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Abstract. This paper presents a multi-agent framework designed to
simulate synthetic humans that properly balance task oriented and so-
cial behaviors. The work presented in this paper focuses on the social
library integrated in BDI agents to provide socially acceptable decisions.
We propose the use of ontologies to define the social relations within
an artificial society and the use of a market based mechanism to reach
sociability by means of task exchanges. The social model balances ratio-
nality, to control the global coordination of the group, and sociability,
to simulate relations (e.g. friendliness) and reciprocity among agents.
The multi-agent framework has been tested successfully in dynamic en-
vironments while simulating a virtual bar, where groups of waiters and
customers can interact and finally display complex social behaviors (e.g.
task passing, reciprocity, planned meetings).

1 Introduction

Multi-agent systems are sometimes referred to as societies of agents and provide
an elegant and formal framework to animate synthetic humans. When designing
such agents, the main concern has normally been with the decision-making mech-
anism, as it is the responsible for the actions that will be finally animated. Virtual
actors normally operate in dynamic resource bounded contexts; thus, multi-agent
simulations require group coordination, as self-interested agents easily come into
conflicts due to the competition for the use of shared resources (i.e. objects in a
virtual environment). These obstructions produce low quality animations where
characters do not act realistically. Moreover, virtual humans represent roles in
the scenario (e.g. a virtual guide, a waiter, a customer, etc.) and the social net-
work formed by the relations among the members of the society should also be
considered when animating their behaviors.

This paper presents a multi-agent simulation framework to produce good
quality animations where the behavior of socially intelligent agents better imi-
tates that of real humans. We aim at incorporating human style social reasoning
in virtual characters. Therefore, we have developed a market based social model
[1] which coordinates the activities of groups of virtual characters and incorpo-
rates social actions in the agent decision-making. Our approach is inspired in
reciprocal task exchanges between agents [2] and uses ontologies to define the



social relations within an artificial society. According with the main parame-
ter of the model, that is sociability, the agents can balance their task-oriented
behaviors (e.g. a virtual waiter should serve customers) and their social skills
(e.g. negotiate with other waiters to gain access to a resource, assume external
actions/favors, or simple chats).

The structure of the paper is as follows: in section 2 we describe briefly
some previous literature on the field. In section 3 we present the multi-agent
simulation framework and the main components of the social model. Section 4
describes an illustrative example modeled to test our framework. Lastly, section
5 summarizes the first results extracted and analyzes them.

2 Related work

Many interactive games and virtual communities put human users together with
synthetic characters. In this context, some research has been done on the believ-
ability issues of virtual actors, usually centred on the interactions either between
a human user and a single character [3] or among the synthetic characters them-
selves [4]. These interactive scenarios often present tasks to the participants that
must be solved collaboratively [5]. Therefore, behavioral animation has broadly
been tackled from the field of coordinated multi-agent systems (e.g. General-
ized Partial Global Planning (GPGP) [6], the TAEMS framework [7] or the
RETSINA system [8]). Moreover, task coordination has been applied to HSP-
based (Heuristic Search Planning) virtual humans in [9] and [10] to adapt better
to the dynamism of shared environments.

Social reasoning has also been extensively studied in multi-agent systems in
order to incorporate social actions to cognitive agents [11]. As a result of these
works, agent interaction models have evolved to social networks that try to
imitate the social structures found in reality [12]. Social dependence networks in
[13] allow agents to cooperate or to perform social exchanges attending to their
dependence relations (i.e. social dependence and social power). Trust networks
in [14] are used to define better delegation strategies by means of a contract net
protocol and fuzzy cognitive representations of the other agents as well as of the
dynamic environment. In preference networks, such as the one presented in this
paper, agents express their preferences using utility functions and their attitude
towards another agent is represented by the differential utilitarian importance
they place on that agent’s utility.

Semantic information can be of great value to the agents inhabiting a virtual
world. As demonstrated in [15], the use of semantics associated to objects can en-
hance the interaction of virtual humans in complex environments. Environment-
based approaches are also emerging to provide semantic interoperability among
intelligent agents through the use of coordination artifacts [16]. Furthermore,
ontologies are very useful to model the social relations between the agents in-
volved in graphical and interactive simulations [17]. In MOISE+ [18], ontological
concepts join roles with plans in a coherent organizational specification. Another



example can be found in [19] where a functional ontology for reputation is pro-
posed.

