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In 1980, the fractional Fourier transfor@RT) was in- The relation between the fractional Fourier transform
troduced by Namidswith applications to quantum mechan- and the free-space propagation integral has been stated in
ics. This transform remained unknown to many scientific many papers through different approaches. In Ref. 10, it is
communities until Ozaktas and Mendloc, and shown, through a formal solution of the wave equation, that
Lohmant? introduced it into optics. From that moment, the field distribution at any distance from the object can be
many publications have successfully applied this operation represented as an FRT of the input distribution corrected by
in the area of signal processing, and have extended thea scaling function depending on the distance and an addi-
concept of fractionalization to other mathematical transfor- tional phase factor. The same conclusion can be reached
mations in optics(see Ref. 5 for an extensive review of through the ABCD matrix formalisntsee Refs. 11 and 12

these operations and their applicatipns for instancé. In those papers, it is shown that FRT and
The FRT is a generalization of the ordinary Fourier Fresnel integrals are particular cases of a generic ABCD
transform depending on a paramepe(p=1 for the ordi- matrix. Another approach to the problem can be found in

nary Fourier transforinand can be interpreted as a rotation Ref. 13, where the FRT is adapted to the expression for
of the original distribution in a space-frequency domain by Fresnel diffraction in the same way that the standard Fou-
an anglepw/2. From a physical point of view, the FRT rier transform is adapted to Fraunhofer diffraction.
describes the diffraction patterns of a light distribution ~ The above-cited methods provide the same relation be-
when it propagates through a graded-refractive-index tween the two integrals, but always from a mathematical
(GRIN) optical fiber. From this perspective, since both FRT point of view, and thus, an optical or physical interpretation
and Fresnel integral describe light propagation, it is clear Of that relation must be givea posteriori Here we present
that they must be related. a connection between the FRT and Fresnel patterns from a
The advantages that can be obtained from this relation New point of view. The approach is from a novel perspec-
are clear: the FRT provides a compact and coherent way oftive, closer to that of the experlmentallst. In what follows,
describing the scalar diffraction problem and introduces a We demonstrate that FRT and Fresnel patterns are related
new perspective into signal processing in domains different through a simple imaging relation. Application of the
than object or Fourier domaifid. Moreover, unlike the ~ Gauss equation to a modified Lohmann’s Type Il setge
Fresnel integraL the FRT can be accurate]y calculated Figs. 1 and 2will determine the relation between a Fresnel
through fast numerical algorithnis.On the other hand, the  distribution (which will be considered as the objgend a
Fresnel diffraction integral provides a more intuitive de- FRT distribution(which will be considered the imageThe
scription. Thus, it is interesting to develop an easy connec- method here developed admits an easy physical interpreta-
tion between both formulations, in order to exploit the ad- tion: since object and image are not isolated but comple-
vantages of both points of view. mentary domains, it makes no sense to speak about pro-
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Fig. 1 Lohmann’s Type Il optical setup for obtaining the FRT pat-
tern of order p=2¢/x of the input object uy(Xo).

cessing into Fresnel or FRT domains as separate issues, and

any operation in an FRT domain will have its counterpart in
a Fresnel domain and vice versa.

The Fresnel pattern produced by an objegtat a dis-
tancez when it is illuminated by a monochromatic plane
wave whose wavelength is can be expressed as

U,(X,) =ex IEXZ B Uo(Xg) X IEXO

2T
X ex —|Exzxo dxg,

D

where constant factors have been dropped. In this expres-

Comparing the Fresnel diffraction expression in EL.
and the FRT expression in E(R), one can notice that they
are quite similar. In fact, the only difference is that the
scaling factors affecting the exponential functions are dif-
ferent. In the Fresnel-integral case, these factors are the
same for the outer factor and for the ones inside the inte-
gral. This equality allows writing the Fresnel integral as a
convolution, while the FRT cannot be written in this man-
ner. Thus, converting Eq2) into (1) will require, at least,
scaling of the input function, and then applying an addi-
tional quadratic phase factor. As was said at the beginning,
these corrections can be found just by algebraic manipula-
tion of the integrals or through an optical setup that per-
forms such conversion.

Let us consider the Type Il Lohmann system depicted in
Fig. 1. Note that the second lens in front of the output plane
an be removed, and the final FRT pattern in ywill be
modified only by a quadratic phase factérThis factor is
the complex conjugate of the phase factor that would be
introduced by the lens. We will call this system the modi-
fied Type Il system; except for this well-defined quadratic
phase factor, it will provide the same output as the Type Il
system.

In order to obtain Fresnel diffraction patterns, the modi-
fied Type Il system can be considered as an imaging sys-
tem. For this purpose, the output plane must be considered
as the image of the Fresnel pattern rendered by the lens that
would be obtained without it, i.e., an FRT pattern can be
considered as a geometrical image of a certain Fresnel pat-
tern.

The connection between the FRT distribution at the out-

sion, and in the remainder of the paper, we will use a 1-D put of the Type Il system and its corresponding Fresnel

formulation. Extension to 2-D is straightforward.

The FRT of order 82p<2 of an input functioruy(xg)
provided by a Lohmann Type Il systértsee Fig. 1can be
expressed as

_ im fw
up(xp)—ex )\flt—an(ﬁxp .

F{ 2
Xexp —

Nising
where ¢=pw/2, \ is the illuminating-light wavelength,
andf, is an arbitrary fixed length.

i 9
U(Xg) ex )\fltan¢xo

)

xoxp) dxg,
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Fig. 2 Modified Type Il system, considered as an imaging system.
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pattern can be made through the Gauss equation of geo-
metrical optics:

: )

wherez and z' are the distances of the obje@&resnel
pattern and the imagéFRT pattern from the lens, respec-
tively (see Fig. 2. The focal lengthf is determined by the
Type Il setup. Note that, since the input scene is attached
to a thin lens, all the distances can be referred to the object
itself. Note also that, like every imaging system, this one
performs a magnification over the output, given By
=7'/z. Summarizing, and bearing in mind Fig. 2, the
physical magnitudes determining this system are:

object-lens distance z=f;tang,

lens-image distance z'=f;sing,

4
lens focal length f=1f,/tan ¢/2),

magnification

B=cosg,

where the object must be identified with a Fresnel pattern,
and the image with a quasi-FRT pattern.

Let us now consider carefully the modified FRT-
imaging system depicted in Fig. 2. From Ref. 15 it can be
derived that such a system provides an impulse response:
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Taking the Fresnel pattern of the scangx,) as the input
object, the image provided by the system is given by

(6)
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As we pointed out beforay,:(x,/) must be identified with
an FRT pattern affected by two quadratic phase factors: one
coming from the absence of the second lens in the quasi-
FRT system, and the other coming from the impulse re-
sponse of the system.

Since we are interested in the Fresnel distribution, and
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to write Eq.(6) in the form 12
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which gives the final conversion formula from FRT to
Fresnel patterns. As was expected, a scaled Fresnel patter
is equivalent to an FRT pattern multiplied by a correcting
quadratic phase factor.

The expression just obtained with the “geometrical
method” coincides with the relations obtained in Refs. 10,
11 through other methods. What has been presented here is
an optical connection between the two patterns. It has been
proved that any FRT process can be viewed as a process ir
some diffraction plane, or vice versa. Therefore this ap-
proach may provide a new point of view when implement-
ing FRT or Fresnel-based setups, since the two concepts art
easily interchangeables. An application of this conversion
formula can be found in Ref. 16. In that paper, several fast "(_
Fresnel calculation algorithms are presented. Computer AR
simulations are described there that demonstrate the feasi:
bility of the Fresnel-through-FRT approach.
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