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A universal map is derived for all deterministic 1D cellular automata (CAs) containing no freely adjustable
parameters and valid for any alphabet size and any neighborhood range (including non-symmetrical
neighborhoods). The map can be extended to an arbitrary number of dimensions and topologies and
to arbitrary order in time. Specific CA maps for the famous Conway’s Game of Life and Wolfram’s 256
elementary CAs are given. An induction method for CAs, based in the universal map, allows mathematical
expressions for the orbits of a wide variety of elementary CAs to be systematically derived.
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1. Introduction

Cellular automata (CAs) constitute paradigmatic models of complexity in nature [1–3], from snowflakes, patterns in mollusc seashells
and spiral waves in the Belousov–Zhabotinsky reaction to neural networks and the fundamental physical reality [4]. CAs serve as models
for complex natural systems made of large numbers of identical parts [1–7]. They consist of a discrete lattice of sites, with a finite set
of possible values each. The site values evolve synchronously in discrete time steps according to identical rules, being determined by the
previous values on the sites of their neighborhood. The concept of cellular automaton (CA) dates back over half a century to the efforts
of John von Neumann to design self-replicating artificial systems capable of universal computation [8] (see also [9]). It was however
in the early eighties, when Wolfram published a series of groundbreaking papers on the subject [5–7,10,11], that CAs received wide
attention from the scientific community. Despite some monographs and further important work [12–21] and tantalizing hints [14,22,23],
no theory provided mathematical expressions neither for the CA maps nor for the CA orbits in phase space (when possible) valid for
arbitrary neighborhood sizes, number of site values (i.e. arbitrary alphabet size) and dimensions. Mathematical tools for these discrete
systems with the practical value that partial differential equations (PDEs) have for continuum systems [17] were absent. This has been
a major drawback precluding significant progress in the theoretical modeling of complex systems: although quite a tour de force, no
general conclusions could be sharply drawn other than the computational ones [1,12,15]. It has indeed long been thought that no simple
mathematical expressions could be given for most CAs and a strong emphasis has been put on computational aspects instead of standard
mathematics [1]. This Letter tackles this problem providing the missing mathematical tool for CAs. A universal map encompassing all 1D
deterministic CAs is presented here. The map can be easily extended to an arbitrary number of dimensions and topologies. Examples of
such extensions are also provided here.

The universal map expresses the spatiotemporal dynamics of any 1D CA in a mathematical form, such that it is clearly exposed how the
update rule depends on all parameters governing the CA dynamics: neighborhood size and topology, number of symbols in the alphabet
and possible outputs of the CA rule. The map provides the local dynamics for a given site i at time t in an analogous way as a PDE does
in continuum systems. Thus, as shown in Section 4, the universal map is not a mere reformulation of the update rule: it is a powerful
tool to derive systematically mathematical expressions for the orbits of CA rules (as a function of an arbitrary initial condition) in case
they exist. To find such solutions, the induction method proves to be – in its generality, when dealing with discrete systems – analogous
to integration in continuum systems. The induction method for CAs (presented in Section 4.1) is explicitly based on the universal map
and can be satisfactorily used, for example, to directly obtain the orbits for all rules involving only two symbols in the alphabet and one
or two sites. In the case of Wolfram rules (with three sites) there are some few rules, like Wolfram’s rule 110, that are computationally
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irreducible (see Section 4.2) and for which to find such a closed expression for the orbit proves to be an impossible task. Still, the CA map
may give much valuable information and insight in such irreducible CA automata rules, yielding an invaluable qualitative understanding
of the spatiotemporal patterns that arise under CA evolution. (An analogous situation is also encountered in continuum dynamics, for
example, in the turbulent regime of the complex Ginzburg–Landau equation [24]: in such a regime one cannot give a closed mathematical
solution of the PDE but the bifurcation to such behavior can be determined and understood from the PDE.) Furthermore, the universal
CA map can reproduce any PDE and any real map (continuum limit) when the number of symbols p → ∞ (in Section 4.3 this is briefly
illustrated with the logistic map).

2. Mathematics of rules

A mathematical function can be thought as a rule such that, given a numerical input, the output is read from a table containing a
series of configurations to which the input compares. The complete table gives the rule, i.e. what to do with an appropriate input. Usually,
the configurations on a table must be sharply and unambiguously distinguished from each other within a certain tolerance. Then the table
provides the output corresponding to the configuration that successfully matches the input. It is then said that the output is the result of
the rule acting on the input.

The notion of table indicates how a general function of a general argument (for example a real number) can be quantized in terms of a
certain set of countable (discrete) disjunctive sets (the configurations) that arise at a certain precision or tolerance (the distance separating
the closest configurations, which gives the measure μ of the configuration) and which splice together to cover the whole range of values
of the general argument. As shown below this idea is related to (but not restricted to) the concept of simple function, which plays a
central role in the theory of measure and Lebesgue integration [25].

The above paragraphs can be seen as a computational way of thinking Mathematics. The most elementary mathematical structure
that imitates computation as described above can now be sought. Each computational process is considered here as an “experiment”
and standard mathematics is used to theoretically model such an experiment and to give a mathematical expression for any such an
elementary step. Proceeding in this way is advantageous since a general mathematical theory for rule-based dynamical systems, in general,
and CAs, in particular, can then be rigorously established.

The most simple rule is now considered, i.e. one containing just only one configuration with one nonzero output. When input coincides
with configuration within a certain tolerance, the rule returns output. Otherwise, the result is zero. The simplest mathematical structure
where all actors involved in the above computational process enter can be formally depicted in the following way:

output × B(configuration − input, tolerance) (1)

The function B has two arguments and, in order for the latter expression to return output or zero, it is clear that B should return 1 or 0,
respectively. Specifically, it should return 1 if |configuration − input| < tolerance and 0 otherwise. It is clear then that B is an even function
of its first argument. The mathematical function B(x, ε) having all these properties is the boxcar function plotted in Fig. 1 and introduced
in Definition 1 below.

Definition 1. The boxcar function B(x, ε) is defined, for ε and x real, as

B(x, ε) = 1

2

(
x + ε

|x + ε| − x − ε

|x − ε|
)

(2)

where |x| is the absolute value function.

