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Abstract. Metric learning has been shown to outperform standard classification
based similarity learning in a number of different contexts. In this paper, we show
that the performance of classification similarity learning strongly depends on the
sample format used to learn the model. We also propose an enriched classification
based set-up that uses a set of standard distances to supplement the information
provided by the feature vectors of the training samples. The method is compared
to state-of-the-art metric learning methods, using a linear SVM for classification.
Results obtained show comparable performances, slightly in favour of the method
proposed.
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1. Introduction

Comparisons are an essential task in many Pattern Recognition and Machine Learning
methods. Given a collection of objects X = {x1, x2 · · ·xn}, with associated representa-
tions in a multidimensional vector space, X = {x1,x2 · · ·xn} ⊆ Rd, the simplest way
to compare objects is by using standard similarity/distance functions on the feature-based
representation e.g. Euclidean, Mahalanobis or cosine, to name a few. However, similarity
measures are context dependent and they do not necessarily yield the best results.

An alternative and more sophisticated approach consists of learning the similarity
function from training data, using a set of known comparison results. These training re-
sults may be pairwise (xi and xj are similar/dissimilar) or relative (xi is closer to xj than
to xk). Metric learning and classification based learning are two common approaches to
tackle this problem.

In metric learning, the goal is to define a distance dM (xi, xj) = (xi−xj)TM(xi−
xj) ∀xi, xj ∈ X , where M is a positive semi-definite (PSD) matrix learned from the
training data by minimizing (or maximizing) some criteria related to the performance of
the function dM . A major advantage of these methods is that the distance dM is a pseu-
dometric. Hence dM can be seamlessly integrated into existing classification approaches
that assume pseudometric spaces e.g. nearest neighbor.



In classification based similarity learning, the training data is used to learn a classi-
fier. Once it has been trained, this classifier is used to yield scores that are related to the
similarity between the objects. Although the resulting values do not satisfy the proper-
ties of a pseudometric, these methods are a competitive alternative approach when these
properties are not needed e.g. ranking purposes.

Latest works on metric learning have reported consistently better results than clas-
sification similarity learning e.g. [9], when tested on a variety of contexts. In this pa-
per, we present a technique that raises classification based results to comparable perfor-
mances. The technique is based on a careful selection of the input format. Apart from
pre-processing the feature vectors that correspond to the image pairs as in other recent
works ([9],[12]), the values produced by a set of standard distances are added (in both
training and prediction). Results obtained are slightly above state-of-the-art metric learn-
ing methods.

The rest of the paper is organized as follows: Section 2 describes the state of the
art related to Metric Learning and Section 3 introduces the Classification-Based learning
framework. The experimental setting and the analysis of obtained results are presented
in Sections 4 and 5, respectively; finally, Section 6 states the conclusions and discusses
future work.

2. State of the art

A number of methods in classification, computer vision and pattern recognition rely on
the application of a similarity function on data samples. The relatively strong perfor-
mance dependence between the methods and the similarity function has motivated an
extensive research on approaches that attempt to learn the function from example data,
in order to produce a customized function that is more adequate for the problem at hand.

In the context of Supervised Metric Learning problems, the example data consists of
pairs of labeled instances (xi, yi) where xi ∈ X and yi is the label or class. These label
instances are generally used to define pairs or triplet constraints in (dis)similarity terms
as follows:

S = {(xi, xj) : xi and xj should be similar}

D = {(xi, xj) : xi and xj should be dissimilar}

R = {(xi, xj , xk) : xi should be more similar to xj than to xk}

Metric Learning uses these constraints to compute a distance dM (xi, xj) = (xi −
xj)

TM(xi − xj) where M ∈ Sd+ and Sd+ is the cone of symmetric SPD d x d real-
valued matrices. M ∈ Sd+ ensures that dM satisfies the properties of a pseudo-distance
and parametrizes a Mahalanobis distance family. As any PSD matrix can be decomposed
as M = WTW , the above distance is equivalent to computing a linear projection of the
data into a new space where constraints are satisfied better, and then using the Euclidean
distance to compare the samples. In the absence of this projection (M =W = I), dM is
the Euclidean distance.

