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Abstract. Java-based simulation environments are currently used by
many multiagent systems (MAS), since they mainly provide portability
as well as an interesting reduction of the development cost. However,
this kind of MAS are rarely considered when developing interactive ap-
plications with time response constraints. This paper analyses the per-
formance provided by Jason, a well-known Java-based MAS platform, as
a suitable framework for developing interactive multiagent simulations.
We show how to tune both the heap size and the garbage collection of
the Java Virtual Machine in order to achieve a good performance while
executing a simple locomotion benchmark based on crowd simulations.
Furthermore, the paper includes an evaluation of Jason’s performance
over multi-core processors. The main conclusion derived from this work
is that, by means of Java tuning, it is possible to run interactive MAS
programmed using Jason.

1 Introduction and Related work

MAS platforms capable of handling a large amount of complex autonomous
agents at interactive response times are required by interactive multiagent ap-
plications such as crowd simulations and massive online games. Usually, these
kinds of simulations involve a high number of agents (e.g. pedestrians) interact-
ing in a shared environment. Interactivity, in turn, requires the use of parallel
techniques that allow to validate and to execute the actions requested within a
limited period of time (commonly, 250 ms [6]).

Java-based simulation environments are currently being used by many MAS,
since they mainly provide portability as well as an interesting reduction of the
development cost. However, this kind of MAS are rarely considered when devel-
oping interactive applications with time response constraints, because of Java
being normally less efficient than other languages such as C or C++. This situ-
ation requests performing a specific Java tuning to be able to tackle this type of
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applications. In this paper, we show the Java tuning carried out for the purpose of
evaluating the performace of Jason [1], a well-known Java-based MAS platform.
The aim of this tuning is to adjust both the heap size and the garbage collection
of the Java Virtual Machine in order to satisfy the temporal requirements of in-
teractive multiagent simulations. Therefore, the results presented in this paper
will also be of great value to those researches considering Java-based simulation
environments suitable for developing interactive multiagent applications.

When developing this kind of interactive MAS three layers are normally con-
sidered: the computer architecture, the MAS platform and the graphical engine
(if any). At the low level, different distributed computer architectures have been
applied in order to allow massive interactive simulations to scale up with the
number of agents by simply adding new hardware (e.g. networked-server, P2P,
etc.). For instance, a new approach has been presented for PLAYSTATION3
which supports simulation of simple crowds of up to 15000 individuals at 60
frames per second [11]. Parallel simulation, based on classical Reynolds’s boids
[12], has been also integrated in a PC-Cluster with MPI communication [16] to
finally produce small simulations (512 boids). At the top level, the graphical en-
gine of the application must render the visualization at interactive frame rates.
The computer graphics community generally represents the MAS as a particle
system with local interactions [3, 15], though, few works include socially com-
plex and autonomous behaviors [10]. However, they are not normally based on
standard agent architectures.

In the middle level, the MAS platform is in charge of providing the required
data flow to the graphical engine while efficiently using the computational re-
sources. Thus, it constitutes a key middleware that highly influences the global
performance and the scalability of the system. It mainly addresses two impor-
tant issues: modeling the behavior of the agents as well as their parallel lifecycle
execution. Java is a popular language providing built-in support for concurrency
that is commonly used by MAS platforms. Although Java performance has been
studied from different perspectives, probably the most usual is to tune server ap-
plications running on large multi-processor servers [13]. There are more specific
works focused on the evaluation of Java-based multiagent platforms [2, 14, 8].
However, none of them deals with providing interactivity to the corresponding
MAS. Some researchers have been also testing the performance and scalability
of a few existing MAS platforms [7], showing a lack of both important issues in
many of them. In a previous work [5], the authors analysed Jason’s architecture
and evaluated its performance under both centralised and distributed infras-
tructures. Regardless the infrastructure, the results showed that the execution
options had to be reviewed in order to achieve a more equilibrated response time
distribution, an aspect that we have covered in this work.

