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certain transformations (global complementation, reflection and shift). When constructing CA rules in
terms of rules of lower range a new symmetry, “invariance under construction” is uncovered. Modular
arithmetic is also reformulated within B-calculus and a new symmetry of certain totalistic CA rules,
which calculate the Pascal simplices modulo an integer number p, is then also uncovered.
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1. Introduction

Complexity arises in nature already when simple dynamical
systems involving a finite number of states are considered [1–3].
Cellular automata (CAs) constitute examples of such paradigmatic
models of complexity [1–6] and allow complex natural systems
made of large numbers of identical parts to be described [4–9].
The dynamics of CAs takes place in a discrete lattice of sites, with
a finite set of possible values each. Inputs and outputs of a CA
rule are thus integers on the interval [0, p − 1] with p being
a non-negative integer, the CA rule being thus an endomorphism
within this set of integers. The site values evolve synchronously
in discrete time steps according to identical rules, being deter-
mined by the previous values on the sites of their neighborhood
[1–3]. The range ρ of the neighborhood is given as ρ = l + r + 1,
where l and r denote the number of sites to the left and to the
right of the cell that is updated after each time step, respectively.
Thus there are pρ = pl+r+1 different configurations that the sym-
bols can have within the neighborhood and, therefore there are
Γ = ppl+r+1

CA rules for given values of p, l and r. For exam-
ple, when only two possible site values (p = 2) and first neighbors
(l = r = 1) are considered there are a total of Γ = 256 rules. Not
all these Γ rules exhibit behavior that is qualitatively different
from each other. Some of these rules are related by elementary
symmetry transformations so that, if the behavior of certain rules
is known, the one of their class-equivalent relatives is automati-
cally known as well. Within the 256 rules above described only
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88 are independent upon global complementation (i.e. exchanging
the site values) or reflection (i.e. exchanging left and right direc-
tions) [1,4,10].

In this Letter, use is made of a recently derived universal map
for CA [3] to systematically investigate symmetry relationships be-
tween CA rules in a general manner (i.e. for arbitrary number of
symbols and range). The universal map is found to be invariant
not only under global complementation and reflection but also un-
der shift (Galilean invariance), a symmetry that is uncovered here.
These invariances allow classification of CA rules into equivalence
classes. Within each equivalence class, a specific symmetry is bro-
ken when specific CA rules are considered but the dynamical be-
havior of all class members is automatically known, when just the
dynamical behavior of one CA belonging to them is known. When
applied to the 256 rules, only 85 are found to be independent in
this sense (Galilean invariance reduces the total of 88 indepen-
dent Wolfram rules even further). A theorem is then proven on
how CA rules are constructed in terms of rules of lower range
and a new symmetry of CAs called “invariance under construc-
tion” is uncovered. Modular arithmetic is also reformulated within
B-calculus allowing the time-reversal symmetry to be discussed
in a systematic manner. A new symmetry of certain totalistic 1D
CA rules, which calculate the Pascal simplices modulo an integer
number p is then also uncovered. We first review the essentials of
B-calculus and the universal map for CA to be explored in subse-
quent sections.

2. B-calculus and universal map for 1D cellular automata (CAs)

Dynamical systems governed by rules evolve as follows: the
state of the dynamical system is given as input to the dynamical
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rule. This input is compared with the specification of all possible
inputs (henceforth called configurations) given in a table, and the
rule returns output. Each input is separated from the other one in
the table by a distance tolerance. The most simple rule is now con-
sidered, i.e. one containing just only one configuration with one
non-zero output. When input coincides with configuration within
a certain tolerance, the rule returns output. Otherwise, the result is
zero. This simple rule can be written formally as

output × B(configuration − input, tolerance) (1)

where B(x, ε) is the boxcar function,

B(x, ε) = 1

2

(
x + ε

|x + ε| − x − ε

|x − ε|
)

(2)

which returns one when |configuration− input| < tolerance and zero
otherwise. B-calculus concerns all kinds of mathematical struc-
tures that can be constructed through addition and multiplica-
tion of simple structures of the form of Eq. (1). When one has
a rule with several different configurations indexed by n so that to
configurationn corresponds an outputn , the rule is completely given
by summing over all elementary structures describing the action
of the rule on each separate configurationn as given in Eq. (1). The
output of the rule is then

output =
∑

n∈table

outputn × B(configurationn − input, tolerance)

(3)

The tolerance is related to the distance separating two adjacent
configurations on the table and is defined as

tolerance = configurationn+1 − configurationn

2
(4)

and so, if each configurationn is given by a non-negative integer
number, tolerance = 1/2. If each configuration is instead given by
a rational number separated a distance 1/d from the next, then
tolerance = 1/(2d).

Eq. (3) can now be applied to provide a theory for CA as follows
in [3]. Let us consider a 1D ring containing a total number of Ns

sites. An input is given as initial condition in the form of a vec-
tor x0 = (x1

0, . . . , xNs
0 ). Each of the xi

0 is an integer in the range 0
through p − 1 where superindex i specifies the position of the site
on the 1D ring. At each t the vector xt = (x1

t , . . . , xNs
t ) specifies

the state of the CA. Periodic boundary conditions are considered
so that xNs+1

t = x1
t and x0

t = xNs
t . Let xi

t+1 be taken to denote the
value of site i at time step t + 1. Formally, its dependence on
the values at the previous time step is given through the map-
ping xi

t+1 = φ(xi−r
t , xi−r+1

t , . . . , xi
t , . . . , xi+l−1

t , xi+l
t ) or, equivalently

xi
t+1 = l Rr

p(xi
t), where φ(· · ·) ≡ l Rr

p is the function of the site values
which specifies the rule. Here r and l denote the number of cells to
the right and to the left of site i respectively. Each configurationn
in the table is then given by the integer number n which runs
between 0 and pr+l+1 − 1 (then tolerance = 1/2). They compare
to the dynamical configuration reached by site i and its r and l
first neighbors at time t and given by