The boxcar function is defined over the real numbers and has a discontinuity at x = ±|ε|. When ε = 1/2, the boxcar function is usually
called a rectangular function. The following definitions of B(x, ε) are equivalent to Definition 1

B(x, ε) = 1

2

[
sgn(x + ε) − sgn(x − ε)

]
(3)

= H(x + ε) − H(x − ε) (4)

= H

(
1 − x2

ε2

)
(5)

= χ(−|ε|,|ε|)(x) (6)

where sgn(x) is the sign function, H(x) is the Heaviside step function, and χ(−|ε|,|ε|)(x) is the indicator function for the interval (−|ε|, |ε|).
This last definition in terms of the indicator function makes clear that the tolerance ε is directly related to the measure μ of the set
where the input argument x falls [25]. The value of configuration is the value of x at the center of this set, used as its label. All kinds of
mathematical structures that can be constructed through addition and multiplication of simple structures of the form Eq. (1) belongs to
what can be termed as B-calculus.

When one has a rule with several different configurations indexed by n so that to configurationn corresponds an outputn , the rule is
completely given by summing over all elementary structures describing the action of the rule on each separate configurationn as given in
Eq. (1). Each configuration is exclusive, i.e., the input cannot simultaneously be equal to two different configurationn within tolerance. The
output of the rule is then

output =
∑

n∈table

outputn × B(configurationn − input, tolerance) (7)

The tolerance is related to the distance separating two adjacent configurations on the table and is defined as
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Fig. 1. The boxcar function B(x, ε) is equal to one for −ε � x � ε and zero otherwise.

tolerance = configurationn+1 − configurationn

2
(8)

and so, if each configurationn is given by a non-negative integer number, tolerance = 1/2. If each configuration is instead given by a rational
number separated a distance 1/d from the next, then tolerance = 1/(2d). In Section 4.3 an example is given where the tolerance has this
latter form.

The structure of Eq. (7) matches the one of simple functions found in measure theory (i.e. a function that can take a countable
number of values) [25]. The independent construction presented here leads to a different interpretation of such an abstract mathematical
structure within the mathematical formalism of B-calculus, and the latter is useful to describe rule-based dynamical systems. This is the
core idea of this Letter. The non-standard terms configuration and tolerance are used here because of their appealing visual character and
physical flavor and to emphasize the finiteness of the sets which cover the (generally continuous) range of values that the argument x can
take. Eq. (7) can be further generalized within B-calculus to allow for non-exclusive configurations (multivalued functions), vectorial and
tensorial outputs, etc.

3. General theory for cellular automata (CAs)

3.1. Universal map for one-dimensional CAs

It can be now shown how CA rules always fit in the above structure, provided by Eq. (7) and some of its possible generalizations.
A spatially extended system consisting of a lattice of discrete sites is now considered. The topology and dimensions of this lattice can be
arbitrary. The following discussion focus first in the case of a 1D ring containing a total number of Ns sites and it is later generalized to
higher-dimensional systems.

An input is given as initial condition in the form of a vector x0 = (x1
0, . . . , xNs

0 ). Each of the xi
0 is an integer in the range 0 through

p − 1 (where p specifies the total number of symbols in the alphabet). The subindex labels the discrete time step in the evolution and the
superindex specifies the position of the site on a 1D ring. At each time step t the vector xt = (x1

t , . . . , xNs
t ) specifies the state of the CA. All

inputs and outputs from the rule (i.e. all x’s regardless of the labels) are always integers on the range 0 through p − 1. Periodic boundary
conditions are assumed so that xNs+1

t = x1
t and x0

t = xNs
t . Let xi

t+1 be taken to denote the value of site i at time step t + 1. Formally, its
dependence on the values at the previous time step is given through the mapping

xi
t+1 = φ

(
xi−r

t , xi−r+1
t , . . . , xi

t , . . . , xi+l−1
t , xi+l

t

)
(9)

where φ(· · ·) is the function of the site values which specifies the local rule. Here r and l denote the number of cells to the right and to
the left of site i respectively. The range ρ of the rule is defined as the total number of sites involved in the rule and is therefore given
by ρ = l + r + 1. Since each site i can have p different values there is a total of pρ = pl+r+1 different configurations on the table for each
possible combination of symbols. For a range ρ there exists a total number of Γ = ppl+r+1

different rules that can be defined in this way.
Each configurationn in the table is indexed by the integer number n which runs between 0 and pl+r+1 − 1 (and hence tolerance = 1/2) and
which is given as a function of the site values in the table xi as n = ∑l

k=−r pk+r xi+k . The xi specify all possible configurations. The above
n specifies each static configuration given on the table. They compare to the dynamical configuration nt reached by site i and its r and l
first neighbors at time t , nt = ∑l

k=−r pk+r xi+k
t . The latter is the input of the rule.

The outputs an for each configuration n are integers between 0 and p − 1. An integer number R can then be given to specify the code

of the rule R = ∑pl+r+1−1
n=0 an pn , i.e. the an are the coefficients that accompany the powers of p when writing R in base p. Since the rule

depends not only on the an but also on the number of symbols p involved and on the number of neighbors to the left l and to the right r,
to define an arbitrary CA rule in an unambiguous way the quantity l Rr

p can be introduced. It denotes symbolically in all the following the
same as φ in Eq. (9) above. The labels l, r and p accompanying R specify the rule completely and Eq. (9) can be written in a compact and
unambiguous way as

xi
t+1 = l Rr

p

(
xi

t

)
(10)

with the understanding that the rule depends not only on xi
t but also on the first r neighbors to the right and the first l neighbors to the

left and that each of the sites can have p different values. For example, Wolfram’s rule 110, involves p = 2 symbols, and one left and one
right neighbors, i.e. r = l = 1 (see Fig. 2). Such rule is then written as 11101

2.
The following set of correspondences between the quantities here defined and the ones introduced in Eq. (7) in Section 2 hold
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Fig. 2. Sketch of Wolfram’s rule 11101
2. The table of the rule with each configurationn (n) and each outputn (an) and code R is shown, as well as the spatiotemporal evolution

of the CA starting from an initial condition consisting on a single site with value ‘1’ and all others with value ‘0’.

