
A Windowing based GPU optimized
strategy for the induction of Decision

Trees in JaCa-DDM

Xavier Limón a, Alejandro Guerra-Hernández a, Nicandro Cruz-Ramı́rez a,
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Abstract. When inducing Decision Trees, Windowing consists in select-
ing a random subset of the available training instances (the window)
to induce a tree, and then enhance it by adding counter examples, i.e.,
instances not covered by the tree, to the window for inducing a new
tree. The process iterates until all instances are well classified or no
accuracy is gained. In favorable domains, the technique is known to
speed up the induction process, and to enhance the accuracy of the in-
duced tree; while reducing the number of training instances used. In this
paper, a Windowing based strategy exploiting an optimized search of
counter examples through the use of GPUs is introduced to cope with
Distributed Data Mining (DDM) scenarios. The strategy is defined and
implemented in JaCa-DDM, a novel system founded on the Agents &
Artifacts paradigm. Our approach is well suited for DDM problems gen-
erating large amounts of training instances. Some experiments in diverse
domains compare our strategy with the traditional centralized approach,
including an exploratory case study on pixel-based segmentation for the
detection of precancerous cervical lesions on colposcopic images.

Keywords. Windowing, Decision Trees, GPU computation, Multi-Agent
Systems, Distributed Data Mining

1. Introduction

The Windowing technique was originally designed to cope with memory limita-
tions in the C4.5 [8] system. It consists in inducing a tree from a small random
subset of the available training instances (the window). The tree is then used to
classify the remaining training instances, searching for counter examples, i.e., in-
stances not covered by the current tree. The window is extended with the counter
examples found and a new tree is induced. The process iterates until a stop cri-
terion is met, e.g., all examples are covered; or the accuracy of the new tree does
not enhance anymore.
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Windowing is expected to obtain an accuracy similar to that obtained us-
ing all the available training instances, while reducing considerably the number
of examples used to induce a tree. In favorable domains, i.e., free of noise and
indeterminism, it is also expected to speed up the inductive process; but in the
general case, it slows down the process since convergence requires many itera-
tions. Windowing based strategies [4] for Distributed Data Mining (DDM) seem
to inherit these properties: The accuracy of the induced trees is close to, or even
slightly better than that obtained without windowing; The number of examples
used to induce the tree is reduced up to 60%; But the processing time is much
worse when using Windowing, 90 times slower in the worst case.

Searching for counter examples seems to be in part responsible for the poor
time performance of the Windowing based strategies. In this work, CUDA [7]
enabled GPUs are used to improve the gathering of counter examples, seeking
a performance improvement of the overall induction processes. Although some
frameworks have been proposed to boost time efficiency of the data mining pro-
cess through GPUs [12,6], including the induction of Decision Trees [11,5], our
work focuses on DDM scenarios, using JaCa-DDM [4] to further enhance the
performance of the processes and to overcome GPU memory limitations.

JaCa-DDM is an Agents & Artifacts [9] based DDM system, conceived to
design, implement, deploy and evaluate distributed learning strategies. A strategy
is a description of the interactions among a set of agents, exploiting artifacts
deployed in a distributed system, that provide data mining tools. The proposed
strategy concerns the induction of Decision Trees [8], using the J48 algorithm
provided by Weka [14].

The organization of the paper is as follows: Section 2 presents a brief de-
scription of JaCa-DDM, introducing the notions of strategy and deployment sys-
tem. Section 3 describes the implementation of the Windowing based strategy
proposed in this paper, detailing the GPU based optimizations. Section 4 defines
the experimental methodology to evaluate the proposed strategy. The results and
discussion of the experiments are presented in section 5. Finally, this paper closes
with some conclusions and insights of future work in section 6.

2. JaCa-DDM

JaCa-DDM is a system based on the Agents & Artifacts paradigm as implemented
by Jason [3], the well known agent oriented programming language, and CArtAgO
[9], an agent infrastructure to define environments based on the concept of arti-
facts. The main interest of JaCa-DDM is to provide a platform to execute and test
data mining processes over a distributed environment. A novelty of JaCa-DDM
is the way in which the DDM processes are conceived as strategies.