The rest of the paper is organized as follows. Section 2 briefly reviews Jason’s
centralised infrastructure and describes the locomotion benchmark used for the
evaluation. Section 3 demonstrates how to tune Java in order to run interactive
multiagent simulations over Jason. Finally, section 4 shows the performance
obtained with different multi-core processors.
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2 Test description

The goal of this work is to evaluate Jason as a suitable framework for running
interactive multiagent simulations. Jason is a Java-based interpreter for an ex-
tended version of AgentSpeak, a BDI agent-oriented logic programming language
[1]. Jason provides three infrastructures to execute a MAS: Centralised, SACI
and JADE. Whereas the Centralised infrastructure places all the components of
the MAS in the same host, it is also possible to distribute these components in
several hosts using either SACI or JADE technologies. For the sake of simplicity,
this paper focuses on the Centralised infrastructure but the results obtained are
fully applicable for both distributed infrastructures.

In the Jason’s Centralised infrastructure, the environment has its own ex-
ecution thread and it is provided with a configurable pool of threads (PThE)
devoted to executing the actions requested by the agents. In this way, the enviro-
ment is able to deal with several agent requests concurrently. In turn, each agent
owns by default a thread in charge of executing the agent reasoning cycle. In
this manner, all the agents can run concurrently within the MAS. As such, this
approach could limit the number of agents that can be executed, since the total
number of threads would be limited by the Java Virtual Machine (JVM) heap
size. However, Jason offers the possibility to optionally add another configurable
pool of threads (PThA), so that the set of agents can share a smaller number of
execution threads but reducing the level of concurrency. The number of threads
in both PThE and PThA is initialised during the start-up of the MAS and it is
not changed along its execution. By default, the PThE holds 4 threads whereas
the PThA is disabled, so that each agent will have its own execution thread. In
a previous work, we tuned both the PThE and the PThA in order to obtain the
best performance [5].

The main issue to be tackled when running interactive multiagent simulations
is that of being able of efficiently handling a massive and concurrent action pro-
cessing. In this paper, we have used a locomotion testbed. Here, a set of wanderer
agents request movement actions to a grid-like environment, which replies with
the result of the execution. Wanderer agents are written in AgenSpeak and they
cyclically execute the following steps: (i) take start time, (ii) request a random
movement to the enviroment, and (iii) take finish time. On the other hand, the
environment executes each movement action in a synchronized manner to ensure
the world consistency. That is, the environment performs a simple collision test
and informs whether the action can be carried out (i.e. Ok) or it cannot (i.e.
Failure), when it would lead to a collision situation.

The performance evaluation carried out along the paper measures the envi-
ronment response time and the percentage of CPU utilization consumed while
running the locomotion benchmark. These measurements represent respectively
latency and throughput, the two performance parameters commonly considered
when evaluating networked-based distributed computer platforms [4]. We define
the Response Time (RT ) as the time elapsed between an agent asking for an
action and receiving the reply from the environment. Our simulations stop when
all the agents have performed 500 movements or cycles, but we discard the first
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200 cicles when computing the average response time (RT ). Thus, we measure
the system behavior at full load, since the first measurements are distorted due
to the agent creation phase.

As stated above, we are interested in exploring the performace of Jason’s
Centralised infrastructure in depth. Thus, both the environment and the agents
are run on the same host. The results for the Centralised infrastructure shown in
[5] indicated that, when simulating 1000 wanderer agents, the 70% of the agents
were able to act within 85 ± 264 ms. That is, even though the low value of RT
(85 ms) indicated that many actions were processed very fast, there were a few
agents that must wait more than 250 ms for their actions to be executed. This
problem with the high standard deviation of the response time (σRT ), found all
over the measures in [5], is addressed in the following section.