In general, metric learning can be formulated as an optimization problem [1] that
has the following general form:



min
M

L(M) = `(M,S,D,R) + λR(M)

where L(M) is a loss function. The first term (loss term) applies a penalty when
constraints are not fulfilled; R(M) is a regularizer term on the parameters M of the
learned metric; and λ is a trade-off between the regularizer and the loss.

The different methods in the literature are characterised by using different loss func-
tions, regularizers on M and constraints. We concentrate on some well-performing learn-
ing algorithms that motivate the approach presented in this paper. For the interested
reader we refer to the complete surveys by Bellet [1] and Kulis [10].

A first seminal work in metric learning was presented in 2002 by Xing et al. [18]. In
this work, they presented the formulation of Metric Learning as a convex optimization
problem given a supervised data framework where the relative similarity of pairs of im-
ages defined the optimization problem constraints (also known as must-link/cannot link
constraints). The goal was to maximize the sum of distances between all pairs of dis-
similar instances and minimize the distances for all similar pairs by using Semidefinite
Programming with a projected gradient descent algorithm. The metric learn was used to
improve the performance of the k-Nearest Neighbors algorithm (k-NN).

Another popular algorithm used for k-nn classification is the Large Margin Near-
est Neighbour (LMNN) approach [17]. In this case, the authors inspired their work on
neighborhood component analysis [4], and introduced the concept of target neighbors
for an instance xi as the k nearest neighbors with the same label yi that belong to a local
neighborhood defined by a sphere of some radius. They also established a safety perime-
ter to push away instances with different labels (impostors). LMNN’s formulation tries
to increase similarity to target neighbours, while reducing it to impostors lying within
the k-nearest neighbour region. To estimate the solution matrix M , they use gradient de-
scent on the objective function. Despite that LMNN performs very well in practice, it is
sometimes prone to over-fitting.

In Information Theoretic Metric Learning (ITML) [3], an information-theoretic
measure is used and the LogDet divergence is introduced as a regularizer term in the
optimization problem to avoid over-fitting. The authors translate the problem of learn-
ing an optimal distance metric to that of learning the optimal Gaussian with respect to
an entropic objective. ITML considers simple distance constraints enforcing that similar
instances have a distance lower than a given upper bound dM (xi, xj) ≤ u; and dissimi-
larity instances be further than a specific lower bound dM (xi, xj) ≥ ν. The optimization
method computes Bregman projections and no Semidefinite Programming is required.

Logistic Discriminant Metric Learning (LDML) [5] presents an approach for the par-
ticular context of Face Identification. The authors model the probability pij of whether
two images (xi, xj) depict the same person as pij = p(yi = yj |xi, xj ;M, b) =
σ(b − dM (xi, xj)) where σ(z) = (1 + exp(−z))−1 is the sigmoid function that maps
the distance to class probability and b is a bias term that acts as the optimal distance
threshold value and is learned together with metric parameters. As dM (xi, xj) is linear
with respect to the elements of M, it is possible to rewrite pij = σ(bWTXij) where W
is the vector containing the elements of M and Xij the entries of (xi−xj)T (xi−xj) so
the model pij appears as a standard linear logistic discriminant model

∑
i,j tij ln(pij) +

(1−tij)ln(1−pij) where tij = 1 denotes the equality of labels yi and yj . The matrixM



is estimated using the maximum likelihood by projected gradient ascent in an iterative
manner.

A more recent approach, namely ’Keep It Simple and Straightforward MEtric’
(KISSME) has more recently been proposed in [9]. In this case, the distance metric is
learned from equivalence constraints (S and D) applied to Face verification and person
re-identification. This method tackles the problem from a statistical inference perspec-
tive and, in contrast to others, does not pose a complex optimization problem. Hence,
it does not require computationally expensive iterations and it is orders of magnitudes
faster than other comparable techniques.