Although the results obtained by the previous approaches show realistic sim-
ulations for many task-oriented behaviors, synthetic characters should also dis-
play pure social behaviors (e.g. interchanging information with their partners or
grouping and chatting with their friends). MAS-SOC [20] aims at creating a plat-
form for multi-agent based social simulations with BDI agents, which is also our
purpose. In this context, work is ongoing in order to incorporate social-reasoning
mechanisms based on exchange values [21]. The multi-agent framework presented
here is oriented to simulate socially intelligent agents able to balance their ra-
tionality and sociability, a key point to finally display high quality behavioral
animations.

3 Multi-agent simulation framework

The multi-agent simulation framework presented in figure 1 has been developed
over Jason [22], which allows the definition of BDI agents using an extended
version of AgentSpeak(L). The animation system (virtual characters, motion ta-
bles, etc) is located at the 3D engine, which can run separately. The environment
is handled by the Semantic Layer, which acts as an interface between the agent
and the world. It is in charge of perceiving the state of the world and executing
the actions requested by the agents, while ensuring the consistency of the World
Model. Ontologies define the world knowledge base using two levels of represen-
tation: the SVE Core Ontology is a unique base ontology suitable for all virtual
environments and it is extended by different Domain Specific Ontologies in order
to model application-specific knowledge. 1

Fig. 1. Multi-agent simulation framework.

1 See [15] for details on ontologies and their use to enhance agent-object interaction.



The agent decision-making is defined in the Agent Specification File. This file
contains the initial beliefs as well as the set of plans that make up the agent’s
finite state machine. The Task library contains the set of plans that sequence
the actions needed to animate a task. For instance, a virtual waiter serving a
coffee will go to the coffee machine to get the coffee and will give it to the
customer afterwards. Here, modularity is guaranteed since the Task library can
be changed depending on the environment and the roles being simulated. As
stated above, only rational behaviors are not enough to simulate agent societies.
Therefore, we have extended the ontologies to define the possible social relations
among the agents of a society and we have included a Social library to manage
different types of situations. This library is based on an auction model and uses
social welfare concepts to avoid conflicts and allow the agents to behave in a
coordinated way. The Social library also incorporates a reciprocity mechanism
to promote egalitarian social interactions. Finally, the Conversational library
contains the set of plans that handle the animation of the interactions between
characters (e.g. ask someone a favor, planned meetings, chats between friends...).

3.1 Social Ontology

The set of possible social relations among the agents within an artificial society
can be ontologically represented in the form of interrelations between classes of
agents. Figure 2 shows the extensions made to the object ontology previously
presented in [15] in order to hold agent relations. We distinguish two basic lev-
els of social relations: the level of individuals (i.e. agentSocialRelations) and the
institutional level (i.e. groupSocialRelations). When one agent is related with an-
other single agent, an agentSocialRelation will link them. Different application
domains can need specific relations; thus, Domain Specific Ontologies are used
to inherit particular relations from the core ontology. For instance, the property
workFriend is used by the waiters in the virtual bar presented in section 4 to
model the characteristic of being a friend of a workmate. Other examples of
individual relations are family relations such as to be parent of or to be married
with another agent. In this case, there is not only semantic but also structural
difference, since parent is a unidirectional relation whereas marriedWith is bidi-
rectional.

On the other hand, groupSocialRelations can be used to represent an agent
belonging to a group. The social network created by this type of relation can be
explored to get the rest of the agents of the same group, thus modeling a one-
to-many relation. The Group class is an abstraction of any kind of aggregation.
Therefore, we can model from physical groups such as the players of a football
team to more sophisticated mental aggregations such as individuals of a certain
social class or people of the same religious ideology. Although not considered
in this paper, many-to-many relations between groups could also be created
using this ontological approach. The dynamics of how these relations are created,
modified and terminated falls out of the scope of this paper. Thus, at the moment
relations are set off-line and do not change during the simulation.



Fig. 2. Social Ontology

3.2 Social library

The simulation of worlds inhabited by interactive virtual actors normally involves
facing a set of problems related to the use of shared limited resources and the
need to animate pure social behaviors. Both types of problems are managed by
the Social library by using a Multi-agent Resource Allocation approach [1]. This
library allows any agent to auction tasks in order to reallocate them so that
the global social welfare can be increased. Tasks are exchanged between agents
using a first-price sealed-bid (FPSB) auction model where the agents express
their preferences using performance and social utility functions.