∑l
k=−r pk+r xi+k

t . The latter
is the input of the rule. The outputs an for each configuration n are
also integers ∈ [0, p − 1]. An integer number R can then be given

in base 10 to fully specify the rule l Rr
p as R = ∑pr+l+1−1

n=0 an pn .
With all these correspondences the following expression is ob-
tained from Eq. (3), see [3]

xi
t+1 =

pr+l+1−1∑
anB

(
n −

l∑
pk+r xi+k

t ,
1

2

)
(5)
n=0 k=−r
Eq. (5) describes all first-order-in-time deterministic CA rules in 1D
with no freely adjustable parameters: the pr+l+1 coefficients an

directly specify the dynamical rule. For example, for Wolfram’s
rule 11101

2 (a0,a1, . . . ,a7) = (0,1,1,1,0,1,1,0) (see Fig. 2 in [3],
where all above notation is clarified).

3. Invariances of the universal CA map

Since each site on the ring satisfies Eq. (5), the whole set of
equations is globally invariant upon translation modulo Ns . Eq. (5)
is also invariant under reordering of the integers in [0, p − 1]
(global complementation), reflection and shift (Galilean invariance)
as discussed in the following. These invariances allow to classify all
CA rules into equivalence classes reducing enormously the number
of rules to a few representative ones. They are introduced in the
following as theorems.

Theorem 1 (Invariance under global complementation). The universal
CA map, Eq. (5) remains invariant after the following set of transforma-
tions

xi+k
t → p − 1 − xi+k

t (6)

xi
t+1 → p − 1 − xi

t+1 (7)

p − 1 − apl+r+1−1−n → an (8)

Proof. Introduce the two former transformations, Eqs. (6) and (7),
in Eq. (5)

p − 1 − xi
t+1

=
pl+r+1−1∑

n=0

anB
(

n −
l∑

k=−r

pk+r(p − 1 − xi+k
t

)
,

1

2

)

=
pl+r+1−1∑

n=0

anB
(

n − (
pl+r+1 − 1

) +
l∑

k=−r

pk+r xi+k
t ,

1

2

)
(9)

Now, by solving for xi
t+1, by defining n′ = pl+r+1 − 1 − n, by in-

troducing the latter transformation, Eq. (8), and by using that
B(x, ε) = B(−x, ε) we obtain

xi
t+1 =

pl+r+1−1∑
n′=0

[p − 1 − apl+r+1−1−n′ ]B
(

−n′ +
l∑

k=−r

pk+r xi+k
t ,

1

2

)

=
pl+r+1−1∑

n′=0

an′B
(

n′ −
l∑

k=−r

pk+r xi+k
t ,

1

2

)

which proves the theorem. �
When one considers specific rules, described by the universal

maps above, they usually break this symmetry as shown in the
following example.

Example. Rule 04531
3 (see Fig. 1, top left) with three symbols ‘0’,

‘1’ and ‘2’ has range ρ = r + l + 1 = 2 (and hence pρ = 32 = 9) and
coefficients (a0,a1, . . . ,a8) = (0,1,2,1,2,1,0,0,0) (i.e. the num-
ber 453 in base 3 in inverse order) in Eq. (5). The neighborhood
contains only the cell that is updated in the next time step and
the first neighboring site to the right. The rule that operates with
the symbols 2, 1, 0 in the same way as rule 04531

3 does with sym-
bols 0, 1, 2, respectively, can now be derived. Each coefficient bn

(n ∈ [0,8]) in such rule is obtained from Eq. (8) as bn = p − 1 −
apl+r+1−1−n , so that (b0,b1, . . . ,b8) = (2 − a8,2 − a7, . . . ,2 − a0) =
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Fig. 1. Spatiotemporal evolution of rules 04531
3, 0156051

3, 138370
3 and 1170690

3. Rules
on the top are related to the ones at the bottom through global complementation.
Rules on the left are related to the ones on the right through reflection. (For inter-
pretation of the references to color in this figure, the reader is referred to the web
version of this Letter.)

(2,2,2,1,0,1,0,1,2), which corresponds to rule 0156051
3 (see

Fig. 1, bottom left). The colors corresponding to symbols with val-
ues 0 (blue) and 2 (red) are exchanged in both figures, while sites
with value 1 (green) remain unchanged. Rules 04531

3 and 0156051
3

belong then to the same equivalence class under global comple-
mentation.

Theorem 2 (Invariance under reflection). The universal CA map, Eq. (5)
remains invariant after the following set of transformations

pk+r xi+k
t → pl−kxi+k

t , k ∈ [−r, l] (10)

n ≡ pk+r xi+k → n′ ≡ pl−kxi+k, k ∈ [−r, l] (11)

an−∑l
k=−r(pk+r−pl−k)xi+k → an (12)

Proof. This theorem can be directly proved by making the cor-
responding transformations in Eq. (5). Introduce the two former
transformations, Eqs. (10) and (11), in Eq. (5)

xi
t+1 =

pl+r+1−1∑
n′=0

an′B
(

n′ −
l∑

k=−r

pl−kxi+k
t ,

1

2

)

=
pl+r+1−1∑

n=0

an−∑l
k=−r(pk+r−pl−k)xi+k

× B
(

l∑
k=−r

pl−k(xi+k − xi+k
t

)
,

1

2

)

whence, by using that

B
(

l∑
pl−k(xi+k − xi+k

t

)
,

1

2

)
= B

(
l∑

pk+r(xi+k − xi+k
t

)
,

1

2

)

k=−r k=−r
and introducing now Eq. (12), we obtain

xi
t+1 =

pl+r+1−1∑
n=0

an−∑l
k=−r(pk+r−pl−k)xi+kB

×
(

l∑
k=−r

pk+r(xi+k − xi+k
t

)
,

1

2

)

=
pl+r+1−1∑

n=0

anB
(

n −
l∑

k=−r

pl−kxi+k
t ,

1

2

)

which is the result that we wanted to prove. �
Invariance under reflection and under change of colors can be

followed after the other in either direction since both commute.
In Fig. 1 it is shown how rules 04531

3 and 0156051
3 are related

through reflection to rules 138370
3 and 1170690

3 respectively.

