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Abstract. A convenient relation between fractional Fourier transform
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tion of geometrical optics. Thus, Fresnel and fractional domains cannot
be considered as independent domains, since one is just a geometrical
image of the other, providing a physical and direct connection. © 2000
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In 1980, the fractional Fourier transform~FRT! was in-
troduced by Namias1 with applications to quantum mechan
ics. This transform remained unknown to many scient
communities until Ozaktas and Mendlovic,2,3 and
Lohmann4 introduced it into optics. From that momen
many publications have successfully applied this opera
in the area of signal processing, and have extended
concept of fractionalization to other mathematical transf
mations in optics~see Ref. 5 for an extensive review o
these operations and their applications!.

The FRT is a generalization of the ordinary Four
transform depending on a parameterp (p51 for the ordi-
nary Fourier transform! and can be interpreted as a rotati
of the original distribution in a space-frequency domain
an anglepp/2. From a physical point of view, the FR
describes the diffraction patterns of a light distributi
when it propagates through a graded-refractive-ind
~GRIN! optical fiber. From this perspective, since both FR
and Fresnel integral describe light propagation, it is cl
that they must be related.

The advantages that can be obtained from this rela
are clear: the FRT provides a compact and coherent wa
describing the scalar diffraction problem and introduce
new perspective into signal processing in domains differ
than object or Fourier domains.6,7 Moreover, unlike the
Fresnel integral, the FRT can be accurately calcula
through fast numerical algorithms.8,9 On the other hand, the
Fresnel diffraction integral provides a more intuitive d
scription. Thus, it is interesting to develop an easy conn
tion between both formulations, in order to exploit the a
vantages of both points of view.
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The relation between the fractional Fourier transfo
and the free-space propagation integral has been state
many papers through different approaches. In Ref. 10,
shown, through a formal solution of the wave equation, t
the field distribution at any distance from the object can
represented as an FRT of the input distribution corrected
a scaling function depending on the distance and an a
tional phase factor. The same conclusion can be reac
through the ABCD matrix formalism~see Refs. 11 and 12
for instance!. In those papers, it is shown that FRT an
Fresnel integrals are particular cases of a generic AB
matrix. Another approach to the problem can be found
Ref. 13, where the FRT is adapted to the expression
Fresnel diffraction in the same way that the standard F
rier transform is adapted to Fraunhofer diffraction.

The above-cited methods provide the same relation
tween the two integrals, but always from a mathemati
point of view, and thus, an optical or physical interpretati
of that relation must be givena posteriori. Here we present
a connection between the FRT and Fresnel patterns fro
new point of view. The approach is from a novel perspe
tive, closer to that of the experimentalist. In what follow
we demonstrate that FRT and Fresnel patterns are rel
through a simple imaging relation. Application of th
Gauss equation to a modified Lohmann’s Type II setup~see
Figs. 1 and 2! will determine the relation between a Fresn
distribution ~which will be considered as the object! and a
FRT distribution~which will be considered the image!. The
method here developed admits an easy physical interpr
tion: since object and image are not isolated but comp
mentary domains, it makes no sense to speak about
1427© 2000 Society of Photo-Optical Instrumentation Engineers
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cessing into Fresnel or FRT domains as separate issues
any operation in an FRT domain will have its counterpart
a Fresnel domain and vice versa.

The Fresnel pattern produced by an objectu0 at a dis-
tancez when it is illuminated by a monochromatic plan
wave whose wavelength isl can be expressed as

uz~xz!5expS i
p

lz
xz

2D E
2`

1`Fu0~x0! expS i
p

lz
x0

2D G
3expS 2 i

2p

lz
xzx0D dx0 , ~1!

where constant factors have been dropped. In this exp
sion, and in the remainder of the paper, we will use a 1
formulation. Extension to 2-D is straightforward.

The FRT of order 0,p,2 of an input functionu0(x0)
provided by a Lohmann Type II system4 ~see Fig. 1! can be
expressed as

up~xp!5expS ip

l f 1 tanf
xp

2D E
2`

`

u~x0! expS ip

l f 1 tanf
x0

2D
3expS 2

i2p

l f 1 sinf
x0xpD dx0 , ~2!

where f5pp/2, l is the illuminating-light wavelength
and f 1 is an arbitrary fixed length.

Fig. 1 Lohmann’s Type II optical setup for obtaining the FRT pat-
tern of order p52f/p of the input object u0(x0).