In a different category of methods, we have Classification Similarity Learning. In
this case, the learning of the metric matrix M is replaced by a classifier. Although the
properties of a pseudo-metric do not hold in this case, the approach is still valid when
the pairwise similarity measure learned does not need to be integrated in other methods
whose theoretical formulation is based on the use of a pseudo-metric e.g. algorithms like
k-NN. A typical scope of application is the construction of similarity-based rankings,
which are necessary in a wide range of applications e.g. multimedia retrieval.

Some metric learning methods, e.g. KISSME, have reported a higher performance
than classification based approaches. However, the results of the latter are highly depen-
dent on the classification set-up, the input format used in the classification and the pre-
processing of the feature vectors. In this paper we deal with these issues in a classifi-
cation domain composed of images extracted from well-known repositories about face
verification and object-recognition.

3. Classification-based learning

Given a number of n labeled image pairs pk = (xk1
, xk2

) k = 1 . . . n, xk1
, xk2

∈ X and
their corresponding labels lk ∈ {similar, dissimilar} k = 1 . . . n, the simplest way
to train and predict with a classifier is by using the feature based representation of the
images. The training information in this case is given as information-label pairs {pk, lk},
where pk = xk1 ||xk2 and || denotes the concatenation operator.

A significant improvement in the results was achieved by the alternative format pre-
sented in [12] and employed in [9]. In this case, the term pk in the information-label
pairs {pk, lk} is defined as pk = abs(xk1 − xk2)||xk1 ∗ xk2 with abs, − and ∗ denot-
ing element-wise absolute value, subtraction and multiplication operations on the feature
vectors, respectively. This format is used in a face verification context, and it is based
on the argument that the differences between the features will be small if elements are
similar and that the sign of the multiplication is important to separate samples around
0. A similar format was also used in an image retrieval context [15], showing a higher
performance than using the original feature vectors in the low sample case.

Recently, a convenient combination of standard distances has been successfully ap-
plied in a classification set-up, to boost performance when several modalities are avail-
able [13]. In particular, a pool composed of four Minkowski distances (Lp norms for
p ∈ {0.5, 1, 1.5, 2}) was used to replace the original feature vector in pk by a new set of
features composed of distance values defined on the multiple descriptor spaces. In total,
4m distances were used, with m the number of descriptors. Despite of the loss of some
of the information contained in the original features, the intrinsic dimensionality reduc-



tion associated with the method has a compensatory effect and leads to higher precision
rates.

In this paper, we also use a set of standard distances as an input to the classifier,
but these are used to supplement (rather than replace) the information provided by the
original feature vectors. This leads to an improved Enriched Classification Similarity
Learning (ECSL) method. In this case the format used as input are information-label
pairs {pk, lk}, defined according to Eq.1

pk = abs(xk1 − xk2)||xk1 ∗ xk2 ||d1(xk1 ,xk2)|| . . . ||ds(xk1 ,xk2) (1)

where d1 . . . ds represent a set of standard distance functions defined on the original
feature space. The rationale behind this enlarged data input format is that the distinct
nature of each distance may contribute to the learning by catching a different relation
between the features in a pair. For example, while the cosine distance considers the fea-
tures as vectors and focuses on the angle between them, the Euclidean distance consid-
ers them as points and measures the straight line distance between the points. This may
help the classifier learn a more informed similarity score function, thus leading to better
classification results.

4. Experimental setting

An extensive experimentation has been carried out, to compare the performance of our
method to that of other state-of-the-art metric learning approaches. In particular, we have
evaluated our method against the SVM method with the input format used in [11] and
[12], Information-Theoretic Metric Learning (ITML) [3], Large-Margin Nearest Neigh-
bors (LMNN)[17], Linear Discriminant Metric Learning (LDML) [5] and KISS Metric
Learning (KISSME) [9]. The performance of all methods has been tested in four differ-
ent well-known and challenging datasets for face verification and object recognition that
have in common that contain images with important variations in illumination, poses or
scale. A summary with the main characteristics is in Table 1.