Strategies are descriptions of workflows in terms of agents and artifact inter-
actions, allowing the implementation of truly sophisticated processes that can ex-
ploit BDI reasoning and representations, as well as speech acts based communica-
tions; while using already existing data mining tools provided by Weka, wrapped
in the form of artifacts. Strategies are by definition encapsulated, allowing stan-
darized ways to define, configure, deploy, and test them.
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The JaCa-DDMmodel is built on the concepts of strategy and its deployment.
While a strategy defines a DDM workflow, its deployment deals with configuration
issues.

Definition 2.1 A tuple 〈Ags,Arts, Params, ag1〉 denotes a JaCa-DDM strategy,
where:

• Ags = {ag1, . . . , agn} is the set of user defined Jason agent programs.
• Arts = {art1, . . . , artm} is the set of user defined artifact types.
• Params = {param1 : type1, . . . , paramk : typek, } is a set of paramenters

and their associated data types, where type1,...,k ∈ {int, bool, double, string}.
• ag1 ∈ Ags is a special agent program playing the role of contact person

between the agents in Ags and the deployment system. This agent launches
and finishes the strategy, and can be programmed to do any other task.

Definition 2.2 A tuple 〈Nodes,DS,Arts, Strat, Config, ag0〉 is a JaCa-DDM de-
ployment system, where:

• Nodes = {node0, node1 . . . , nodej}, is a set of computational nodes, usu-
ally, but not necessarily, distributed in a network, where: node0 is run-
ning Jason and CArtAgO, while node1,...,j are running only CArtAgO.
Each node defines a single CArtAgO workspace, where artifacts are to
be created, but all agents run in node0. Each node is denoted by a pair
〈nodeName, IPaddress : port〉.

• DS = {ds1, . . . , dsj} is a set of data sources associated to each node, not
including node0. Data sources can be created dinamically at run time; or
be statically defined in each node.

• Arts = {art1, . . . , arti} is a set of artifact types, used to deploy the system.
• Strat is a learning strategy as stated in Definition 2.1.
• Config = 〈δ, π〉 is a configuration for a strategy deployment. It has two

components:

∗ δ = {(ag, node, i), . . . }, is a set of allocations, i.e., an agent distribu-
tion specifying how many copies of a given agent program will be fo-
cusing on a given node. Where ag ∈ StratAgs is an agent program in
the strategy, that will be cloned i ≥ 1 times, and assigned to focus on
node ∈ Nodes\{node0}.

∗ π = {(p, v), . . . } is a set of pairs: strategy parameter, initialization value;
where for all param : type ∈ StratParams, p is a parameter of the strat-
egy and v is its value of type t.

• ag0 is the agent setting up the deployment system.

3. Implementation

The implementation of the proposed Windowing based GPU optimized strategy
comprehends a GPU based counter examples filtering processes, and the Parallel
Counter GPU strategy itself.
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3.1. GPU based counter examples filtering processes

The windowing process can be split into two main subprocesses repeated itera-
tively: counter examples filtering and model induction. In this work we implement
the filtering of counter examples on GPUs, trying to achieve a negligible time cost
for this subprocess. As mentioned, we do not deal with the induction subprocess,
which allows for other methods to be applied, for example ensemble techniques,
or GPU based induction algorithms.

A decision tree has two kinds of nodes: internal nodes, and leaf nodes. Inter-
nal nodes represent a given attribute, and leaf nodes class values. Arcs contain
a boolean function over the node attribute values, and each function over the
same node is mutually exclusive. There are three kinds of arc functions, each one
bound to a boolean operator: ≤, >, =. The first two operators are for numerical
attributes, and the last one for nominal ones. Given a Decision Tree, and an un-
classified instance, a classification process consist off traversing arcs yielding true
values on its function, from the root node to a leaf node.

On GPUs, it is a good practice to avoid irregular and complex data structures,
in order to improve performance. Scattered memory access is not efficient, and
affects the performance of the GPU cache memories. It is better to read large
blocks of memory in order to exploit coalesced memory access (combining multiple
memory accesses into a single transaction). With these ideas in mind, a plain
representation based on one dimensional arrays was adopted for the GPU Decision
Trees. The structure consists on various properties, some of them are related to
node and arc information:

• int NUM NODES : how many nodes (including leaves) has the tree.
• int MAX NUM ARCS: each node can have a variable number of arcs, but
a constant value is necessary to reserve memory.

• int attributes[NUM NODES]: contains the attribute index for each node.
On the case of a leaf node, it contains the index of the class value.