input ⇐⇒ nt =
l∑

k=−r

pk+r xi+k
t

configurationn ⇐⇒ n

(
≡

l∑
k=−r

pk+r xi+k

)

tolerance ⇐⇒ 1/2

outputn ⇐⇒ an

output ⇐⇒ xi
t+1

and the universal map governing the dynamics of 1D cellular automata, by using Eq. (7), has then the form

xi
t+1 =

pl+r+1−1∑
n=0

anB
(

n −
l∑

k=−r

pk+r xi+k
t ,

1

2

)
(11)

or, equivalently, by using Definition 1

xi
t+1 =

pl+r+1−1∑
n=0

an

2

( 1
2 + n − ∑l

k=−r pk+r xi+k
t∣∣ 1

2 + n − ∑l
k=−r pk+r xi+k

t

∣∣ +
1
2 − n + ∑l

k=−r pk+r xi+k
t∣∣ 1

2 − n + ∑l
k=−r pk+r xi+k

t

∣∣
)

(12)

Although Eq. (11) seems rather complex, it is to be noted that it is the normal form for all first-order-in-time deterministic CA maps in 1D.
This expression makes explicit how CA behavior depends on the specification of the rule (given by the vector containing the coefficients
an), the dimensions of the neighborhood (parameters l and r) and the total number of symbols in the alphabet p. Previous formulations
[5–7] were equivalent to Eq. (9), which is clearly unsatisfactory for further mathematical analysis, since such equation is merely useful to
define a CA in a formal way, but it does not yet expose the dependence of CA behavior on the different parameters. Eq. (11) also takes
advantage over any kind of descriptive statement of the CA update rule, since it provides a systematic means to obtain the orbit of the
CA, i.e. its trajectory in phase space, in the cases where it can be given in mathematically closed form. This is shown in Section 4.

3.2. Totalistic rules

Sometimes, the configuration is specified not in terms of its binary code but over a sum carried over all sites in the neighborhood.
The output is made in such cases dependent only on the sum of the previous values. These CAs are called totalistic and they are a subset
of the total possibilities described by Eq. (11). Each configurationn in the table is labeled in such a case with an integer number s which
runs between 0 and ρ(p − 1) (the latter value is the maximum value that the sum over the site values can attain) s = ∑l

k=−r xi+k . The
xi have as before values between 0 and p − 1 and specify all possible configurations of the symbols. The above s specifies each static
configuration given on the table. They compare to the dynamical configuration st reached by site i and its r and l first neighbors at time
t , st = ∑l

k=−r xi+k
t which is the input of the totalistic rule.

The outputs σs for each configuration s have integer values between 0 and p − 1 like the inputs and the output of the rule. An integer
number R can then be given to specify the code of the totalistic rule in the following way R = ∑ρ(p−1)

s=0 σs ps . A totalistic CA rule can
be therefore labeled as l RT r

p , where the label T is added to avoid confusion with the coding in the normal form. The following set of
correspondences between these quantities and the ones introduced in Eq. (7) in Section 2 holds now

input ⇐⇒ st =
l∑

xi+k
t

k=−r
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Fig. 3. Spatiotemporal evolution of rules l Rr
p and l RT r

p indicated in the figure obtained from Eqs. (11) and (13) respectively for a system size Ns = 200 and 200 time steps
(time flows from top to bottom) for a random initial condition.

configurationn ⇐⇒ s

(
≡

l∑
k=−r

xi+k

)

tolerance ⇐⇒ 1/2

outputn ⇐⇒ σs

output ⇐⇒ xi
t+1

And therefore, the universal map governing the dynamics of 1D totalistic cellular automata, is obtained by using Eq. (7) as

xi
t+1 =

ρ(p−1)∑
s=0

σsB
(

s −
l∑

k=−r

xi+k
t ,

1

2

)
(13)

Eq. (13) is a particular case of Eq. (11). Starting from a totalistic rule with vector (σ0, σ1, . . . , σρ(p−1)) described by Eq. (13) the vector
specifying the normal rule as described by Eq. (11) (a0,a1, . . . ,apl+r+1−1) can be calculated from the following system of equations (for all

possible integer values of k ∈ [−r, l] and xi+k ∈ [0, p − 1])

n =
l∑

k=−r

pk+r xi+k s =
l∑

k=−r

xi+k an = σs (14)

Eq. (11) or its simplified version for totalistic rules Eq. (13) can be used to follow the spatiotemporal evolution of all deterministic 1D
cellular automata which are first order in time. Fig. 3 shows some examples, where Eqs. (11) and (13) are run on a ring with Ns = 200
sites, after giving values for r, l, p and R . As discussed above, the latter quantity specifies the vector (a0,a1, . . . ,apl+r+1−1), since it
provides the decimal representation of the base p number apl+r+1−1 · · ·a1a0. (In the case of totalistic rules, the number R provides the
vector (σ0, σ1, . . . , σρ(p−1)), since it coincides with the decimal representation of the base p number σρ(p−1) · · ·σ1σ0.)

By introducing appropriate products of boxcar functions in the r.h.s. of Eqs. (11) and (13), these maps can be straightforwardly gener-
alized to any order in time and an arbitrary number of dimensions. In Sections 3.4 and 3.5 these generalizations are discussed.

3.3. Universal cellular automata maps in polynomial form

Before the first iteration takes place, Eqs. (11) and (13) also accept real numbers as input . This is a very desirable property, if one
thinks in practical applications where Eqs. (11) and (13) may be implemented in, for example, experiments involving electric circuits.
These real inputs are rounded by the boxcar function to the closest integer in the first iteration and the first output is therefore an integer
number. The subsequent iterations of these maps take place entirely on the integers between 0 and p − 1.

If the initial input values are already given as integers between 0 and p − 1, Eqs. (11) and (13) can be written in polynomial form:
since the dynamics remain always from the very beginning on these integers, the polynomial interpolation of the r.h.s. of Eqs. (11) and
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(13) provides an equivalent dynamical description. The following theorem allows to construct such a polynomial. This is an important
result since it allows to pass from a description in terms of boxcar functions to polynomials involving integer variables. In order to obtain
the latter a linear system of equations involving a Vandermonde matrix of Ω × Ω dimensions (where Ω = pl+r+1) needs to be solved.
Eq. (11), which is computationally inexpensive and sufficient to characterize every CA rule is, therefore, more fundamental.