Fig. 2 Modified Type II system, considered as an imaging system.
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Comparing the Fresnel diffraction expression in Eq.~1!
and the FRT expression in Eq.~2!, one can notice that they
are quite similar. In fact, the only difference is that th
scaling factors affecting the exponential functions are d
ferent. In the Fresnel-integral case, these factors are
same for the outer factor and for the ones inside the in
gral. This equality allows writing the Fresnel integral as
convolution, while the FRT cannot be written in this ma
ner. Thus, converting Eq.~2! into ~1! will require, at least,
scaling of the input function, and then applying an ad
tional quadratic phase factor. As was said at the beginn
these corrections can be found just by algebraic manip
tion of the integrals or through an optical setup that p
forms such conversion.

Let us consider the Type II Lohmann system depicted
Fig. 1. Note that the second lens in front of the output pla
can be removed, and the final FRT pattern in Eq.~2! will be
modified only by a quadratic phase factor.14 This factor is
the complex conjugate of the phase factor that would
introduced by the lens. We will call this system the mod
fied Type II system; except for this well-defined quadra
phase factor, it will provide the same output as the Type
system.

In order to obtain Fresnel diffraction patterns, the mo
fied Type II system can be considered as an imaging s
tem. For this purpose, the output plane must be conside
as the image of the Fresnel pattern rendered by the lens
would be obtained without it, i.e., an FRT pattern can
considered as a geometrical image of a certain Fresnel
tern.

The connection between the FRT distribution at the o
put of the Type II system and its corresponding Fres
pattern can be made through the Gauss equation of
metrical optics:

2
1

z
1

1

z8
5

1

f
, ~3!

where z and z8 are the distances of the object~Fresnel
pattern! and the image~FRT pattern! from the lens, respec
tively ~see Fig. 2!. The focal lengthf is determined by the
Type II setup. Note that, since the input scene is attac
to a thin lens, all the distances can be referred to the ob
itself. Note also that, like every imaging system, this o
performs a magnification over the output, given byb
5z8/z. Summarizing, and bearing in mind Fig. 2, th
physical magnitudes determining this system are:

object-lens distance z5 f 1 tanf,

lens-image distance z85 f 1 sinf,
~4!

lens focal length f 5 f 1 /tan~f/2!,

magnification b5cosf,

where the object must be identified with a Fresnel patte
and the image with a quasi-FRT pattern.

Let us now consider carefully the modified FRT
imaging system depicted in Fig. 2. From Ref. 15 it can
derived that such a system provides an impulse respon
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h~xz ,xz8!5expF ip

l
S xz8

2

z8
2

xz
2

z
D G dS xz8

z8
2

xz

z D . ~5!

Taking the Fresnel pattern of the sceneuz(xz) as the input
object, the image provided by the system is given by

uz8~xz8!5uzS xz8
b DexpF i

p

lz8
xz8

2 S 12
1

b D G . ~6!

As we pointed out before,uz8(xz8) must be identified with
an FRT pattern affected by two quadratic phase factors:
coming from the absence of the second lens in the qu
FRT system, and the other coming from the impulse
sponse of the system.

Since we are interested in the Fresnel distribution, a
not in the image output of the system, it is more conveni
to write Eq.~6! in the form

uzS xz8
b D5uz8~xz8!expF ip

l f 1
S 12cosf

sinf cosf D xz8
2 G

5expF ip

l f 1

xz8
2

sinf cosf
G E

2`

`

u0~x0!

3expS ip

l f 1 tanf
x0

2DexpS 2
i2p

l f 1 sinf
x0xz8D dx0

5expS ipxz8
2 tanf

l f 1
D Fp@u0~x0!#, ~7!

which gives the final conversion formula from FRT
Fresnel patterns. As was expected, a scaled Fresnel pa
is equivalent to an FRT pattern multiplied by a correcti
quadratic phase factor.

The expression just obtained with the ‘‘geometric
method’’ coincides with the relations obtained in Refs. 1
11 through other methods. What has been presented he
an optical connection between the two patterns. It has b
proved that any FRT process can be viewed as a proce
some diffraction plane, or vice versa. Therefore this
proach may provide a new point of view when impleme
ing FRT or Fresnel-based setups, since the two concept
easily interchangeables. An application of this convers
formula can be found in Ref. 16. In that paper, several f
Fresnel calculation algorithms are presented. Comp
simulations are described there that demonstrate the fe
bility of the Fresnel-through-FRT approach.
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