Example. The above theorems can be cursorily checked with the
specific case of Wolfram 11101

2 rule for which pl+r+1 − 1 = 7,
(a0,a1,a2,a3,a4,a5,a6,a7) = (0,1,1,1,0,1,1,0). Therefore, global
complementation (from Theorem 1) gives (b0,b1,b2,b3,b4,b5,

b6,b7) = (1−a7,1−a6,1−a5,1−a4,1−a3,1−a2,1−a1,1 − a0) =
(1,0,0,1,0,0,0,1), which corresponds to rule 11371

2. Under re-
flection one obtains, from Theorem 2 (b0,b1,b2,b3,b4,b5,b6,

b7) = (a0,a4,a2,a6,a1,a5,a3,a7) = (0,0,1,1,1,1,1,0) which cor-
responds to rule 11241

2. Finally, global complementation after re-
flection gives: (b0,b1,b2,b3,b4,b5,b6,b7) = (1−a7,1 − a3,1 − a5,

1 − a1,1 − a6,1 − a2,1 − a4,1 − a0) = (1,0,0,0,0,0,1,1) which
corresponds to rule 11931

2.

Remark. When applied to the specific case of Wolfram’s 256
rules 1 R1

2 global complementation and reflection symmetries, as
described by Theorems 1 and 2, allow the number of indepen-
dent rules under study to be reduced to just 88. This result was
obtained by means of other methods [1,4,10]. As shown after the
following two theorems, however, there are further symmetries that
allow this number to be further reduced to just 85.

Theorem 3 (Invariance under shift – Galilean invariance). The universal
CA map, Eq. (5) remains invariant after the following set of transforma-
tions

l → l ∓ 1 (13)

r → r ± 1 (14)

xi
t+1 → xi∓1

t+1 (15)

Proof. By making the transformations implied by Eqs. (13) to (15)
in Eq. (5)

xi∓1
t+1 =

pl+r+1−1∑
n=0

anB
(

n −
l∓1∑

k′=−r∓1

pk′+r±1xi+k′
t ,

1

2

)

=
pl+r+1−1∑

n=0

anB
(

n −
l∑

k=−r

pk+r xi∓1+k
t ,

1

2

)
(16)

where the change of the dummy variable k′ → k ∓ 1 has been
made. The latter expression is, of course, equivalent to

xi∓1
t+1 = l Rr

p

(
xi∓1

t

)
(17)

Making the change i → i ± 1 (since global translation invariance
holds) the invariance under shift is proved. �



V. García-Morales / Physics Letters A 377 (2013) 276–285 279
Fig. 2. Spatiotemporal evolution of rules 11101
2, 21100

2 and 01102
2. All three rules are

related by a shift transformation and belong to the same equivalence class under
shift.

The invariance under shift of the universal CA map implies the
existence of classes of rules related by a breaking of this symme-
try which contain, at most, ρ elements. The rules on these classes
share the same code R but the neighborhoods contain different
numbers of sites to the left and to the right (although the range ρ
is the same). These rules satisfy the following identities

l Rr
p

(
xi

t

) = l−1 Rr+1
p

(
xi−1

t

)
(18)

l Rr
p

(
xi

t

) = l+1 Rr−1
p

(
xi+1

t

)
(19)

The rules are equivalent in a sense that, when known the dy-
namical behavior of one of them, the behavior of the others is
predictable in terms of the latter just by applying a global spa-
tial shift of the dynamical state on the ring.

Example. Rules 11101
2, 21100

2 and 01102
2 (see Fig. 2) are related

by a shift transformation and belong to the same equivalence class
under shift: once known the dynamical behavior of rule 11101

2, the
ones of rules 21100

2 and 01102
2 are equivalent by globally shifting

the dynamical state on the ring one site to the right or to the left,
respectively.

Rules related by shifting transformations correspond to the
same dynamical behaviors as seen by observers moving with dif-
ferent (constant) velocities to either side of the ring. For a given
rule l Rr

p , the shifted rules l±v Rr∓v
p correspond to the same dynam-

ics as followed by an observer moving on the ring at a constant
velocity ±v (where the positive sign corresponds to motion to the
left). This is the principle of Galilean invariance for cellular au-
tomata rules.

In Table 1 the above theorems are applied to rules with range
ρ = l + r + 1 = 2 and p = 2. The total number of rules are 32
(i.e. 16 rules 0 R1

2 and 16 rules 1 R0
2). These rules can all be solved

for the orbit by means of the induction method [3]. By using the
symmetry transformations above, only 7 rules are indeed found
to be independent: the dynamical behavior of the remaining 25
rules can be automatically known in terms of these seven rules,
that characterize the seven equivalence classes under global com-
plementation, reflection and shift.
The following theorem can be used to understand how a given
CA rule is constructed in terms of CA rules of lower range and,
as it is shown elsewhere [11], it is crucial to understand the ori-
gin of complexity in CA behavior. The theorem is referred to in
the following as “constructor’s theorem” and leads to uncover the
invariance under construction of CA rules (and the concept of
equivalence classes under construction), which is presented as a
corollary.