The performance utility function U i
perf (〈i ← t〉) of a bidder agent i reflects

the efficiency achieved when the task t is allocated to the agent i (〈i ← t〉).
There can be many reasons for an agent to be more efficient: it may perform the
task faster than others because of his know-how or it may be using a resource
that allows several tasks to be performed simultaneously (e.g. a coffee machine
in a virtual bar can be used by a waiter to make more than one coffee at the
same time). The utility function has to favor the performance of the agents, but
high performances can also be unrealistic for the animation of artificial human
societies. For example, if all agents work as much as they can, they will display
unethical or robotic behaviors. Furthermore, agents should also show pure social
behaviors to animate the normal relations between the members of a society.

Whereas the performance utility function modelled the interest of an agent
to exchange a task from an efficiency point of view, we introduce two additional



social utilities to represent the social interest in exchanging a task. The aim of
social utilities is to promote task allocations that lead the agents to perform
social interactions with other agents (e.g. planned meetings with their friends).
Therefore, these functions take into account the social relations established be-
tween the agents and defined in the ontology to compute the value that expresses
their social preferences. Negotiation of long sequences of actions is not very in-
teresting for interactive characters, as plans are likely to be thwarted due to
the dynamism of the environment and to other unpredictable events. Thus, we
define the following social utility functions:

– Internal social utility (U i
int(〈i ← t, j ← tnext〉)): is the utility that a bidder

agent i assigns to a situation where i commits to do the auctioned task t so
that the auctioneer agent j can execute his next task tnext.

– External social utility (U i
ext(〈j ← t〉)): is the utility that a bidder agent i

assigns to a situation where the auctioneer agent j executes the auctioned
task t while i continues with his current action.

The winner determination problem has two possible candidates coming from
performance and sociability. In equation 1 the welfare of a society is related to
performance, hence, the winner of an auction will be the agent that bid the
maximum performance utility. On the other hand, equation 2 defines the social
winner based on the maximum social utility received to pass the task to a bidder
(see U∗

int(t) in equation 3) and the maximum social utility given by all bidders to
the situation where the task is not exchanged but performed by the auctioneer j
(see U∗

ext(t) in equation 4). To balance task exchange, social utilities are weighted
with a reciprocity matrix (see equations 3 and 4). We define the reciprocity factor
wij for two agents i and j, as the ratio between the number of favors (i.e.tasks)
that j has made to i (see equation 5).

winnerperf (t) =
{

kεAgents|U i
perf (t) = max

iεAgents
{U i

perf (〈i ← t〉)} (1)

winnersoc(t) =
{

j U∗
ext(t) >= U∗

int(t)
i U∗

ext(t) < U∗
int(t) ∧ U i

int(t) = U∗
int(t)

(2)

U∗
int(t) = max

iεAgents
{U i

int(〈i ← t, j ← tnext〉) ∗ wij} (3)

U∗
ext(t) = max

iεAgents
{U i

ext(〈j ← t〉) ∗ wji} (4)

wij =
Favoursji

Favoursij
(5)

At this point, agents can decide whether to adopt this kind of social al-
locations or to be only rational as explained previously. They choose between
them in accordance with their Sociability factor, which is the probability to



select the social winner instead of the rational winner. Sociability can be ad-
justed in the range [0,1] to model intermediate behaviors between efficiency and
total reciprocity. This can provide great flexibility when animating characters,
since Sociability can be dynamically changed thus producing different behaviors
depending on the world state.

4 Application example

In order to test the presented social multi-agent framework, we have created a
virtual university bar where waiters take orders placed by customers (see figure
3a). The typical locations in a bar (e.g. a juice machine) behave like resources
that have an associated time of use to supply their products (e.g. 2 minutes to
make an orange juice) and they can only be occupied by one agent at a time.
Agents can be socially linked using the concepts defined in the Social Ontology.
According to them, all waiters are related through a groupSocialRelation to
Waiters, a group representing their role (see figure 3b). Moreover, they can
be individually related with other waiters through workFriend. This relation
semantically means that the agents are friends at work and, in this application,
it has been modeled as bidirectional but not transitive. For example, in figure
3b, Albert is friend of Dough and John but these later ones are not friends of
each other. Moreover, we have also specified three possible groups of customers:
teachers, undergraduates and graduates. The social network specified by them
is used to promote social meetings among customers in the university bar.