3 Java tuning

The source of the high standard deviation of the response time of Jason-based
MAS can be envisoned in figure 1. The figure shows that the average response
time per agent cicle (RTc) peaks periodically. This points to a process that
stops the system whenever it is executed: the Java Garbage Collection. Thus,
we have carried out Java Performance Tuning in order to provide some general
recommendations for running interactive multiagent simulations over Jason. It
should be noticed, though, that the optimal tuning parameters will finally depend
on the application and on the hardware underneath.

Fig. 1. Influence of the Java Garbage Collection on the response time

In this section, we show the results obtained when executing the testbed
defined in section 2 over an AMD Dual-Core Opteron processor with 4 Gb of
RAM, running a 64-bit version of Linux and the Sun’s HotSpotTMJava Virtual
Machine (JVM) release 1.6.0 07. From version 1.5, this JVM has incorporated
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a technology to begin to tune itself, referred to as Ergonomics. Even though Er-
gonomics significantly improves the performance of many applications, optimal
results often require manual tuning.

There are two main aspects that have to be tuned in order to enhance Java
performance: the heap size and the garbage collector (GC) [9]. Regarding the
former, by default, the initial heap size is 1/64th of the machine’s physical mem-
ory and the maximum heap size is 1/4th of the machine’s physical memory. In
our case, this would mean using 64 Mb and 1 Gb respectively. However, Java
performance can be enhaced by increasing the maximum heap size, as shown in
figure 2. This figure shows the total amount of time consumed by the garbage
collection when we use diferent GCs and increase the heap size while simulating
2500 agents. This time is computed by adding the times needed to complete
every invocation to the GC. Besides, we have set minimum and maximum heap
sizes equal for a faster startup. Note how, regardless of the GC being used, the
total GC time strongly decreases when increasing the heap size up to 2 Gb.
Further on, the gain is very low compared to the fact of being using almost the
whole physical memory.

Fig. 2. Garbage colletion time needed for different heap sizes and GCs.

With respect to the garbage collectors, Sun’s HotSpotTMJVM allows the pro-
grammer to choose among three of them: serial, throughput and concurrent low
pause collector. Whereas the serial GC is a sequential collector, the throughput
GC uses multiple threads to collect garbage in parallel and it is suitable for
applications with a large number of threads allocating objects, such as the one
being tested in this paper. On the other hand, the concurrent GC does most
of the collection concurrently with the execution of the application and it is
appropriate for applications that benefit from shorter GC pauses. Additionally,
Java GCs organize the object memory into two generations: young (recently cre-
ated objtects) and tenured (older objects). Java allows to set the ratio between
the young and tenured generation by means of the JVM command-line option
NewRatio. For more details on Java garbaje collection, see [9].
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Bearing all this informacion in mind, we have executed our benchmark using
every GC available. Figure 2 shows the most relevant results that we have ob-
tained. The line named Serial corresponds to the total amount of time consumed
by the garbage collection when simulating 2500 agents using the serial GC. The
Parallel line relates to the use of the throughput GC only for the collection of the
young generation. In turn, the ParallelOld line refers to the use of the throughput
GC for the collection of both the young and the tenured generation. For space
reasons, we skip the results obtained with the concurrent GC since they are up
to ten times higher than those obtained with the rest of the GCs, both for the
total GC time and for the average response time. As we can observe, the serial
GC behaves worse than any configuration of the throughput GC. Moreover, par-
allelizing the collection of the tenured generation does not fasten but actually
slows garbage collection when the heap size is less than 2.5 Gb. This means that
there is not a problem with the collection of old objects but with the young
ones. The reason behind this fact relies on how Jason represents agent’s beliefs
and actions. Both are implemented as objects that are discarded and created
again whenever there is a change in a belief or a new action is requested to
the environment. As each wanderer agent continuously asks the environment for
movement actions and changes its position, we can imagine the huge amount
of objects that “die young”. Thus, enlarging the young generation will benefit
garbage collection.