Theorem 4 (Constructor’s theorem). Let us consider a set of p different

CA rules l Am
r
p with m ∈ [0, p − 1] and code Am = ∑pl+r+1−1

n=0 a(m)
n pn,

each obeying Eq. (5), i.e.

xi
t+1 = l Am

r
p

(
xi

t

) =
pr+l+1−1∑

n=0

a(m)
n B

(
n −

l∑
k=−r

pk+r xi+k
t ,

1

2

)
(20)

Then, a rule of higher range l+1 Rr
p can be “constructed from the left” as

l+1 Rr
p

(
xi

t

) =
p−1∑
k=0

B
(

xi+l+1
t − m,

1

2

)
l Am

r
p

(
xi

t

)
(21)

with R = ∑pl+r+1−1
n=0

∑p−1
m=0 a(m)

n pn+mpl+r+1
. A rule of higher range l Rr+1

p
can then be also “constructed from the right” as

l Rr+1
p

(
xi

t

) =
p−1∑
k=0

B
(

xi−r−1
t − m,

1

2

)
l Am

r
p

(
xi

t

)
(22)

with R = ∑pl+r+1−1
n=0

∑p−1
m=0 a(m)

n pnp+m.

Proof. By using Eqs. (20) and (21)

xi
t+1 =

pl+r+1−1∑
n=0

p−1∑
m=0

a(m)
n B

(
xi+l+1

t − m,
1

2

)

× B
(

n −
l∑

k=−r

pk+r xi+k
t ,

1

2

)

=
pl+r+1−1∑

n=0

p−1∑
xi+l+1=0

cn,xi+l+1B
(

xi+l+1
t − xi+l+1,

1

2

)

× B
(

n −
l∑

k=−r

pk+r xi+k
t ,

1

2

)

=
pl+r+1−1∑

n=0

p−1∑
xi+l+1=0

cn,xi+l+1B
(

pl+r+1(xi+l+1
t − xi+l+1), 1

2

)

× B
(

n −
l∑

k=−r

pk+r xi+k
t ,

1

2

)

where B(ax, ε) = B(x, ε) (for 0 < ε � 1/2 and a > 0 and x � 0
integers) has been used, and

cn,xi+l+1 ≡ a(m)
n B

(
xi+l+1 − m,

1

2

)
=

{
0, m �= xi+l+1

a(m)
n , m = xi+l+1

has been introduced. By using now that B(x, ε)B(y, ε) =
B(ax + by, ε) (for any natural numbers a, b such that the non-
negative integers x and y satisfy |ax| �= |by| when either x or y is
non-zero and 0 < ε � 1/2)

xi
t+1 =

pl+r+2−1∑
′

cn′B
(

n′ −
l+1∑

pk+r xi+k
t ,

1

2

)
(23)
n =0 k=−r
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Table 1
The 7 independent rules from the total of 32 rules with p = 2 and range ρ = 2 (0 R1

2 and 1 R0
2) and their class-equivalent rules upon global complementation (GC), reflection

(R), global complementation following reflection (GCR), shift (S), shift following global complementation (SGC), shift following reflection (SR) and shift following global
complementation following reflection (SGCR).

Rule (a0,a1,a2,a3) GC R GCR S SGC SR SGCR
001

2 (0,0,0,0) 0151
2

100
2

1150
2

100
2

1150
2

001
2

0151
2

011
2 (1,0,0,0) 071

2
110

2
170

2
110

2
170

2
011

2
071

2
021

2 (0,1,0,0) 0111
2

140
2

1130
2

120
2

1110
2

041
2

0131
2

031
2 (1,1,0,0) 031

2
150

2
150

2
130

2
130

2
051

2
051

2
061

2 (0,1,1,0) 091
2

160
2

190
2

160
2

190
2

061
2

091
2

081
2 (0,0,0,1) 0141

2
180

2
1140

2
180

2
1140

2
081

2
0141

2
0101

2 (0,1,0,1) 0101
2

1120
2

1120
2

1100
2

1100
2

0121
2

0121
2

where n′ = ∑l+1
k=−r pk+r xi+k = n+ pl+r+1xi+l+1 and cn′ = a(m)

n′−mpl+r+1 .

The new rule, Eq. (23) has then the code R = ∑pl+r+2−1
n′=0 cn′ pn′ =∑pl+r+1−1

n=0

∑p−1
m=0 a(m)

n pn+mpl+r+1
.

The proof of the statement on the construction from the right
proceeds in a similar manner. By using Eqs. (20) and (22)

xi
t+1 =

pl+r+1−1∑
n=0

p−1∑
m=0

a(m)
n B

(
xi−r−1

t − m,
1

2

)

× B
(

n −
l∑

k=−r

pk+r xi+k
t ,

1

2

)

=
pl+r+1−1∑

n=0

p−1∑
xi−r−1=0

cn,xi−r−1B
(

xi−r−1
t − xi−r−1,

1

2

)

×B
(

n −
l∑

k=−r

pk+r xi+k
t ,

1

2

)

=
pl+r+1−1∑

n=0

p−1∑
xi−r−1=0

cn,xi−r−1B
(

xi−r−1
t − xi−r−1,

1

2

)

×B
(

np −
l∑

k=−r

pk+r+1xi+k
t ,

1

2

)

where B(ax, ε) = B(x, ε) (for 0 < ε � 1/2 and a > 0 and x � 0
integers) has been again used, and

cn,xi−r−1 ≡ a(m)
n B

(
xi−r−1 − m,

1

2

)
=

{
0, m �= xi−r−1

a(m)
n , m = xi−r−1

has been introduced. By using now again that B(x, ε)B(y, ε) =
B(ax + by, ε) (for any natural numbers a, b such that the non-
negative integers x and y satisfy |ax| �= |by| when either x or y is
non-zero and 0 < ε � 1/2)

xi
t+1 =

pl+r+2−1∑
n′=0

cn′B
(

n′ −
l∑

k=−r−1

pk+r+1xi+k
t ,

1

2

)
(24)

where n′ = ∑l
k=−r−1 pk+r+1xi+k = np + xi−r−1 and cn′ = a(m)

(n′−m)/p .