Fig. 3. (a) Virtual university bar environment, (b) Social relations between agents



The waiters are governed by the finite state machine2 shown in figure 4a,
where orders are served basically in two steps: first, using the corresponding re-
source (e.g. the grill to produce a sandwich) and second, giving the product to
the customer. Tasks are always auctioned before their execution in order to find
good social allocations. Equations 6 and 7 define the utility values returned by
the performance utility function for these tasks. This function aims at maximiz-
ing the number of tasks being performed at the same time and represents the
waiters’ willingness to serve orders as fast as possible. Social behaviors defined
for a waiter are oriented to animate chats among his friends at work. Therefore,
waiters implement the internal and external social utility functions detailed in
equations 8 and 9, where Near computes the distance between the agents while
they are executing a pair of tasks. These functions evaluate social interest as
the chance to meet a workFriend in the near future, thus performing a planned
meeting.

U i
perf (〈i ← ’Use’〉) =





1 if [(i = Auctioneer) ∧ IsFree(Resource)]∨
[IsUsing(i, Resource) ∧ not(IsComplete(Resource))]

0 Otherwise
(6)

U i
perf (〈i ← ’Give’〉) =





1 if [(i = Auctioneer) ∧ nextAction = NULL]∨
[currentTask = ’Give’ ∧ not(handsBusy < 2)]

0 Otherwise
(7)

U i
int(〈i ← t, j ← tnext〉) =





1 if IsWorkFriend(i, j) ∧Near(t, tnext)∧
ExecT ime(tnext) > RemainT ime(currentTask)

0 Otherwise
(8)

U i
ext(〈j ← t〉) =

{
1 if IsWorkFriend(i, j) ∧Near(currentTask, t)
0 Otherwise (9)

On the other hand, customers place orders and consume them when served.
At the moment, we are not interested in improving customer performance but
in animating interactions between the members of a social group (i.e. teachers,
undergraduates and graduates). The finite state machine in figure 4b governs
the actuation of customers that use auctions to solve the problem of where to
sit. Depending on his or her sociability factor, a customer can randomly choose
a chair or start an auction to decide where to sit and consume. This auction
is received by all customers in the bar, which use the external social utility
function defined in equation 10 to promote social meetings. This function uses
the groupSocialRelations to determine if two individuals belong to the same
2 Specified by means of plans in Jason’s extended version of AgentSpeak(L)



Fig. 4. (a)Waiter specification, (b) Customer specification

group. We define the performance and the internal social utility functions as 0
since task passing is not possible in this case (i.e. no-one can sit instead of another
customer). Finally, when a social meeting emerges, both waiters and customers
use the plans in the Conversational Library to sequence the speech-acts needed
to animate commitments, greetings or simple conversations.

U i
ext(〈j ← ’Sit’〉) =

{
1 if IsSameGroup(i, j) ∧ IsConsuming(i, auctionedTable)
0 Otherwise

(10)

5 Results

To illustrate the effects of the social techniques previously defined we have sim-
ulated the virtual university bar example with up to 10 waiters serving 100
customers, both with different sociability factors. We estimate the social wel-
fare of our society using two metrics explained along this section: Throughput
and Animation. Throughput is an indicator in the range [0, 1] that estimates
how close a simulation is to the ideal situation in which the workload can be
distributed among the agents and no collisions arise. Thus, equation 11 defines
Throughput as the ratio between this ideal simulation time (T ∗sim) and the real
simulation time (Tsim), where Ntasks and Nagents are the number of tasks and
agents respectively and Ttask is the mean time to execute a task.

Throughput =
T ∗sim

Tsim
=

Ntasks ∗ Ttask/Nagents

Tsim
(11)



Figure 5a shows the Throughput obtained by different types of waiters ver-
sus self-interested agents (i.e. agents with no social mechanisms included). In
this first social configuration, all waiters are friends and customers are automat-
ically assigned a group (teacher, undergraduate or graduate) when they come
into the scenario. Self-interested agents collide as they compete for the use of
the shared resources and these collisions produce high waiting times as the num-
ber of agents grows. We can enhance this low performance with elitist agents
(Sociability = 0) which coordinately exchange tasks with others that can carry
them out in parallel, thus reducing the waiting times for resources. Nevertheless,
they produce unrealistic outcomes since they are continuously working if they
have the chance, leaving aside their social relationships (in our example, chats
between friends). The Sociability factor can be used to balance rationality and
sociability. Therefore, the Throughput for the sort of animations we are pursuing
should be placed somewhere in between elitist and fully reciprocal social agents
(Sociability = 1). On the other hand, figure 5b demonstrates that the higher
the Sociability factor is, the larger the number of social meetings that will be
performed by the customers when they sit at a table.

