

F + 〈i←
F 〉 − i←

F . (35)

For the forward and backward processes, we can follow the
same approach as in Sec. II A to calculate the enhancement
factors Q→ and Q←. In the low noise limit, we obtain

Q→ = e〈λ2
→〉/(2R2

e ) ≥ 1

Q← = e〈λ2
←〉/(2R2

e ) ≥ 1, (36)

where

λ← = Re
〈i←

F 〉 − i←
F

|〈i←
F 〉|

= Ẽ − 〈E〉 + Re AFk+(ecE − 〈ecE 〉)
F Ak−〈e−cE 〉 (37)

λ→ = Re
〈i→

F 〉 − i→
F

|〈i→
F 〉|

= Ẽ − 〈E〉 − Re AFk−(e−cE − 〈e−cE 〉)
F Ak+〈ecE 〉 . (38)

These expressions are analogous to the ones obtained for one
irreversible equation. They show that the stochastic reaction
kinetics can be separated for each reaction pathway. In the
regime 〈E〉 � 0 we have

λ← � λ→ = Ẽ − 〈E〉
A|〈i→

F 〉| . (39)

Conversely, in the regime 〈E〉 	 0, we have

λ→ � λ← = Ẽ − 〈E〉
A|〈i←

F 〉| . (40)

The expressions for the macroscopically favored reactions
in such limiting cases reduce to Eq. (26) found for the ir-
reversible reaction. Most importantly, Eqs. (39) and (40) im-
ply a statement made in Ref. 8: rare events are the most en-
hanced at the nanoscale since the macroscopically unfavored
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FIG. 5. Enhancement factors Q← (continuous curve) and Q→ (dashed
curve) for a reversible redox reaction as a function of the external resistance
Re and for � = 1000 active sites. Beside the curves values of the externally
applied potential U (in V) are indicated. Inset: � = 5000 and U = 0.2V . For
the backward reaction: k− = 10−5 mol s−1 m−2. Other parameter values as
in Figure 3.

reactions are, in each case, the ones with higher fluctuation
resistance λ and therefore, the ones with a higher enhance-
ment factor. The latter expressions indicate that the more we
move to more positive (negative) applied voltage U , the more
the backward (forward) process is enhanced and the larger is
Q← (Q→).

The dependence of the enhancement factors Q← and
Q→ on the external series resistance is similar to the one ex-
plained above for only one irreversible reaction. In the limits
Re → ∞ and Re → 0 one has for both enhancement factors
Q← → 1 and Q→ → 1 and their maximum is attained for
some intermediate positive value of Re. We have performed
simulations of the electrochemical master equation in the
large resistance regime before the limit Re → ∞ is reached.
In Fig. 5 we plot the enhancement factors Q← (continuous
curve) and Q→ (dashed curve) as a function of the external
resistance Re for several values of the applied potential U .
We note that at U = 0, the enhancement factors for forward
and backward reactions are equal at every set of parameters
and that they increase following the same curve as Re is low-
ered. This means that the current is always vanishing, or, in
other words, that the equilibrium potential is always equal to
the macroscopic one. As we move in the overpotential regime,
Q← becomes larger than Q→ in consistency with our findings
above. As Re → ∞, both Q← → 1 and Q→ → 1, in consis-
tency with Eq. (36). When the system size is larger, the infinite
resistance limit is attained for lower values of the external re-
sistance, since the fluctuations are smaller, and so are λ← and
λ→ in Eq. (36). This is shown in the inset of the figure.

We explore now the nonmonotonic dependence of the en-
hancement factor on the external resistance. In Fig. 6 we plot
Q← for several decades of values of the external resistance
Re. To avoid infinitely large faradaic currents as the resis-
tance is lowered, we varied U so that the total faradaic current
through the external resistance corresponding to the infinite
size limit remains constant

U − E∗

Re A
= U1 − E∗

R1
e A

= ct. (41)

Here E∗ is first calculated separately in the infinite system
size limit for values of U1 = 10−8V and R1

e A = 0.03 � cm2,
i.e., very close to the equilibrium potential. Then the external
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FIG. 6. Enhancement factor Q← for a reversible redox reaction as a function
of the external resistance Re and for the values of the system size � indicated
in the figure. U is varied along the curve according to Eq. (41). Other param-
eter values as in Figure 5.

resistance Re is varied and Eq. (41) is solved for U which is
varied also accordingly. In such a way, the curves obtained
are universal and valid for every reversible electrochemical
reaction and independent of the specific values of the rate
constants k− and k+ (provided they are equal). Both lim-
its Re → ∞ and Re → 0 are reproduced, with Q← → 1, al-
though the latter limit is, in practice, unreachable by the simu-
lations since τρ → 0 as ∼ −Re ln Re. We observe that values
of the resistance of the order of 1 M� or higher lead to a
significant increase of the reaction kinetics of the individual
oxidation or reduction reaction with a well defined average re-
action rate 〈e−cE 〉 � e−c〈E〉 (i.e., Q← � 1). All our results in
Ref. 8 were reported in this regime. It corresponds also to the
results in Fig. 5. For values of Re of the order of 1 k� the in-
dividual reaction steps are strongly enhanced, but the descrip-
tion in terms of enhancement factors Q becomes incomplete
and insufficient, since the reaction rate strongly fluctuates as
well, and higher moments or cumulants of the distribution of
the reaction rate itself are needed, i.e., 〈e−cE 〉2 − e−2c〈E〉 and
so on. In such a situation the faradaic current is no longer well
described only by its time average.