• The Labeled Faces in the Wild (LFW) [6][7] consists of 13233 face images of
5749 people taken from the Yahoo! News Web. We use the image restricted test
protocol on LFW where the only available information is whether each pair of
training images are from the same subject or not. Out of all the possible fea-
ture vectors available for the LFW data set, we use the Scale-Invariant Feature
Transform (SIFT) based feature vectors [5] of LFW and the high-level face rep-
resentation obtained in [11]. These are referred to as LFW-SIFT and LFW-Attr,
respectively.

• The PubFig database [11] is a large, real-world face dataset consisting of 58797
images of 200 people collected from Google and Flickr. Its image attributes pro-
vide high-level semantic features indicating the presence or absence of visual face
traits (such as hair, glass, age, race, smiling and so on) and allow a semantic de-
scription that is more robust against large image variations and that can lead to
good verification performance.



• The ToyCars [16] data set consists of 256 image crops of 14 different toy cars and
trucks and is considered for compare our approach in a different setting of face
verification using the image representation described in [9]. The intention of the
database is to compare before unseen object instances of the known class cars.
Thus, in testing, the task is to classify if a pair of images shows the same object
or not.

To reduce the dimensionality a Principal Component Analysis was conducted in
each dataset in a pre-processing stage. The LFW-SFIT dataset is projected onto a 100
dimensional subspace, LFW-Attr and Pubfig are reduced to a 65 dimensional subspace
and, for the ToyCars database we use 50 dimensional subspace. For further information
on these data sets, the user is referred to [5][9].

For the sake of comparison, we inherit the experimental framework presented in [9],
that allows for the evaluation of the methods according to their performance at ranking
a number of pairs according to their estimated similarity. To this end, each repository
is divided into f folds of disjoint objects and a cross validation approach is used. For
each experiment, one fold is chosen for test and the remainder ones are used for training.
Training and test sets are generated at random, according to the class information avail-
able. Results on each fold are appropriately combined to produce a ROC curve for each
method.

To allow for a fair comparison, all methods are fed with the same training data, and
the resulting model is used to rank a new common set of pairs by similarity. The number
of folds used and the number of pairs in the training and test sets are the same as in [9]
in all cases and are summarized in Table 1.

The supplementary distances used in our method are the Mahalanobis distances, the
Cosine distance and four Minkowski distances (Lp norms) with values p = 0.5, 1, 1.5, 2
as the standard distances added in Eq.1. We have used a linear SVM as the classifier,
setting the cost parameter to the default value of 1, as in [9].

Table 1. A summary of the four data sets used in the experiments.

Data set Size Objects Folds Num. Training Num. Testing

ToyCars 256 14 2 8515 7381
LFW-SIFT 13233 5479 10 5400 600
LFW-Attr 13233 5479 10 5351 596
PubFig 58797 200 10 18000 2000

5. Results

Figure 1 shows comparative ROC curves in the databases LFW-Attr, LFW-SIFT and Pub-
Fig. For the sake of clarity, plots presented in this section only include two metric learn-
ing methods, namely KISSME and ITML. The first has been chosen because it yields
consistently the best results across all metric learning methods in all repositories. The
second because it is a method frequently used in the literature for comparison purposes
in metric learning contexts [2][8]. We have also included the results of the Mahalanobis
(MAHAL) and Euclidean distances (IDENTITY) as baselines. The Equal Error Rate is



provided in brackets as part of the legend, and also shown in Table 2 for all methods,
including those not plotted in Figure 1.

(a) (b) (c)

Figure 1. Comparative performance between for ECSL, KISSME, ITML, MAHAL, SVM, IDENTITY in a)
LFW-Attr; b) LFW-SIFT; and c) PubFig.

We can observe that the classification performance of the proposed method equals
the best of the metric learning techniques in the PubFig and LFW (Attributes) reposito-
ries. In LFW-SIFT, the method outperforms all of the metric learning algorithms included
in the comparison. In addition, a substantial performance increase can be observed with
respect to the use of a SVM without the added distances in LFW-SIFT, LFW-Attr and
PubFig. The standard SVM method consistently obtains worst results than any of the
two metric learning approaches shown in the plots. The only exception is in PubFig,
where the standard SVM method appears below the KISS method but performs better
than ITML. In Table 2, it can also be observed that LDML and LMNN methods are
ranked different depending on the database but they are always outperformed by ECSL
and KISSME.