Fig. 5. (a) Waiter Throughput, (b) Customer social meetings.

Throughput is an estimator for the behavioral performance but, despite be-
ing a basic requirement when simulating groups of virtual characters, it is not the
only criterion to evaluate when we try to create high quality simulations. There-
fore, we have defined another estimator that takes into account the amount of
time that the designer of the simulation wants to be spent in social interactions.
According to this, we define the following simulation estimator:

Animation =
T ∗sim + Tsocial

Tsim
(12)

, where Tsocial represents the time devoted to chatting and to animating
social agreements among friends. In our virtual bar we have chosen Tsocial as
the 35% of T ∗sim. Figure 6 shows the animation values for 10 reciprocal social



waiters with 4 degrees of friendship: all friends, 75% of the agents are friends,
half of the agents are friends and only 25% of the agents are friends. As we
have already mentioned, low values of Sociability produce low quality simula-
tions since the values obtained for the animation function are greater than the
reference value (Animation = 1). On the other hand, high values of Sociability
also lead to low quality simulations, especially when the degree of friendship is
high. In these cases, the number of social conversations being animated is too
high to be realistic and animation is far from the reference value. The animation
function can be used to extract the adequate range of values for the Sociability
factor, depending on the situation being simulated. For example, in our virtual
bar we consider as good quality animations those which fall inside ±10% of the
reference value (see shaded zone in figure 6). Hence, when all the waiters are
friends, good animations emerge when Sociability ∈ [0.1, 0.3].

Fig. 6. Animation results obtained for waiters.

Finally, table 1 compares the amount of time devoted to executing each
type of task in executions with 10 elitist waiters (Sociability = 0) and 10 fully
reciprocal social waiters (Sociability = 1). The irregular values in the columns
Tuse and Tgive on the left side of the table demonstrate how some agents have
specialized in certain tasks. For instance, agents 2, 5, 9 and 10 spend most
of their time giving products to the customers while agents 3 and 7 are mainly
devoted to using the resources of the bar (e.g. the coffee machine, etc). Although
specialization is a desirable outcome in many multi-agent systems, egalitarian
human societies need also to balance the workload assigned to each agent. On the
right side of the table, fully reciprocal social waiters achieve equilibrium between
the time they are giving products and the time they are using the resources of the
environment (see columns Tuse and Tgive). Furthermore, the reciprocity factor
balances the number of favors exchanged among the agents (compare Balance
columns). A collateral effect of this equilibrium is the increase in the waiting
times, since social agents will sometimes prefer to meet his friends in a resource
than to reallocate the task (compare columns Twait).



Sociability = 0 Sociability = 1
Agent Twait Tuse Tgive Balance Twait Tuse Tgive Balance

1 0 32 19 -6 16 69 34 -2
2 3 4 26 -3 18 58 24 -2
3 14 52 1 28 41 45 16 0
4 3 16 28 -3 48 60 27 3
5 0 7 30 -16 34 58 12 -1
6 3 37 17 -1 48 64 14 -2
7 0 67 4 21 18 48 24 1
8 0 45 17 1 33 45 24 4
9 7 5 23 -11 46 36 21 0
10 1 6 41 -10 27 56 20 -1

Table 1. Time distribution for 10 waiters in the bar (time values are in seconds)

6 Conclusions and Future Work

The animation of groups of intelligent characters is a current research topic with
a great number of behavioral problems to be tackled. We aim at incorporat-
ing human style social reasoning in character animation. Therefore, this paper
presents a technique to properly balance social with task-oriented plans in order
to produce realistic social animations. We propose the use of ontologies to define
the social relations within an artificial society and the use of a market based
mechanism to reach sociability by means of task exchanges. The multi-agent an-
imation framework presented allows for the definition of different types of social
agents: from elitist agents (that only use their interactions to increase the global
performance of the group) to fully reciprocal agents. These latter agents extend
the theory of social welfare with a reciprocity model that allows the agents to
control the emergence of social interactions among the members of a society.

Work is ongoing to provide the agents with mechanisms to self-regulate their
Sociability factor depending on their social relations and on their previous in-
tervention. Thus, agents will be able to dynamically adjust to the situation in
order to stay within the boundaries of good quality animations at all times.
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