The default NewRatio for the Server JVM is 2. That is, the tenured generation
occupies 2/3 of the heap while the young generation occupies 1/3. A larger young
generation could accommodate many more short-lived objects, decreasing the
need for slow major collections. Meanwhile, the tenured generation would still
be large enough to hold many long-lived objects. According to this, the line
labeled as Parallel-n=1 in figure 2 shows that we can obtain the lowest garbage
collection times by using the throughput GC for the collection of the young
generation along with the minimum ratio possible between the generations (i.e.
NewRatio = 1). Hence, half of the heap for the young generation and the other
half for the tenured generation.

Finally, we have evaluated the effect of the number of threads devoted to
collect garbage when using the parallel throughput GC. By default, this GC uses
as many garbage collector threads as the number of processors available. Though,
the number of threads can be tuned manually through the ParallelGCThreads
command-line option. For this test, we have used a 16-core computer and we
have varied the number of collector threads from 2 up to 16. Besides, we have
tuned Java so it runs efficiently with 2 Gb of heap size and the NewRatio set to
1. Figure 3 shows the values obtained for the average response time (RT ) plus
its standard deviation (σRT ) when increasing the number of agents simulated.
Evidently, the worst values are obtained when only 2 threads are used for garbage
collection. However, in our test it is not necessary to use as many threads as the
number of cores, since we get the same results for 8 and 16 GC threads.

Summing up, we can state the following general recommendations for running
interactive multiagent simulations over Jason:
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Fig. 3. Performance when varying the number of threads used by the throughput GC

– Enlarge the heap size as much as possible without achieving the amount of
physical memory available. In addition, set minimum and maximum heap
sizes equal for a faster startup.

– Parallelize garbage collection by using the throughput GC whenever your
hardware has at least 2 CPUs in order to reduce GC pause times. Besides,
check whether you need the default number of collector threads (equal to
the number of processors) or you can save any, thus reducing the workload
of the whole machine.

– Increase the size of the young generation up to the size of the tenured gen-
eration (NewRatio=1) to decrease the need for slow major collections.

4 Performance Evaluation

In this section we analyse the results obtained when running the benchmark
described in section 2 on the following distributed shared memory (DSM) multi-
core computers: 2-Core (AMD Dual-Core Opteron, 1.6 GHz, 4 GB RAM), 4-
Core (AMD Quad-Core Opteron, 1.0 GHz, 8 GB RAM), 8-Core (Intel 8-Core
Xeon, 2.6 GHz, 16 GB RAM) and 16-Core (AMD Dual-Core 8218, 1.0 GHz,
32 GB RAM). All of them run the same 64-bit version of Linux and the Sun’s
HotSpotTMJVM release 1.6.0 07.

Table 1 shows the performance obtained when simulating from 1500 to 9500
wanderer agents on the computers described above. The results for 1-core were
obtained through the taskset Linux command. When running the benchmark, we
have followed the Java tuning recommendations stated in section 3. Therefore,
we have used the throughput GC for the collection of the young generation with a
number of collector threads equal to the number of cores. Besides, we have tuned
Java so it runs with 4 Gb of heap size and we have set NewRatio to 1. The left
column in Table 1 shows the percentage of CPU utilization measured during
the execution of the simulation. The central column (RT ) shows the average
Response Time in milliseconds for the actions requested by the agents when the
system is at full load, as explained in section 2. Finally, the right column shows
the standard deviation of this Response Time (σRT ).
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Cores-Agents CPU(%) RT (ms) σRT (ms) Cores-Agents CPU(%) RT (ms) σRT (ms)

1-1500 89,53 44,59 101,64 8-1500 59,88 31,01 8,58
1-3500 90,01 40,39 189,57 8-3500 67,75 73,82 22,65
1-5500 89,98 71,97 178,42 8-5500 72,09 114,10 40,62
1-7500 87,87 85,93 193,03 8-7500 74,56 146,27 58,26
1-9500 65,97 98,33 2196,68 8-9500 74,92 185,81 278,00