Theorem (Polynomial maps). The following result holds

l Rr
p

(
xi

t

) ≡ xi
t+1 =

pl+r+1−1∑
n=0

αn

(
l∑

k=−r

pk+r xi+k
t

)n

(15)

where the coefficients αn’s (rational numbers) are the solutions of the following linear system of equations⎡
⎢⎢⎢⎢⎣

0 0 0 . . . 0 1
1 1 1 . . . 1 1

2Ω−1 2Ω−2 2Ω−3 . . . 2 1
...

...
...

...
...

(Ω − 1)Ω−1 (Ω − 1)Ω−2 (Ω − 1)Ω−3 . . . Ω − 1 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

αΩ−1
αΩ−2
αΩ−3

...

α0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

a0
a1
a2
...

aΩ−1

⎤
⎥⎥⎥⎥⎦ (16)

where Ω = pl+r+1 . For a totalistic rule, one has

l RT r
p

(
xi

t

) ≡ xi
t+1 =

ρ(p−1)∑
s=0

αs

(
l∑

k=−r

xi+k
t

)s

(17)

where the coefficients αs ’s (rational numbers) are the solutions of the following linear system of equations⎡
⎢⎢⎢⎢⎣

0 0 0 . . . 0 1
1 1 1 . . . 1 1

2Θ 2Θ−1 2Θ−2 . . . 2 1
...

...
...

...
...

ΘΘ ΘΘ−1 ΘΘ−2 . . . Θ 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

αΘ

αΘ−1
αΘ−2

...

α0

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

σ0
σ1
σ2
...

σΘ

⎤
⎥⎥⎥⎥⎦ (18)

where Θ = ρ(p − 1).

Proof. Eqs. (15) and (17) are, respectively, the polynomial interpolations of Eqs. (11) and (13). For the topic of polynomial interpolation
see for example [26]. �

When x is a boolean variable (i.e. a variable that can take values either zero or one), one has x2 = x, (1 − x)2 = 1 − x and x(1 − x) = 0.
By using these simple relationships and the above theorem, it is easy to prove the following corollaries. (All three corollaries can also be
directly proved from Eq. (11) without need of using the theorem above. Such alternative proof is given in detail in [27].)

Corollary 1 (Universal CA map for the 4 most simple boolean rules). The universal CA map, Eq. (11), reduces to the following expression

xi
t+1 = a0

(
1 − xi

t

) + a1xi
t (19)

for the 4 most simple boolean rules (p = 2, l = 0, r = 0), i.e. the rules 0 R0
2 , where R = ∑1

n=0 an2n.

Corollary 2 (Universal CA map for the 16 boolean logical functions). The universal CA map, Eq. (11), reduces to the following expression (boolean
logical functions)

xi
t+1 = a0

(
1 − xi

t

)(
1 − xi−1

t

) + a1xi−1
t

(
1 − xi

t

) + a2xi
t

(
1 − xi−1

t

) + a3xi
t xi−1

t (20)

for all 16 rules with p = 2, l = 0, r = 1, i.e. the rules 0 R1
2 , and to

xi
t+1 = a0

(
1 − xi+1

t

)(
1 − xi

t

) + a1xi
t

(
1 − xi+1

t

) + a2xi+1
t

(
1 − xi

t

) + a3xi+1
t xi

t (21)

for all 16 rules with p = 2, l = 1, r = 0, i.e. the rules 1 R0
2 . In both cases R = ∑3

n=0 an2n.

Corollary 3 (Universal CA map for the 256 boolean Wolfram rules). The universal CA map, Eq. (11), reduces to the following expression

xi
t+1 = a0

(
1 − xi+1

t

)(
1 − xi

t

)(
1 − xi−1

t

) + a1xi−1
t

(
1 − xi+1

t

)(
1 − xi

t

)
+ a2xi

t

(
1 − xi+1

t

)(
1 − xi−1

t

) + a3xi
t xi−1

t

(
1 − xi+1

t

) + a4xi+1
t

(
1 − xi

t

)(
1 − xi−1

t

)
+ a5xi+1

t xi−1
t

(
1 − xi

t

) + a6xi+1
t xi

t

(
1 − xi−1

t

) + a7xi+1
t xi

t xi−1
t (22)

for all 256 rules with p = 2, l = 1, r = 1 (Wolfram rules), i.e. the rules 1 R1
2 , where R = ∑7

n=0 an2n.
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Fig. 4. Symmetrical von Neumann, hexagonal and Moore neighborhoods in two dimensions. A configuration can be specified by giving two, three, or four 1D codes, respec-
tively.

Examples. Rule 061
2 has vector (a0,a1,a2,a3) = (0,1,1,0) and therefore its polynomial map is given by

xi
t+1 = xi−1

t + xi
t − 2xi

t xi−1
t (23)

Clearly, the output in the l.h.s. provides the XOR logical function of the two site values at the previous time. The same logical function is
implemented by rule 160

2. Rule 0141
2 has vector (a0,a1,a2,a3) = (0,1,1,1) and therefore its polynomial map is given by

xi
t+1 = xi−1

t + xi
t − xi

t xi−1
t (24)

and now the rule implements the OR logical function of the two site values. Since Wolfram’s famous rule 11101
2 has vector

(a0,a1,a2,a3,a4,a5,a6,a7) = (0,1,1,1,0,1,1,0) (see Fig. 2), from Eq. (22) its map has the remarkably simple expression

xi
t+1 = xi

t + xi−1
t

(
1 − xi

t − xi
t xi+1

t

)
(25)

as can be cursorily checked by replacing all possible site values in the r.h.s. Remarkably, the site xi+1
t tunes the logical function imple-

mented in the other two sites between OR and XOR, when the site value is ‘0’ or ‘1’, respectively.