The new rule, Eq. (24) has then the code R = ∑pl+r+2−1
n′=0 cn′ pn′ =∑pl+r+1−1

n=0

∑p−1
m=0 a(m)

n pnp+m and the result is proved. �
Example. Theorem 4 can be straightforwardly applied to any
rule. For example Wolfram rule 1301

2 is known to be a ran-
dom number generator. It has vector (a0,a1,a2,a3,a4,a5,a6,a7) =
(0,1,1,1,1,0,0,0). To obtain the construction from the left, sepa-
rate (0,1,1,1,1,0,0,0) into p = 2 consecutive blocks. Rules with
vectors (0,1,1,1) and (1,0,0,0) are obtained, which correspond,
respectively, to rules 0141

2 and 011
2. To construct the same rule

from the right, separate the odd entries and the even entries of
(0,1,1,1,1,0,0,0). Rules (0,1,1,0) and (1,1,0,0) which corre-
spond to rules 160

2 and 130
2 are, hence, obtained.

Corollary (Construction invariance). Let us consider a CA rule l Ar
p with

code A = ∑pl+r+1−1
n=0 an pn. Then rules l+1 Br

p and lCr+1
p with codes B =∑pl+r+1−1

n=0

∑p−1
m=0 an pn+mpl+r+1

and C = ∑pl+r+1−1
n=0

∑p−1
m=0 an pnp+m, re-

spectively, have the same dynamical behavior and are called equivalent
under construction.

Proof. Rules l+1 Br
p and lCr+1

p are constructed from the left and

from the right using rule l Ar
p as the only constructing rule (i.e. ∀m)

in the constructor theorem. This means that the new site added
to the left (or to the right) is irrelevant and, independently of
its value, the output is entirely governed by the rule of lower
range l Ar

p . This can be straightforwardly seen from Eq. (21) (and,
analogously, for the construction from the right) since,

l+1 Br
p

(
xi

t

) =
p−1∑
m=0

B
(

xi+l+1
t − m,

1

2

)
l Ar

p

(
xi

t

)

= l Ar
p

(
xi

t

) p−1∑
m=0

B
(

xi+l+1
t − m,

1

2

)
= l Ar

p

(
xi

t

)

since xi+l+1
t is equal to one integer within [0, p − 1] and the

sum over m checks for all integers in this interval and, hence,∑p−1
m=0 B(xi+l+1

t − m, 1
2 ) = 1. Proving equivalence under construc-

tion of rule lCr+1
p is similar. �

Example.

• All rules l0r
p are equivalent under construction to rule 000

p .

• All rules l Ar
p with A = ppl+r+1 − 1 are equivalent under con-

struction to rule 0 B0
p , with B = pp − 1.

• Wolfram’s rules 11021
2 and 1601

2 are equivalent under con-
struction to rule 061

2. �
Since constructing equivalent rules of higher range is now

straightforward from the above corollary specially from the left
(one concatenates the vector of the rule after itself p − 1 times
to form a vector p times larger in size as the original one), we in-
troduce the following definition for future reference.

Definition 1 (Copying rules). The rule l Ar
p is said to be copied to

a higher range if it is used as the only rule in constructing l+1 Rr

2
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Table 2
The 85 independent rules out of the 256 Wolfram’s rules 1 R1

2.

101
2

111
2

121
2

131
2

141
2

151
2

161
2

171
2

181
2

191
2

1101
2

1111
2

1121
2

1131
2

1141
2

1151
2

1181
2

1191
2

1221
2

1231
2

1241
2

1251
2

1261
2

1271
2

1281
2

1291
2

1301
2

1321
2

1331
2

1351
2

1361
2

1371
2

1381
2

1401
2

1411
2

1421
2

1431
2

1441
2

1451
2

1461
2

1501
2

1541
2

1561
2

1571
2

1581
2

1601
2

1621
2

1721
2

1731
2

1741
2

1761
2

1771
2

1781
2

1901
2

1941
2

11041
2

11051
2

11061
2

11081
2

11101
2

11221
2

11261
2

11281
2

11301
2

11321
2

11341
2

11361
2

11381
2

11401
2

11421
2

11461
2

11501
2

11521
2

11541
2

11561
2

11601
2

11621
2

11641
2

11681
2

11701
2

11721
2

11781
2

11841
2

12001
2

12321
2

from the left, i.e. if l(Am)r
p = l Ar

2 ∀m in Eq. (21) to produce a rule
equivalent under construction.

Example. To copy rule 061
2 to a higher range ρ = 3 its vector

(a0,a1,a2,a3) = (0,1,1,0) is concatenated to itself, adding the
same sequence of zeroes and ones after it, i.e. (0,1,1,0,0,1,1,0).
The latter corresponds to rule 11021

2 which is the copy of 061
2 to

range ρ = 3. This is consistent with the construction from the left
of rule 11021

2 as established in Theorem 4. Both rules belong to
the same class under construction and display identical dynamical
behavior.

Example. To copy rule 0250
3 to a higher range ρ = 2 its vec-

tor (a0,a1,a2) = (1,2,2) is concatenated after itself two times
(since p = 3), i.e. (1,2,2,1,2,2,1,2,2). The latter corresponds to
rule 1189250

3 which is, therefore, equivalent under construction to
rule 0250

3.

Remark. When Wolfram’s rules 1 R1
2 are considered, the shift trans-

formation combined with invariance under construction allows the
88 equivalence classes (under global complementation and re-
flection) to be reduced to only 85. Rules 1341

2, 1511
2 and 11701

2
are equivalent under construction from the left to rules 021

2,
031

2 and 0101
2, which are related through shift to rules 120

2, 130
2

and 1100
2. The latter allow, in turn, to construct the equivalent

rules 1121
2, 1151

2 and 12041
2 from the right. This means that rules

1121
2, 1151

2 and 12041
2 are related through shift to rules 1341

2, 1511
2

and 11701
2. This means that, out of these 6 rules, only 3 are inde-

pendent, and these can be chosen to be 1121
2, 1151

2 and 11701
2. Ta-

ble 2 lists all 85 independent Wolfram’ rules obtained from global
complementation, reflection, shift and all possible combinations of
these operations.