• int isLeaf[NUM NODES]: a leaf node contains the value 1, otherwise 0.
• int numbersOfArcs [NUM NODES]: the actual number of arcs of each node.
• int NUM ARCS: the sum of all the arcs of all nodes.
• int evalTypes[NUM ARCS]: the evaluation type of the arc: ≤, >, =.
• float vals[NUM ARCS]: evaluation value of the arc.
• int nodeIndices[NUM ARCS]: the index of the node pointed by the arc.

A method that takes a Weka J48 Tree and transforms it to a GPU Decision
Tree was implemented in the J48 artifact. A kernel (in CUDA terms) is a function
that executes on a device (GPU). Kernels are intended to be executed in parallel,
receiving parameters to define the number of threads to be used. The implemented
kernels include:

• classify : Return the index value of the predicted class of an instance.
• searchCounter: Classifies each instance within the instance set in GPU, and
if the predicted class is different from the actual class, then it saves the
index of the instance in an array as big as the instance set. Each thread
receives the number of instances that will process. At the end of its work,
each thread also saves the number of counter examples found.
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• countSize: Computes a sum over each thread result of the searchCounter
kernel to yield the total number of counter examples found.

• genResult: “Shrinks” the array that contains the counter examples indices
found by the searchCounter kernel, saving the indices on a new array that
is the exact size of the counter examples found.

• filterParallel: Filters the counter examples from the dataset in the GPU.

The workflow of the counter examples filtering process requires to load the
instance set into the GPU at the beginning of the general process. A copy of the
instance set is held in the CPU. It is also necessary to determine the number
of multi-processors, and the maximum number of parallel threads of each multi-
processor, in order to define an ideal number of working threads. The filtering
process, from the host’s (CPU) point of view, can be summarized in the following
steps:

1. Transform the J48 Tree into a GPU Decision Tree.
2. Load the GPU Decision Tree in the GPU.
3. Invoke the searchCounter kernel on the ideal number of threads.
4. Invoke the countSize kernel on one thread.
5. Use the result from countSize to reserve enough memory on the GPU to

save all the counter example indices on an array.
6. Invoke genResult on one thread to fill the array created previously.
7. Invoke filterParallel on the ideal number of threads to erase the counter

examples found from the instance set in the GPU.
8. Use the array with counter examples indices, and filter all the counter

examples in the CPU to obtain a counter examples instance set.
9. Free the memory not needed anymore on the GPU.

Note that the search process on the GPU only finds index values, the ac-
tual filtering is done on the CPU. This design choice was made to reduce data
transmission between the host and the devices.

3.2. Parallel Counter GPU strategy

The proposed strategy consists on an agent bulding an initial Decision Tree with
a subset of its training instances, in a central classifier artifact. Asking to other
agents in the system to gather all the counter examples found in the deployment
system, and sending them to the central classifier artifact for trying to enhance
the Decision Tree. The process iterates for a number of rounds. Following defini-
tion 2.1, its components are:

• Ags = {contactPerson,worker, roundController}, where:
∗ contactPerson controls the rounds and induces the learned model.
∗ worker gathers counter examples.
∗ roundController determines the stop condition.

• Arts = {ClassifierJ48, InstancesBase,Evaluator}, where:
∗ ClassifierJ48. Induces models.
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Figure 1. Parallel Counter GPU strategy sequence diagram for counter examples filtering work-
flow. worker i represents any worker, i.e i = 1, ..., j (the same goes for node i). contacPerson1

sends the current model to the InstancesBasei artifact of each workeri. Then it asks all the
workers to search for counter examples in their InstancesBasei using the GPU, and send them
to Classifier1, where a new model is induced.

∗ InstancesBase. Used to store and manipulate the learning examples.
The GPU search is launched on this artifact.

∗ Evaluator. Used to compute the accuracy of a model given a testing set,
for the auto-adjust stop procedure.

• Params include:

∗ Prunning : Bool if true, forces the J48 to use post pruning.
∗ InitPercentage : Double defines the size of the initial training window.
∗ TestPercentageForRounds : Double defines the size of the testing set
for the auto-adjust stop procedure.

∗ ChangeStep : Double defines a threshold of minimum change between
two consecutive rounds. Used by the auto-adjusted stop procedure.

∗ MaxRounds : Int defines the maximum number of rounds.