3.4. CAs in higher dimensions

The above results can be easily generalized to an arbitrary number of dimensions. In 2D, for example, by using the site that is updated
after each time step as a pivoting site and defining 1D codes for each spatial direction counterclockwise, universal maps for all possible
deterministic CAs in 2D (depending on the topology of the interactions in the lattice) can be derived. The most popular neighborhoods in
2D are shown in Fig. 4. The von Neumann neighborhood can be specified giving two binary codes n1 and n2 as indicated in the figure. The
hexagonal neighborhood requires the specification of three codes to describe each configuration. Finally, the Moore neighborhood requires
four 1D codes. In each neighborhood, the site on the center is updated in the next time step.

Since a configuration is now composed of several 1D configurations that must hold simultaneously, a product of boxcar functions is
needed to fully account for the dynamical state. For a von Neumann neighborhood with horizontal and vertical ranges given by the pairs
ρ1 = l1 + r1 + 1 and ρ2 = l2 + r2 + 1 respectively, it is obtained, instead of Eq. (11)

xi, j
t+1 =

pl1+r1+1−1∑
n1=0

pl2+r2+1−1∑
n2=0

an1,n2B
(

n1 −
l1∑

k=−r1

pk+r1 xi+k, j
t ,

1

2

)
B

(
n2 −

l2∑
k=−r2

pk+r2 xi, j+k
t ,

1

2

)
(26)

(note that in the figure only the entirely symmetrical neighborhood with ρ1 = ρ2 = 3 is shown). For a totalistic rule over a von Neumann
neighborhood

xi, j
t+1 =

(ρ1+ρ2−1)(p−1)∑
s=0

σsB
(

s −
l1∑

k=−r1

xi+k, j
t −

l2∑
k=−r2

xi, j+k
t + xi, j

t ,
1

2

)
(27)

For an hexagonal neighborhood
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xi, j
t+1 =

pl1+r1+1−1∑
n1=0

pl2+r2+1−1∑
n2=0

pl3+r3+1−1∑
n3=0

an1,n2,n3B
(

n1 −
l1∑

k=−r1

pk+r1 xi+k, j−k
t ,

1

2

)

× B
(

n2 −
l2∑

k=−r2

pk+r2 xi+k, j+k
t ,

1

2

)
B

(
n3 −

l3∑
k=−r3

pk+r3 xi, j+k
t ,

1

2

)
(28)

and for the totalistic case

xi, j
t+1 =

(ρ1+ρ2+ρ3−2)(p−1)∑
s=0

σsB
(

s + 2xi, j
t −

l1∑
k=−r1

xi+k, j−k
t −

l2∑
k=−r2

xi+k, j+k
t −

l3∑
k=−r3

xi, j+k
t ,

1

2

)
(29)

Finally, for the Moore neighborhood one has, for the general case,

xi, j
t+1 =

pl1+r1+1−1∑
n1=0

pl2+r2+1−1∑
n2=0

pl3+r3+1−1∑
n3=0

pl4+r4+1−1∑
n4=0

an1,n2,n3,n4B
(

n1 −
l1∑

k=−r1

pk+r1 xi+k, j−k
t ,

1

2

)

× B
(

n2 −
l2∑

k=−r2

pk+r2 xi+k, j
t ,

1

2

)
B

(
n3 −

l3∑
k=−r3

pk+r3 xi+k, j+k
t ,

1

2

)

× B
(

n4 −
l4∑

k=−r4

pk+r4 xi, j+k
t ,

1

2

)
(30)

and for the totalistic one

xi, j
t+1 =

(ρ1+ρ2+ρ3+ρ4−3)(p−1)∑
s=0

σsB
(

s + 3xi, j
t −

l1∑
k=−r1

xi+k, j−k
t −

l2∑
k=−r2

xi+k, j
t −

l3∑
k=−r3

xi+k, j+k
t −

l4∑
k=−r4

xi, j+k
t ,

1

2

)
(31)

Above the most general situation, where each spatial direction can be non-symmetrical respect to the site i, j, was considered. In most
interesting cases, however, symmetrical neighborhoods as the ones in Fig. 4 are considered, when particularized to them, these expressions
reduce to very simple forms. Taking now, for example, a Moore neighborhood with l1 = l2 = l3 = l4 = r1 = r2 = r3 = r4 = 1, as in Fig. 4, the
latter expression simplifies to

xi, j
t+1 =

9∑
s=0

σsB
(

s −
1∑

k,m=−1

xi+k, j+m
t ,

1

2

)
(32)

A famous totalistic CA in such a Moore neighborhood due to Gerard Vichniac is the so-called “vote” and is given by a vector
(σ0, σ1, . . . , σ9) = (0,0,0,0,1,1,1,1,1). For such CA, since the sum over the cells in the neighborhood can only be at most ‘9’ and
the CA only returns ‘1’ when s � 5 and zero otherwise,

xi, j
t+1 =

9∑
s=5

B
(

s −
1∑

k,m=−1

xi+k, j+m
t ,

1

2

)
=

∞∑
s=5

B
(

s −
1∑

k,m=−1

xi+k, j+m
t ,

1

2

)
(33)

where the sum has been extended to infinity (a trick that is possible to employ here for this specific CA because of its structure). The sum
can be now carried explicitly to give

xi, j
t+1 = H

(
1∑

k,m=−1

xi+k, j+m
t − 9

2

)
(34)

where H(x) is the Heaviside function. The r.h.s. of the latter expression is only one when the sum over the cells is higher or equal than 5.
Another famous semitotalistic 2D boolean CA called “Game of life” [28,29] and invented by J.H. Conway is also defined on such a Moore

neighborhood in terms of the following rules governing the behavior of the site in the center of the neighborhood (this site is called a
“live cell” if it has value ‘1’ and a “dead cell” if it has value ‘0’)

1. Any live cell with fewer than two live neighbors dies, as if caused by under-population.
2. Any live cell with two or three live neighbors lives on to the next generation.
3. Any live cell with more than three live neighbors dies, as if by overcrowding.
4. Any dead cell with exactly three live neighbors becomes a live cell, as if by reproduction.