Table 2. Equal Error Rate for ECSL and the rest of the methods in all databases. Best results in each dataset
are marked in bold.

Method LFW-Attr LFW-SIFT PubFig ToyCars ToyCars*

ECSL 0.848 0.828 0.780 0.902 0.985
KISSME 0.844 0.806 0.776 0.934 0.974
SVM 0.815 0.785 0.750 0.811 0.860
MAHAL 0.817 0.748 0.719 0.898 0.941
ITML 0.834 0.789 0.692 0.708 0.911
LDML 0.834 0.796 0.776 0.716 0.720
LMNN 0.831 0.785 0.735 0.805 0.919
IDENTITY 0.783 0.675 0.725 0.716 0.728

An exception to ECSL showing the best performance has been observed in the Toy-
Cars repository (see Fig. 2(a)). In this case, KISSME outperforms ECSL, that ranks sec-



ond and above the rest of the learning methods. The low performance of ITML is also
noticeable in this case, scoring below the Euclidean distance. Again the improvement of
ECSL with respect to the standard SVM is remarkable in this database. To further study
the performance of the methods in this database, we have run a second experiment (see
ToyCars* in Table 2). Instead of selecting pairs from disjoint sets of objects for training
and test, pairs have been randomly chosen (taking care that no pair is simultaneously
used for training and test). These two experiments represent different scenarios. In the
first case, the similarity function is learned from a set of objects, and applied on a differ-
ent set of never seen objects. This set-up is useful when we have a collection of classified
objects that can be used to generate the similar and dissimilar pairs. In the second case,
the function is learned from a selection of pairs extracted from the same repository, as
typically happens in retrieval problems where it is the user who judges the similarity.
The results for this second experiment are shown in Fig. 2(b). In this case, ECSL scores
the best, again slightly better than the best of the metric learning methods.

(a) (b)

Figure 2. Comparative performance between the method proposed (ECSL) and the comparative methods in
the ToyCars database a) using pairs from disjoint sets in training and test; b) using disjoint sets of random pairs
for training and test (ToyCars*)

To test whether the improvement achieved is due to a particularly good behavior
of one of the standard distances and whether the concatenation of a set of well-known
distance values as part of the training data format makes any benefit, in Fig. 3 we compare
the performance of the proposed method to that obtained by using each of the added
distances in isolation. The result of using a SVM as a distance combination method [14]
has also been included as a reference (SVM in the figure). In all cases, we can observe
that the performance of the SVM algorithm stays close to that of the best of the single
distances but, when all the standard distances are used within the classification set-up of
ECSL, the performance is significantly boosted.

6. Conclusion

Recent methods on the metric learning literature have outperformed classification simi-
larity learning. The algorithm presented in this paper acts on the data input to the clas-



(a) (b) (c)

Figure 3. Comparative performance between the method proposed (ECSL) and standard distances in a)
LFW-Attr; b) LFW-SIFT; and c) PubFig.

sifier to turn classification similarity learning into a competitive method, with a perfor-
mance slightly above recent metric learning methods. In particular, for each pair of ob-
jects pk, we combine the information contained in their feature vectors as shown in Eq.1,
considering the result of a set of distance functions on the original feature space.

Although the SVM has been used to develop a proof of concept, the method is by
no means restricted to the use of this particular classifier. On the contrary, the framework
presented is open to the use of alternative classification methods and/or meta-estimators.
It is also possible to extend the similarity paradigm to support degrees of similarity by
using regression. When using a SVM, the extension of ECSL to the non-linear case is
particularly straight forward. In addition, an adequate choice of the kernel according to
the specific characteristics of the problem may help achieving further improvements to
the method.

Another important aspect not considered in this research is the robustness of the
methods to variations of the training size. Responses to small sample size situation are
specially relevant when the number of examples is scarce (e.g. Content Based Image
Retrieval). In this context, previous work e.g.[15] has already outlined the potential of
integrating standard distance values into a classification approach for similarity learning.
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