Figure 1 shows the workflow for one round of the Parallel Counter GPU
strategy. The stop criterion computing is not show for the sake of clarity, but at
the end of every round, the induced Decision Tree is tested to obtain its accuracy
and decide if the process continues or not.

4. Experimental Methodology

A set of datasets were selected to compare the perfomance of the proposed Paral-
lel Counter GPU strategy with the usual centralized approach. The measured pa-
rameters for all the experiments are the following: accuracy, percentage of training
examples used, time in seconds, number of leaves, and tree size. The experiments
were executed on a cluster consisting of three computers with the same charac-
teristics: Two Xeon processors at 2.40 GHz with four cores, and two threads each;
24 GB of RAM; Two GPU Nvidia Tesla C2050.

Table 1 shows some datasets used for this purpose. They were selected from
the MOA [2] and TunedIT [15] projects, because they vary in the number of
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instances, attributes, and classes. Evaluation was done with a 10-fold stratified
cross validation, and also the training instances were stratified and split evenly
among the 3 computer nodes.

Table 1. Used MOA/TunedIT datasets.

DS #Instances #Attributes #Classes

airlines 539383 8 2

covtypeNorm 581012 55 7

KDDCup99 4898431 42 23

poker-lsn 829201 11 10

Strategy distribution δ was {(contactPerson, node1, 1), (roundController,
node1, 1), (worker, node1, 1), (worker, node2, 1), (worker, node3, 1)}. The parame-
ters initialization π for all datasets was {(Pruning, true), (InitPercentage, 0.15),
T estPercentageForRounds, 0.15), (ChangeStep, 0.004), (MaxRounds, 10)}. The
InitPercentage and TestPercentageForRounds parameters only take data from
one node, and each node has one third of the training data (JaCa-DDM splits
and shares the dataset in a stratified fashion before beginning the process), thus
the parameter value considers this fact. On the centralized case, pruning was also
active.

An exploratory case study for pixel-based segmentation was also considered.
Pixel-based segmentation consists on extracting features from labeled pixels to
create a training dataset, which is used to construct a model to predict the class
of unseen pixels, and in this way achieve image segmentation [13]. Our case study
deals with sequences of colposcopic images presenting possible precancerous cer-
vical lesions. The image data was extracted from 38 patients, for each patient
a range between 300 and 600 images were obtained. A medical expert labeled
some of the pixels of each image (figure 2 shows an example), from which two
classes can be drawn: precancerous lesion, and no precancerous lesion. For a more
detailed account of this case study see [1]. From the images for each patient, we
selected 30 images evenly spread in the series. Using FIJI [10] we extracted the
pixels of interest from the images to create a Weka ARFF file, selecting the de-
fault pixel parameters: gaussian blur, sobel filter, hessian, membrane projections,
and difference of gaussians. The obtained dataset has the following characteris-
tics: Total number of examples: 1016600; No precancerous lesions: 213819; Pre-
cancerous lesions: 802781; Number of attributes: 80. We compare our strategy
with the centralized approach using leave-one-out, where the test data in each
case is the extracted pixels from a single patient. For our strategy, the training
data was stratified and evenly split in our 3 computers available. The distribution
δ and parameters π of the Parallel Counter GPU was the same as in the general
experiments. It is worth mentioning that we did not apply any preprossessing to
the dataset, being an exploratory experiment, we are more interested in testing
the behavior of our approach in this kind of setting.

5. Results and discussion

Table 2 shows the results obtained by our strategy and the centralized approach
for the MOA/TunedIT datasets. As expected, accuracy is similar in all cases, and
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Figure 2. Example of colposcopic image. Black dots represent pixels labeled by a medical expert.

our strategy reduced the number of examples used for training up to a 90%. The
number of leafs and tree size are also reduced by our strategy in all cases. GPU
based counter examples filtering speeds up the whole process. For KDDCup99
and poker-lsn, our approach is up to 8 times faster than the centralized one. For
airlines and covtypeNorm, in the wort case, our approach is 0.78 times slower
than the centralized. This enhances the results of the Windowing based strategies
previously reported by Limón [4], where such strategies were up to 200 times
slower than the centralized approach.

The rate of instances used to induce a Decision Tree is indicative of how dif-
ficult is for the strategy to converge. Higher rates suggest that the strategy iter-
ates more times, inducing more trees, and using more instances before attaining
convergence. Interestingly, in these and previous experiments, the rate of used
instances seems to correlate with the accuracy: Low accuracy demands more in-
stances, while high accuracies demands much fewer instances. In these cases, the
GPU based counter example fintering is not responsible of the decreased time
performance, but the number of iterations executed by the strategy. The airlines
dataset shows an extreme case in this regard, the overall problem is too difficult
for the J48 algorithm.