A better understanding of the transition from stochastic
dynamics at high Re to deterministic dynamics on the elec-
trode potential for low Re → 0 is provided by the distribu-
tions of instantaneous values of the electrode potential. In
Fig. 7 we plot the time series for E for a series resistance
Re = 8 M� (left) and Re = 80 G� (right) with U obtained
from Eq. (41), i.e., equal current densities in the deterministic
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FIG. 7. Time series for E for a series resistance Re = 8 M� (left) and
Re = 80 G� (right). U obtained from Eq. (41). Shaded regions indicate the
bounds where the 95% of the instantaneous values of the electrode potential
concentrate within. Other parameter values as in Figure 6 (� = 10 000).
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FIG. 8. Histogram of the the values of the electrode potential around the
stationary state for Re = 8 M� and Re = 80 G�. U obtained from Eq. (41).
Other parameter values as in Figure 7.

limit. We see that at lower values of the external resistance, the
fluctuations are much broader although they are more sharply
distributed around the average electrode potential. The value
Re = 8 M� is close to the lowest bound where one can still
talk of a well defined average reaction rate in Fig. 6 within the
high resistance regime. The value Re = 80 G� approaches
the infinite resistance limit. The shaded regions in the figure
indicate the bounds where the 95% of the instantaneous val-
ues of the electrode potential concentrate. The interval within
these bounds is thinner at lower resistances. This is more com-
pellingly seen in the histograms of the distribution of instan-
taneous values of the electrode potential, shown in Fig. 8 for
each case in Fig. 7. While the distribution at Re = 80 G� is
almost Gaussian the one at Re = 8 M� is highly leptokurtic,
indicating that it is much more peaked around the mean value
than a Gaussian, while at the same time, having much longer
tails favoring rare events compared to the Gaussian. This non-
Gaussianity of the distribution is responsible for the strongly
enhanced kinetics and it is caused by the external potentio-
static control.

In the limit Re → 0 the distribution becomes more and
more peaked and below a certain threshold, rare events begin
to become insignificant signalling the transition to determin-
istic behavior E = U for the electrode potential at Re = 0.
Note that both distributions are symmetrical because of the
value of the external applied voltage, which was chosen
U ≈ 0. A situation far from equilibrium yields also asymmet-
ric skewed distributions with long tails toward the macroscop-
ically unfavored, rare events.

C. Reversible one-electron transfer reaction in open
circuit conditions

We consider now a situation in which we have a re-
versible redox process under open circuit conditions. The
source of external voltage and the external resistance are ab-
sent and the circuit in Figs. 1 and 2 simplify to the capacitor
and the faradaic impedance and the parallel fluctuation re-
sistances. The faradaic current coincides with the capacitive
current and therefore, at the stationary state |〈i→

F 〉| = |〈i←
F 〉|.

Eq. (33) becomes in this case

Fk+〈ecE 〉 = Fk−〈e−cE 〉. (42)
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We also have

Fk+ec〈E〉 = Fk−e−c〈E〉. (43)

And therefore

Q← = Q→ ≈ 1 + c2σ 2. (44)

In this situation the stationary probability distribution of the
electrode potential is Gaussian and therefore, contributions
from the skewness and kurtosis to Q vanish. The standard de-
viation σ specifies completely the enhancement of the kinet-
ics in the weak noise limit. In Fig. 9 we plot the enhancement
factor as a function of the system size. We observe that the
enhancement is only significant for electrode areas in the sub-
nanometer scale (for � = 200 active sites we have Q ≈ 30).
The curve in Fig. 9 is universal, i.e., valid for all reversible re-
dox processes independently of the value of the kinetic con-
stants. This enhancement is much lower than with external
control. The latter enhances the importance of the fluctuations
since it causes non-normal behavior of the stationary proba-
bility distributions, as discussed above.

III. CONCLUSIONS

In this article we elucidated that the enhancement of elec-
trochemical kinetics at the nanoscale originates from peaked
and long-tailed distributions of the fluctuating electrode po-
tential which, in turn, can be tuned by a system parameter,
namely, the series resistance. If we consider a given current
density in the infinite resistance limit, where the electrode
potential has the maximal freedom to fluctuate, but the fluc-
tuations are irrelevant for the measured current, the normal
distribution is recovered and the enhancement vanishes.
Therefore, in this limit, there is no qualitative difference be-
tween the statistics of the electrochemical system and a purely
chemical system. In the vanishing resistance limit, when the
electrode potential is not free to vary anymore, we arrive at the
deterministic kinetics and the enhancement vanishes as
well. To obtain an increased current density, the interme-
diate situation is imperative, where the fluctuations of the

electrode potential due to electron transfer events are con-
strained by the external control.

We have also quantified the enhancement of the electro-
chemical kinetics for a single reversible redox reaction un-
der open circuit conditions and found that here the effect is
smaller than under potentiostatic control. Only with few hun-
dreds of active sites, the reaction kinetics is significantly en-
hanced and fluctuations of the electrode potential are purely
Gaussian.

The introduction of a resistance implies dissipation of en-
ergy. Therefore it is important to look at the ratio between
power loss through dissipation and the smaller power con-
sumption because of the reaction enhancement (smaller over-
potential). For the irreversible redox reaction, the voltage one
has to apply externally in order to draw a certain current den-
sity may be − for intermediate values of the resistance and
small overvoltage − smaller than in the macroscopic case.
This means that the Joule heat dissipated in the ohmic resistor
is overcompensated by the enhanced current and the reaction
indeed can be driven with a smaller power input.8 In the case
of several elementary electron transfer steps the relative rates
will be changed, the slowest one being the most enhanced one.
The exploitation of the enhancement might prove to be fa-
vorable in certain cases, for example, when one operates in a
regime with a negative differential resistance.
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