4. Modular algebra, time-reversal symmetry and symmetry upon
addition modulo p

Modular algebra can be formulated within the B-calculus intro-
duced in [3] and briefly sketched in Section 2. Such algebra proves
very useful to gain insight in CA dynamics. It leads to the un-
covering of new symmetries, under addition modulo p and under
time-reversal, whose crucial interest lies in the relationship that
they suggest between local and global behavior on one hand and
short-time and long-time behavior on the other. In Definition 2
the modular sum (p-sum) and subtraction (p-subtraction) are in-
troduced and a series of theorems exposing the above mentioned
symmetries are proved.

Definition 2 (Modular sum and subtraction). Within B-calculus, the
following operations for integer numbers a and b ∈ [0, p − 1] can
be defined:
(i) p-sum: a +p b = ∑1
q=0

∑p−1
r=0 rB(a + b − (qp + r), 1

2 );

(ii) p-subtraction: a −p b = ∑1
q=0

∑p−1
r=0 rB(a − b − (r − qp), 1

2 ).

Theorem 5. The following relations hold:

(i) commutativity: a +p b = b +p a;
(ii) if a +p b = c then a = c −p b and b = c −p a also hold;

(iii) let Rp(
∑n−1

i=0 ai) ≡ a0 +p · · ·+p an−1 (modular sum of n integers ∈
[0, p −1]) then Rp(

∑n−1
i=0 ai) = ∑n−1

q=0
∑p−1

r=0 rB(
∑n−1

i=0 ai − (qp +
r), 1

2 );
(iv) associativity: a +p (b +p c) = (a +p b) +p c.

Proof. (i) can be proved easily since

a +p b =
1∑

q=0

p−1∑
r=0

rB
(

a + b − (qp + r),
1

2

)

=
1∑

q=0

p−1∑
r=0

rB
(

b + a − (qp + r),
1

2

)
= b +p a

The proof of (ii) proceeds by observing that

c = a +p b =
1∑

q=0

p−1∑
r=0

rB
(

a + b − (qp + r),
1

2

)

=
1∑

q=0

p−1∑
r=0

(a + b − qp)B
(

a + b − (qp + r),
1

2

)

= a + b −
1∑

q=0

p−1∑
r=0

qpB
(

a + b − (qp + r),
1

2

)

where to get the next-to-last equality it has been used that
B(a + b − (qp + r), 1

2 ) = 1 for the only values of q and r which sat-
isfy a + b = r + pq and zero otherwise. Since q and r always exist
and are unique, the fact that

∑1
q=0

∑p−1
r=0 B(a +b − (qp + r), 1

2 ) = 1
has been also used to get the last equality. Then

a = c − b +
1∑

q=0

p−1∑
r=0

qpB
(

a + b − (qp + r),
1

2

)

=
1∑

q=0

p−1∑
r=0

(c − b + qp)B
(

a + b − (qp + r),
1

2

)

=
1∑

q=0

p−1∑
r′=0

r′B
(

r′ − c + b − qp,
1

2

)

=
1∑ p−1∑

′
r′B

(
c − b − (

r′ − qp
)
,

1

2

)
= c −p b
q=0 r =0
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where the dummy index r′ ≡ c − b + qp = a + c − r has been intro-
duced. Similarly, one has b = c −p a.

Induction can be now used to prove (iii). The result is valid
for n = 2 since, then, it reduces to the definition of the p-sum in
Definition 2(i). Let the result be assumed valid for n integers. For
n + 1 integers ∈ [0, p − 1] we, then, have

Rp

(
n∑

i=0

ai

)
= Rp

(
n−1∑
i=0

ai

)
+p an

=
1∑

q̃=0

p−1∑
r̃=0

r̃B
(

an +
n−1∑
q=0

p−1∑
r=0

r

× B
(

n−1∑
i=0

ai − (qp + r),
1

2

)
− (q̃p + r̃),

1

2

)

=
1∑

q̃=0

p−1∑
r̃=0

r̃B
(

−r̃ +
n∑

i=0

ai − p
n−1∑
q=0

p−1∑
r=0

(q + q̃)

× B
(

n−1∑
i=0

ai − (qp + r),
1

2

)
,

1

2

)

=
n∑

q′=0

p−1∑
r′=0

r′B
(

n∑
i=0

ai − (
q′p + r′), 1

2

)

where we have defined r′ ≡ r̃ and

q′ ≡
n−1∑
q=0

p−1∑
r=0

(q + q̃)B
(

n−1∑
i=0

ai − (qp + r),
1

2

)

which is an integer ∈ [0,n], since q̃ can be either 0 or 1. The above
proves (iii). Then (iv) is a consequence of (iii) and the associativity
of the conventional sum of integers. �

We are now able to prove the following theorem which, in fact,
is inspired in previous work by Fredkin on reversible logic (see [6]
and references therein).

Theorem 6 (Time-reversal invariance). For any CA rule l Rr
p(xi

t) de-

scribed by Eq. (5), the rule l Rr
p(xi

t) −p xi
t−1 and denoted rev[l Rr

p(xi
t)] is

time-reversal invariant, i.e. invariant upon the transformation t + 1 ↔
t − 1.