This set of rules can indeed be reduced to three

1. If on the entire neighborhood the sum of all site values is ‘3’ the cell in the center lives (or becomes a live cell) in the next generation.
2. If on the entire neighborhood the sum of all site values is ‘4’ the cell in the center lives in the next generation only if it is already

alive.
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3. The cell in the center is dead on the next generation if neither 1. nor 2. holds

By employing Eq. (7) a map for this CA can be written directly, translating these rules into the mathematical language of B-calculus

xi, j
t+1 = B

(
3 −

1∑
k,m=−1

xi+k, j+m
t ,

1

2

)
+ xi, j

t B
(

4 −
1∑

k,m=−1

xi+k, j+m
t ,

1

2

)
(35)

This is a local map for each site i, j in the lattice that implements the Game of Life.
For 3D lattices, the expressions above can easily be further generalized. For example, for a totalistic CA in a symmetric cubic 3D lattice,

the universal map takes the simple form

xi, j,h
t+1 =

(p−1)R3∑
s=0

σsB
(

s −
(R−1)/2∑

k,m,q=−(R−1)/2

xi+k, j+m,h+q
t ,

1

2

)
(36)

where R is the number of boxes in one of the edges of the cube (an odd number).

3.5. CAs of higher order in time and time-reversible CA

If the output of a 1D CA depends on T previous configurations of the i site, a “spatial” and “temporal” codes can be given and the
resulting expression for such a 1D CA of higher order in time can then be written as

xi
t+1 =

pl+r+1−1∑
n=0

pT −1∑
m=0

an,mB
(

n −
l∑

k=−r

pk+r xi+k
t ,

1

2

)
B

(
m −

T∑
k=1

pk−1xi
t−k,

1

2

)
(37)

For each CA rule l Rr
p(xi

t) described by Eq. (11) a reversible rule, which can be denoted as rev[l Rr
p](xi

t) can be constructed as

xi
t+1 =

pl+r+1−1∑
n=0

∣∣an − xi
t−1

∣∣B
(

n −
l∑

k=−r

pk+r xi+k
t ,

1

2

)
(38)

It can be easily proven that these CA rules exhibit the same dynamical behavior to the future and to the past (the absolute value in the
r.h.s. of Eq. (38) warrants the symmetry under time reversal).

4. Discussion

4.1. Inductive method for CAs

Eq. (11) and its totalistic version Eq. (13) (as well as all its generalized versions to higher dimensions and higher order in time) can be
used to find the mathematical expressions for the orbits of CAs, provided they exist. Such orbit gives the value of xi

t , for each position i

as a function of t and the initial condition (x1
0, . . . , xi

0, . . . , xNs
0 ). The method to find the orbit proceeds then through the following steps

1. For a given initial condition (x1
0, . . . , xi

0, . . . , xNs
0 ) by using Eq. (11) calculate, for a certain position i, the iterates xi

1, xi
2, . . . , xi

l+r+1 at
later times.

2. Derive from such iterates the general expression for the orbit xi
t = f (x1

0, . . . , xi
0, . . . , xNs

0 , t).
3. Assume that the expression for the orbit is valid at an arbitrary time t .
4. Use Eq. (11) to prove that the expression for the orbit is then valid at time t + 1.

The CA rule 031
2 is now considered as an example to apply this method. For this rule (a0,a1,a2,a3) = (1,1,0,0) and, therefore, from

Eq. (11)

xi
t+1 = B

(
−xi−1

t − 2xi
t,

1

2

)
+ B

(
1 − xi−1

t − 2xi
t,

1

2

)
= 1 − xi

t (39)

where it has been considered that the x’s take only integer values and Corollary 2 has been used (the validity of the second equality can
be cursorily checked by replacing both possible values ‘0’ and ‘1’ for xi

t and xi−1
t ). The inductive method for CAs can now be applied. In a

position i the first iterates of the map starting from an arbitrary initial condition (x1
0, . . . , xi

0, . . . , xNs
0 ) are

xi
1 = 1 − xi

0 (40)

xi
2 = 1 − xi

1 = 1 − (
1 − xi

0

) = xi
0 (41)

This completes Step 1 of the inductive method. From these two iterates it can be seen that at time t odd, the i site has value 1 − xi
0 but

when t is even, the i site has value xi
0. A general expression that summarizes these results for arbitrary time is thus

xi
t = (−1)t xi

0 + 1 (
1 − (−1)t) (42)
2
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This completes Step 2. This expression is now assumed to be valid at an arbitrary time t (Step 3). At time t + 1 then, by using the map
for this rule, Eq. (39),

xi
t+1 = 1 − xi

t = 1 −
[
(−1)t xi

0 + 1

2

(
1 − (−1)t)] = −(−1)t xi

0 + 1

2

(
1 + (−1)t)

= (−1)t+1xi
0 + 1

2

(
1 − (−1)t+1) (43)

which proves by induction that Eq. (42) is a valid mathematical expression for the orbit for this specific CA rule (Step 4).
By using the above method one can prove that all rules 0 R1

2 and 1 R0
2 (and hence all rules 0 R0

2 as well) can be solved for the orbit. The
following theorem is given without proof since all cases can be obtained by using the inductive method.

Theorem (Predictability of all boolean rules 0 R1
2 and 1 R0

2). If x0 = (x1
0, . . . , xi

0, . . . , xNs
0 ) denotes the initial state of a CA at time t = 0, for time t � 1

(positive integer), all boolean rules 0 R1
2 and 1 R0

2 are predictable and the value at the site on a later time t, xi
t , can be known for each rule, as a function

of t and the initial site values x0 . The orbits (local dependence in time for the state of the cellular automata) for all rules 0 R1
2 and 1 R0

2 are

• 001
2: xi

t = 0

• 011
2: xi

t = 1

2

(
1 − (−1)t)(1 − x

i− t−1
2

0 − x
i− t+1

2
0 + x

i− t−1
2

0 x
i− t+1

2
0

) + 1

2

(
1 + (−1)t)(x

i− t
2

0 + x
i− t−2

2
0 x

i− t+2
2

0 − x
i− t

2
0 x

i− t−2
2

0 x
i− t+2

2
0

)
• 021

2: xi
t = xi−t

0 − xi−t
0 xi−t+1

0

• 031
2: xi

t = (−1)t xi
0 + 1

2

(
1 − (−1)t)

• 041
2: xi

t = xi
0 − xi

0xi−1
0

• 051
2: xi

t = (−1)t xi−t
0 + 1

2

(
1 − (−1)t)