2-1500 89,17 3,92 28,84 16-1500 39,77 57,38 9,60
2-3500 91,13 5,55 27,59 16-3500 46,45 145,86 38,10
2-5500 92,00 9,01 35,38 16-5500 48,27 242,87 62,23
2-7500 91,10 10,39 79,09 16-7500 57,58 282,57 85,73
2-9500 59,72 47,79 1152,10 16-9500 57,51 253,53 534,66

4-1500 76,25 51,97 20,81
4-3500 81,11 132,88 50,71
4-5500 81,48 201,90 76,89
4-7500 83,35 290,71 118,30
4-9500 84,24 386,35 488,37

Table 1. Performance obtained for Jason framework over different computers

The results shown in Table 1 demonstrate that we can run interactive mul-
tiagent simulations over Jason, since the values of the RT plus the σRT are
generally under the reference value of 250 ms. As it was also expected, the CPU
utilization decreases as the number of cores increases. For instance, if we com-
pare the results obtained for 3500 agents on each computer, it can be seen that
the more cores in the computer, the lower the percentage of CPU utilization (the
single CPU is shown only as a reference). However, the response time does not
behave the same way. Instead, whereas the RT values for the 2-Core computers
are around a few milliseconds, the RT for the computers with 4 up to 16 cores
reaches tens of milliseconds. The worsening of the response time occurs in all the
computer being tested, although it has a minor impact in the 8-Core computer
because it has the highest processor speed. This fact indicates that, beyond two
cores, the default configuration used by Jason does not properly scale up with
the number of processor cores. Thus, a deeper study must be carried out in order
to allow it to take advantage of the multi-core processors.

Although a fine tuning of the Jason framework for multi-core processors is
beyond the scope of this paper, we have analysed the issue shown in Table 1
in order to clarify the path for future work. We think that the reason behind
this problem is thread context switching. Even though the Java Virtual Machine
schedules its threads to run them as fast as possible, there is no guarantee of
which core a given thread will be assigned to for execution. The operating system
kernel can assing one single thread to different cores during its execution time,
thus provoking thread migrations. The probability of migration increases with
the number of cores in the processor, in such a way that the overhead due to
thread migrations could exceed the benefits of having more cores for executing
the threads in parallel. To verify this hypothesis, we have measured the number
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of migrations (i.e. changes in the core assigned for execution) suffered by the
threads along the simulation. To detect migrations, we have used a system call
retrieving the state of the Java threads periodically and we have analysed the
core where they were located.

Figure 4 shows the total number of thread migrations counted while executing
the same simulations that produced the results of Table 1. We can observe how
the number of migrations is proportional to the number of cores in the computer.
Since a thread migration is a time consuming task, the high number of migrations
produced by computers with more than 2 cores can explain the behavior shown
in Table 1. Nevertheless, it should be noticed that these results do not guarantee
the absence of other still hidden aspects that could prevent the system from
properly scaling with the number of processor cores. In order to fully exploit
the degree of parallelism offered by multi-core processors, tuning the processor
affinity of Jason must be done.

Fig. 4. Number of thread migrations

5 Conclusions and Future work

In this paper, we have evaluated Jason as a suitable Java-based MAS platform
for developing interactive multiagent simulations. We have shown how to tune
the Java heap size as well as the gargabe collector in order to enhance the
performance of the simulations. Even though the optimal tuning parameters will
finally depend on the application and on the hardware underneath, we have state
some general recommendations for minimizing the impact of garbage collection.
Therefore, the results presented in this paper will also be of great value to those
researches considering other Java-based simulation environments for developing
interactive multiagent applications. The paper also includes a first evaluation
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of Jason’s performance over multi-core processors. As future work, we plan to
carry out a deep study of the Jason framework in order to properly scale it up
with the number of processor cores. Then, tuning the Java processor affinity will
be required to exploit the degree of parallelism offered by multi-core processors.
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