Proof. We have

xi
t+1 = l Rr

p

(
xi

t

) −p xi
t−1 (25)

And, by introducing the time-reversal transformation t + 1 ↔ t − 1

xi
t−1 = l Rr

p

(
xi

t

) −p xi
t+1

but now, by using results (i) and (ii) from Theorem 5 we obtain

xi
t−1 +p xi

t+1 =l Rr
p

(
xi

t

) → xi
t+1 = l Rr

p

(
xi

t

) −p xi
t−1

which proves the invariance under time-reversal. �
By using Eqs. (5) and (ii) from Definition 2, Eq. (25) can be

alternatively written as

xi
t+1 =

pr+l+1−1∑ (
an −p xi

t−1

)
B

(
n −

l∑
pk+r xi+k

t ,
1

2

)
(26)
n=0 k=−r
=
pr+l+1−1∑

n=0

1∑
q=0

p−1∑
r=0

rB
(

an − xi
t−1 − (r − qp),

1

2

)

× B
(

n −
l∑

k=−r

pk+r xi+k
t ,

1

2

)
(27)

For p = 2, Eq. (26) can be written as

xi
t+1 =

2r+l+1−1∑
n=0

∣∣an − xi
t−1

∣∣B
(

n −
l∑

k=−r

2k+r xi+k
t ,

1

2

)
(28)

A correction is here to be made: Eq. (38) in [3] is only valid for
p = 2 as it was written there. In the general case, it is Eq. (26)
(or, alternatively, Eq. (27)) the correct universal map for any re-
versible automata with arbitrary number of symbols p. It is to
be noted that two initial conditions at times t = 0 and t = 1 are
needed to evolve the reversible CA rule. In Fig. 3 the spatiotem-
poral evolution of the reversible rule rev[12151

3] in the forward
direction in time (left), obtained from Eq. (26) and starting from
a single seed with value 1 at t = 0 and t = 1, is shown. The back-
ward direction in time (right) is followed by introducing the last
and the next-to-the-last states reached by the CA in the forward
direction, at t = 0 and t = 1 respectively. The reversibility of the
CA rule is clear, since the original state is again reached following
exactly the same chain of dynamical states as in the forward di-
rection but now to the past: for any forward trajectory there exists
one and only one backward trajectory as well.

Remark. Theorem 6 is quite general for all cellular automata
first-order-in-time and the rule l Rr

p(xi
t) in Eq. (25) can indeed be

two- or three-dimensional and of arbitrary topology, by using the
universal maps for higher-dimensional CAs given in [3] (note that
Eq. (26) is obtained for 1D CAs).

For totalistic cellular automata, a subset of the total possibilities
described by Eq. (5), the following map was also derived [3]

xi
t+1 =

ρ(p−1)∑
s=0

σsB
(

s −
l∑

k=−r

xi+k
t ,

1

2

)
(29)

where ρ = l+r +1 and again each σs is an integer value between 0
and p − 1 like the inputs and the output of the rule, which is now
labelled as l RT r

p , with R = ∑ρ(p−1)

s=0 σs ps .
Eq. (29) is a particular case of Eq. (5) since the output at

a later time depends only on the sum of the values over the
sites in the neighborhood and not on their relative position (there-
fore, such totalistic rules are invariant under reflection). Starting
from a totalistic rule with vector (σ0, σ1, . . . , σρ(p−1)) described
by Eq. (29) the vector specifying the normal rule as described by
Eq. (5) (a0,a1, . . . ,apl+r+1−1) can be calculated from the following
system of equations (for all possible integer values of k ∈ [−r, l]
and xi+k ∈ [0, p − 1]) [3]

n =
l∑

k=−r

pk+r xi+k, s =
l∑

k=−r

xi+k, an = σs (30)

As discussed above, R specifies in Eq. (5) the vector (a0,a1, . . . ,

apl+r+1−1), since it provides the decimal representation of the base
p number apl+r+1−1 . . .a1a0. However, in the case of totalistic rules,
the number R specifies the vector (σ0, σ1, . . . , σρ(p−1)), since it
coincides with the decimal representation of the base p number
σρ(p−1) . . . σ1σ0 [3].
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Fig. 3. Spatiotemporal evolution of the reversible rule rev[12151
3] in the forward (left) and the backward (right) directions in time, obtained from Eq. (26).
Theorem 7 (Invariance upon addition modulo p). The totalistic univer-
sal CA map, Eq. (29) remains invariant after the following set of transfor-
mations

l∑
k=−r

xi+k
t →

l∑
k=−r

xi+k
t + mp (31)

s − mp → s′ (32)

σs′+mp → σs′ (33)

where m is any integer ∈ [0,ρ(p − 1)].

Proof. Introducing the three transformations, Eqs. (31) to (33),
each one after the other in Eq. (29) we have

xi
t+1 =

ρ(p−1)+mp∑
s=mp

σsB
(

s −
l∑

k=−r

xi+k
t − mp,

1

2

)

=
ρ(p−1)∑

s′=0

σs′+mpB
(

s′ −
l∑

k=−r

xi+k
t ,

1

2

)

=
ρ(p−1)∑

s′=0

σs′B
(

s′ −
l∑

k=−r

xi+k
t ,

1

2

)

which proves the result. �
Most rules break this symmetry. The only exceptions are, of

course, the ones that satisfy σs = σs+mp , ∀m so that s + mp ∈
[0,ρ(p − 1)]. And specially interesting within these are those
which put every symbol [0, p − 1] into play during the time evo-
lution. Because of their importance, and for reference, these rules
invariant upon addition modulo p can be called Pascal rules: these
rules, as observed below, reproduce after a bijective application all
Pascal simplices modulo p. When ρ = 2, the Pascal simplex co-
incides with the Pascal triangle. When ρ > 2 the Pascal simplex
is related to the multinomial expansion modulo p. Pascal rules
are a subset of the so-called additive cellular automata, for which
an algebraic theory was formulated [12].

Definition 3 (Pascal rules). A totalistic rule l RT r
p is called Pascal rule

if it satisfies the following property

σs+mp = σs = s (34)

where m is an integer so that s + mp ∈ [0,ρ(p − 1)]. These rules
perform the addition modulo p of all site values contained in the
neighborhood.