• 061
2: xi

t =
2t−1∑
m=0

B
(

2m + 1 −
t∑

k=0

t!
k!(t − k)! xi−t+k

0 ,
1

2

)

• 071
2: xi

t = 1

2

(
1 − (−1)t)(1 − x

i− t−1
2

0 x
i− t+1

2
0

) + 1

2

(
1 + (−1)t)(x

i− t
2

0 x
i− t−2

2
0 + x

i− t
2

0 x
i− t+2

2
0 − x

i− t
2

0 x
i− t−2

2
0 x

i− t+2
2

0

)

• 081
2: xi

t =
t∏

k=0

xi−k
0

• 091
2: xi

t =
2t−1∑
m=0

B
(

2m −
t∑

k=0

t!
k!(t − k)! (1 − xi−t+k

0 ),
1

2

)

• 0101
2: xi

t = xi−t
0

• 0111
2: xi

t = 1 − xi−t+1
0 + xi−t

0 xi−t+1
0

• 0121
2: xi

t = xi
0

• 0131
2: xi

t = 1 − xi−1
0 + xi

0xi−1
0

• 0141
2: xi

t = 1 −
t∏

k=0

(
1 − xi−k

0

)
• 0151

2: xi
t = 1

• 100
2: xi

t = 0

• 110
2: xi

t = 1

2

(
1 − (−1)t)(1 − x

i+ t−1
2

0 − x
i+ t+1

2
0 + x

i+ t−1
2

0 x
i+ t+1

2
0

) + 1

2

(
1 + (−1)t)(x

i+ t
2

0 + x
i+ t−2

2
0 x

i+ t+2
2

0 − x
i+ t

2
0 x

i+ t−2
2

0 x
i+ t+2

2
0

)
• 120

2: xi
t = xi

0 − xi
0xi+1

0

• 130
2: xi

t = (−1)t xi+t
0 + 1

2

(
1 − (−1)t)

• 140
2: xi

t = xi+t
0 − xi+t

0 xi+t−1
0

• 150
2: xi

t = (−1)t xi
0 + 1

2

(
1 − (−1)t)

• 160
2: xi

t =
2t−1∑

B
(

2m + 1 −
t∑ t!

k!(t − k)! xi+t−k
0 ,

1

2

)

m=0 k=0
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• 170
2: xi

t = 1

2

(
1 − (−1)t)(1 − x

i+ t−1
2

0 x
i+ t+1

2
0

) + 1

2

(
1 + (−1)t)(x

i+ t
2

0 x
i+ t−2

2
0 + x

i+ t
2

0 x
i+ t+2

2
0 − x

i+ t
2

0 x
i+ t−2

2
0 x

i+ t+2
2

0

)

• 180
2: xi

t =
t∏

k=0

xi+k
0

• 190
2: xi

t =
2t−1∑
m=0

B
(

2m −
t∑

k=0

t!
k!(t − k)! (1 − xi+t−k

0 ),
1

2

)

• 1100
2: xi

t = xi
0

• 1110
2: xi

t = 1 − xi+1
0 + xi+1

0 xi
0

• 1120
2: xi

t = xi+t
0

• 1130
2: xi

t = 1 − xi+t−1
0 + xi+t

0 xi+t−1
0

• 1140
2: xi

t = 1 −
t∏

k=0

(
1 − xi+k

0

)

• 1150
2: xi

t = 1.

For some of these CA rules other equivalent expressions for the orbits can be given. Since rules 0 R1
2 and 1 R0

2 represent the 16 different
logical boolean operators [27], the inductive method for CAs presented here coincides with the inductive proofs of boolean expressions as
found in textbooks on boolean algebra and set theory. For example, since rule 0141

2 implements the ‘OR’ logical function the iterates in the
inductive method for this rule correspond exactly to the proof by induction of the celebrated inclusion–exclusion principle of set theory
(see [30] for an exposition of this theorem). Furthermore, one can use the orbits derived for rules 081

2 (implementing the ‘AND’ function)
and 0141

2 to prove De Morgan’ laws of boolean algebra (see [31] for a concise account of these laws). The important (potential) implication
of all these exemplary correspondences is that a successful application of the induction method for CAs can be thought as isomorphic to
the successful application of induction to prove any mathematical theorem, in general.

Specially interesting are the rules 061
2, 091

2, 160
2, 190

2. Although predictable, the behavior of these rules is far more complex than the
one of the other rules. They correspond to the CA implementations of the XOR logical function and its complementary the XNOR function.
These rules represent addition modulo 2 of both site values at a previous instant of time. Therefore, they are also totalistic rules. Rules
061

2, 160
2, 091

2 and 190
2 have totalistic codes 02T 1

2 , 12T 0
2 , 05T 1

2 , 15T 0
2 respectively.

By using the inductive method for CAs, many Wolfram rules 1 R1
2 can be mathematically solved for the orbit as well, so that the

solution at each site value i is known in closed form as a function of the initial condition and time. For example, rule 1121
2 has map

xi
t+1 = xi

t − xi
t xi+1

t and the latter can be solved for the orbit, yielding xi
t = xi

0 − xi
0xi+1

0 so that each site value i is known in closed form as
a function of the initial condition and time. Important exceptions where the inductive method for CAs fails are discussed below.

4.2. Computational irreducibility: The failure of the inductive method for CAs

Computational irreducibility is one of the main ideas proposed by Stephen Wolfram in his book [1]. This is the term that denotes the
inability to shortcut a program (e.g., a system), or to describe its behavior in a simple way. In the context of the CA theory presented in
this Letter, computational irreducibility leads to the impossibility of finding a mathematical expression for the orbit of the CA.