In the observation of the evolution of the learning process of covtypeNorm
we found that the majority of examples used for learning were found during the
fist search of counter examples. This means that the initial model was too simple,
and adding all the counter examples found could not be the best choice in the
long run. Possibly, increasing the size of the initial training set, and/or further
filtering counter examples on initial phases of the process, would help to obtain
a better time performance.

Table 2. Results for the MOA/TunedIT datasets.

DS Strategy Accuracy Used instances Time (seconds) #Leaves Tree Size

airlines Centralized 66.34 ± 0.11 100.00 ± 0.00 1164.66 ± 211.76 137470 142081

airlines Parallel Counter 66.26 ± 0.12 94.95 ± 0.01 1810.78 ± 446.47 132767 137210

covtypeNorm Centralized 94.59 ± 0.04 100.00 ± 0.00 855.41 ± 97.88 14158 28314

covtypeNorm Parallel Counter 93.10 ± 0.34 48.44 ± 0.01 1089.03 ± 277.06 12679 25265

KDDCup99 Centralized 99.99 ± 0.01 100.00 ± 0.00 1688.91 ± 363.89 968 1147

KDDCup99 Parallel Counter 99.96 ± 0.01 9.28 ± 0.01 199.72 ± 45.62 667 855

poker-lsn Centralized 99.78 ± 0.01 100.00 ± 0.00 174.26 ± 28.55 2212 4408

poker-lsn Parallel Counter 98.67 ± 0.46 9.56 ± 0.01 24.90 ± 8.05 1831 3552

For the pixel-based segmentation case study, Table 3 shows a comparison of
the results obtained by our strategy, the centralized approach, and the results
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reported in [1]. The sensibility (Sen) is the rate of true positive observations
(precancerous lesion) against the sum of true positive plus false negatives, and the
specificity (Spe) is the rate of true negative (no precancerous lesion) observations
against the sum of true negative plus false positives.

Observe that the results are similar to those obtained for the covtypenorm
dataset, with similar explanations. Anyway, observe that the proposed approach
obtained a similar accuracy and sensibility than the results reported by Acosta-
Mesa et al. [1], where a time series approach was adopted, and other normaliza-
tions were applied, that yielded a more balanced dataset, which in turns explains
the difference in specificity that we obtained. Our experiment was done with a
unbalanced dataset with no preprocessing applied (as this is an exploratory case
study), favoring the precancerous lesion class, which also may explain the sensi-
bility obtained. Being identified the probable cause of no time performance im-
provement in our strategy (i.e too many counter examples are added on the first
round), and given the results obtained, we are optimistic that with a proper pre-
prossessing of the dataset, and with an enhancement of our current strategy, we
can achieve much better results.

Table 3. Results for the case study

Strategy Accuracy Used instances Time (seconds) #Leaves Tree Size Sen Spe

Centralized 66.32 ± 29.50 100.00 ± 0.00 4806.50 ± 455.28 32436 64871 79.04 18.53

Parallel Counter 65.87 ± 26.89 46.80 ± 0.02 6317.36 ± 605.46 30633 61265 77.73 21.37

Results from [1] 67.00 n/a n/a n/a n/a 71.00 59.00

6. Conclusions and future work

The Windowing based GPU optimized strategy proposed in this work demon-
strates that Windowing based approaches can be applied to large datasets, having
clear time performance improvements in some cases, in comparison with the cen-
tralized approach, while preserving a similar accuracy. Even on no favorable cases,
our strategy was acceptably slower, and always reduced the number of leaves and
tree size by using less counter examples. We believe that the time performance
that our strategy can achieve is bound by two factors: i) The complexity of the
problem represented by the dataset; and ii) The dataset redundancy. The first
factor is an open problem, and for the time being, we do not plan to direct our
efforts toward it, while the second factor is of interest for our future work. In
practical terms, redundancy means that some examples from the dataset are not
needed for the learning process, and that discarding such examples is paramount
to improve time performance. We plan to so research on the nature of redun-
dancy on tree model induction to create an improved version of the Windowing
algorithm that further filters redundant examples.
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