Theorem 8 (Pascal rules perform the addition modulo p). A Pascal rule
l RT r

p performs the addition modulo p of all site values contained in the
neighborhood, i.e. it has the form

xi
t+1 =

ρ∑
m=0

p−1∑
s=0

sB
(

s + mp −
l∑

k=−r

xi+k
t ,

1

2

)

= Rp

(
l∑

k=−r

xi+k
t

)
(35)

where Rp(x) is the remainder upon division of an integer number x by p.
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Fig. 4. Spatiotemporal evolution of some Pascal rules with totalistic codes indicated in the figure. The number of different colors in the figures coincides with p. Regular,
nested structures arise in every case.
Proof. The first of the equalities in Eq. (35) is obtained from the
totalistic universal map Eq. (29) by using the definition of the Pas-
cal rule above,

xi
t+1 =

ρ(p−1)∑
s=0

σsB
(

s −
l∑

k=−r

xi+k
t ,

1

2

)

=
ρ(p−1)∑
s+mp=0

σs+mpB
(

s + mp −
l∑

k=−r

xi+k
t ,

1

2

)

=
ρ∑

m=0

p−1∑
s=0

sB
(

s + mp −
l∑

k=−r

xi+k
t ,

1

2

)
(36)

The second equality is then proved since it coincides with re-
sult (iii) of Theorem 5, with ρ = n − 1. �

The structure of these rules is pretty simple. They have vectors
(σ0, . . . , σρp) with the structure (S, S, S ′), where S is a chain of
integers 0,1,2, . . . , (p − 1) repeated until the ρp positions char-
acterizing the rule are filled. S ′ is the chain S truncated when
position ρ(p − 1) is reached.
Examples.

• 02T 1
2 with (σ0, σ1, σ2) = (0,1,0), i.e. xi

t+1 =R2(
∑0

k=−1 xi+k
t ).

• 110T 1
2 with (σ0, σ1, σ2, σ3) = (0,1,0,1), i.e. xi

t+1 =
R2(

∑1
k=−1 xi+k

t ).
• 110T 2

2 with (σ0, σ1, σ2, σ3, σ4) = (0,1,0,1,0), i.e. xi
t+1 =

R2(
∑2

k=−1 xi+k
t ).

• 0102T 1
3 with (σ0, σ1, σ2, σ3, σ4) = (0,1,2,0,1), i.e. xi

t+1 =
R3(

∑0
k=−1 xi+k

t ).
• 1588T 1

3 with (σ0, σ1, σ2, σ3, σ4, σ5, σ6) = (0,1,2,0,1,2,0), i.e.

xi
t+1 =R3(

∑1
k=−1 xi+k

t ).

• 01346680T 1
5 with (σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8) = (0,1,2,

3,4,0,1,2,3), i.e. xi
t+1 =R5(

∑0
k=−1 xi+k

t ).

• 1546268555T 1
5 with (σ0, σ1, . . . , σ11, σ12) = (0,1,2,3,4,0,1,

2,3,4,0,1,2), i.e. xi
t+1 =R5(

∑1
k=−1 xi+k

t ).

• 0275781750T 1
6 with (σ0, σ1, . . . , σ9, σ10) = (0,1,2,3,4,5,0,1,

2,3,4), i.e. xi
t+1 =R6(

∑0
k=−1 xi+k

t ).

• 078050441406T 1
7 with (σ0, σ1, . . . , σ11, σ12) = (0,1,2,3,4,5,

6,0,1,2,3,4,5), i.e. xi
t+1 =R7(

∑0
k=−1 xi+k

t ).

The spatiotemporal evolution of all above Pascal rules is shown
in Fig. 4. In Fig. 5 a detail of the first time steps of the evolution of
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Fig. 5. Detail of the former stages of the spatiotemporal evolution from a single seed
of the Pascal rule with totalistic code 01346680T 1

5. The Pascal structure modulo 5
is clearly recognized. The ‘1’ colored red at the bottom of the figure corresponds to
the value 6 in the Pascal triangle, which happens to be equal to 1 modulo 5. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this Letter.)

rule 01346680T 1
5 is shown making apparent how it, indeed, calcu-

lates the Pascal triangle modulo 5.

5. Conclusions

In this Letter, the universal CA map recently derived [3] has
been shown to be invariant after certain transformations that allow
to classify CA rules into different equivalent classes. Some specific
rules are also invariant upon these transformations and are, there-
fore, symmetrical upon them. Some others break symmetries, but
since the universal map is invariant, the existence of equivalence
classes with a number of members (i.e. cardinal) higher than 1
then follows. Besides the well-known global complementation and
reflection, this Letter has uncovered important new symmetries in
CA behavior: shift/Galilean invariance and invariance under con-
struction. When applied to the Wolfram 256 elementary CA rules,
it has been shown here how the number of independent rules can
indeed be reduced to just 85. All these symmetries can be handled
in a systematic way for every conceivable CA. Within B-calculus,
it has also been shown how modular arithmetic can be formu-
lated, and the invariance under time-reversal of universal CA maps
(which depend on the previous time step through the modular
subtraction) has also been established. A new invariance (under
addition modulo p) and systematic way of constructing certain to-
talistic 1D CA rules with this symmetry, which calculate the Pascal
simplices modulo an integer number p, has then also been uncov-
ered.

Although certain symmetries of CA evolution might also be well
exposed through more traditional methods, the power and gener-
ality of the universal CA map Eq. (5) to uncover new symmetries
and establish equivalence classes of CA behavior has been made
apparent. To prove the general statements made on construction
invariance – and how equivalent rules under construction can be
found – Eq. (5) is crucial, since it directly addresses any 1D CA rule.
Theorem 4, called “constructor’s theorem” and its corollary are the
main new results of this manuscript. Together with Theorems 7
and 8 (on Pascal rules and invariance upon addition modulo p),
they can be used to establish the origin of complexity in 1D cellu-
lar automata [11]: a weak symmetry breaking of the invariance upon
addition modulo p of a Pascal rule after copying it to a higher range (see
Definition 1) yields the most complex CA rules. This will be discussed
in detail elsewhere (see also [11]).
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