A well-known example of computationally irreducible CA rule is Wolfram’s 11101
2 rule, which has, from Corollary 2, the simple map

xi
t+1 = xi

t + xi−1
t (1 − xi

t − xi
t xi+1

t ). The first iterates of the CA evolution (starting from an arbitrary initial condition) are

xi
1 = xi

0 + xi−1
0

(
1 − xi

0 − xi
0xi+1

0

)
(44)

xi
2 = xi−2

0 − xi−1
0

(
xi+1

0 + xi−2
0 − 1

) + xi
0

[
1 + (

xi+2
0 xi+1

0 − 2
)
xi−2

0 − xi−1
0

(
2 − 3xi−2

0 + xi+1
0

(−2 + (
2 + xi+2

0

)
xi−2

0

))]
(45)

It can be observed that it is not possible to derive a mathematical expression for the orbit and that the second step of the inductive
method cannot be completed. The reason is that for increasingly longer times, the CA behavior depends on the values of the initial
condition on an increasingly larger number of sites (2t + 1 sites) and it does it in a nonlinear way precluding an explicit relationship
among the coefficients to be found. The only possibility of determining exactly the behavior for an arbitrary initial condition is to run
the iterative process step by step. This is the main feature of a computationally irreducible process and the simple map derived here for
Wolfram’s rule 11101

2 makes evident this behavior (rendering the inductive method for CA inapplicable in this case).
The map resulting by the repeated application of a computationally irreducible rule corresponds to a computationally irreducible rule

of higher range as well. For example, the map for the rule 219229784622
2 can be obtained from Eq. (11) and has the form

xi
t+1 = xi−2

t − xi−1
t

(
xi+1

t + xi−2
t − 1

) + xi
t

[
1 + (

xi+2
t xi+1

t − 2
)
xi−2

t − xi−1
t

(
2 − 3xi−2

t + xi+1
t

(−2 + (
2 + xi+2

t

)
xi−2

t

))]
(46)

for which, clearly, one iterate corresponds to two iterates of rule 11101
2, i.e. 219229784622

2(xi
t) = 11101

2[11101
2(xi

t)]. Such rule is also,
therefore, computationally irreducible.
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4.3. Continuum limit

Although, as defined, Eqs. (11) and (13) apply to a finite set of integers ∈ [0, p − 1] which are mapped to the integers in the same
interval, if p → ∞ the above expression may reproduce with arbitrary precision any continuous map. As an example l = r = 0 is assumed
in the following. The number of symbols p can now play the role of the “precision” in the sense that a real number is given in terms of
multiples of 1/p and then a mapping of the rational numbers contained in the interval [0,1] to itself is performed. This can be seen from
Eq. (11) since for rules 0 R0

p one has

xi
t+1 =

p−1∑
n=0

anB
(

n − xi
t,

1

2

)
=

p−1∑
n=0

anB
(

n − xi
t

p − 1
,

1

2(p − 1)

)
(47)

where the property B(ax, ε) = B(x, ε/a) for an integer value a (which can be proved directly from Definition 1) has been used. By
defining the real quantities n′ = n/(p − 1), yi

t = xi
t/(p − 1) and yi

t+1 = xi
t+1/(p − 1), by taking the limit p → ∞, and by using that

limε→0 B(x, ε) = 2εδ(x) (where δ(x) denotes the Dirac delta function)

yi
t+1 = lim

p→∞

1∫
0

dn′ an′ p

(p − 1)2
δ
(
n′ − yi

t

)
(48)

The latter expression, involving real quantities constitutes the limiting behavior of a CA map involving an infinitely large number of
integers. The logistic map, for example, can be reproduced if

an′ p = r(p − 1)2n′(1 − n′) (49)

since in such case Eq. (48) becomes

yi
t+1 = ryi

t

(
1 − yi

t

)
(50)

In terms of the original map involving only integers a CA rule 0 R0∞ described by Eq. (11) with

an = r(p − 1)n

(
1 − n

p − 1

)
(51)

and where the code R is given by

R ≡
pl+r+1−1∑

n=0

an pn = lim
p→∞

p−1∑
n=0

rn(p − 1)
(
1 − n/(p − 1)

)
pn (52)

coincides with the logistic map in its dynamical behavior. Simulations show that if the limit is not taken and p = 1000, Eq. (47) (obtained
from Eq. (11) in this case) already provides an excellent approximation to the logistic map.

In this concise treatment only rules of the form 0 R0∞ have been considered. If l or r are different to zero, differential operators (the
Laplacian, for example) can also be reproduced. These operators are indeed a small subset of the infinitely many that can be constructed
for each specific purpose and the B-calculus introduced above can be thought as a formalism unifying discrete and continuum dynamics
in an analogous way as how classical mechanics emerges from quantum mechanics in the limit of large quantum numbers.

5. Conclusions and perspectives

In this Letter a universal map encompassing all 1D deterministic first order in time CAs has been derived and generalizations to 2D and
3D, reversible CAs and higher-order-in-time 1D CAs have been introduced. These maps do not contain any freely adjustable parameters
and are valid for any alphabet size and any neighborhood range (including non-symmetrical neighborhoods). For totalistic CAs the maps
reduce to simpler expressions. Specific maps have been provided for the famous Conway’s Game of Life and Wolfram’s 256 elementary
CAs. Many elementary CAs can be solved for the orbit from Eq. (11). An inductive method for CAs has been introduced for this purpose
whose goal achieves with CA the same as integration does in continuum systems. Some other CAs are computationally irreducible, and
it is not possible to find such expressions for the orbit. Still, in these latter cases, the mathematical expressions for the maps derived
here give insight in how information propagates such that no shortcut is possible, as well as some deep relationships between different
computationally irreducible CAs.

All CAs described in Wolfram’s book [1] can thus be handled with mathematical expressions within the framework of the B-calculus
(i.e. the calculus with boxcar functions as introduced in Section 2). B-calculus can also be used to deal with other rule-based dynamical
systems as mobile cellular automata, Turing machines, substitution systems [1] and every other kind of finite automaton [32].

Standard mathematical methods, as symmetry analyses, can now be applied to CAs. Since each CA is associated to a particular simple
program [1] this in turn implies that every algorithm can be expressed, in principle, by means of standard mathematical equations and
that standard mathematics allows indeed to classify all different kinds of algorithms that can be envisaged. Such classification, in terms of
symmetry considerations, will be published elsewhere [27]. Indeed, the formalism introduced here can be shown as well to yield a rigorous
path to the origin of complexity in physical systems [27]. The methods presented here might also be useful in reaching conclusions on
the important question “P = N P ?” of the theory of computation [32].
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