
Improving the Performance of Partitioning Methods for Crowd Simulations

G. Vigueras, M. Lozano, J. M. Orduña and F. Grimaldo
Departamento de Informática - Universidad de Valencia

Spain
{Guillermo.Vigueras, Juan.Orduna}@uv.es

Abstract

Simulating the realistic behavior of large crowds of au-
tonomous agents is still a challenge for the computer gra-
phics community. In order to handle large crowds, some
scalable architectures have been proposed. Nevertheless,
the effective use of distributed systems requires the use of
partitioning methods that can properly assign different sets
of agents to the existing distributed resources.

In this paper, we propose the improvement of the parti-
tioning method for distributed crowd simulations by using
irregular shape regions. Concretely, we propose the par-
tition of the virtual world using convex hulls. The perfor-
mance evaluation results show that the Convex Hull method
outperforms the rest of the considered methods in terms of
both fitness function values and execution times, regardless
of the movement pattern followed by the agents. These re-
sults show that the shape of the regions in the partition can
improve the performance of the partitioning method, rather
than the heuristic method used.

1. Introduction

In recent years, crowd simulations have become an es-
sential tool for many virtual environment applications in
education, training, and entertainment [4, 12, 5]. These app-
lications require both rendering visually plausible images of
the virtual world and managing the behavior of high num-
ber of autonomous agents. These requirements result in a
computational cost that highly increases with the numbers
of agents in the system. Thus, simulating the realistic be-
havior of large crowds of autonomous agents is still a chal-
lenge for the computer graphics community.

In previous papers, we proposed a scalable architecture
for crowd simulations that can manage large crowds of au-

tonomous agents at interactive rates [6, 16]. For illustra-
tion purposes, Figure 1 shows a scheme of this architecture.
Each computer can act either as a Client Computer (labeled
in the figure as Clientx) that hosts a subset of agents, or as
an Action Server (labeled in the figure as ASx) that contains
a part of the virtual world database.

Figure 1. General scheme of the distributed
crowd architecture

Nevertheless, the effective use of distributed systems re-
quires to develop efficient partitioning algorithms that find
the best distribution of the existing agents to the action ser-
vers in the system. This problem has been previously stu-
died for PLAYSTATION3 to display 15000-fishes crowd at
60 frames per second [12]. This work incorporates spatial
hashing techniques and it also distributes the load among
the PS3-Cell elements. The same social forces model has
been also integrated in a PC-Cluster with MPI communi-
cations among the processors, although the number of si-
mulated agents is still low (512 agents) and the execution
times are far from interactive [17]. Finally, another work
describes the use of a multicomputer with 11 processors to
simulate a crowd of 10.000 agents at interactive rates [11].
However, they use static agent-processor assignment, and

Eighth International Conference on Hybrid Intelligent Systems

978-0-7695-3326-1/08 $25.00 © 2008 IEEE

DOI 10.1109/HIS.2008.31

102

no workload balancing is provided. Also, there are purely
graphic approaches [10, 15] that are not concerned with sca-
lability problems because they are not focused on managing
the behavior of high number of autonomous agents.

Another proposal investigates several techniques for par-
titioning a crowded virtual environment into regions that
can be managed by separate servers [14]. Region-based par-
titions, where each part of the distributed database contains
the information of a different region of the virtual world,
seem to be simplest way of partitioning crowd simulations.
However, several problems arise when physically distribu-
ting the database. First, in order to maintain the consistency
those agents near the borders of each region need to check
their actions with the corresponding servers. This requires
the exchanging of locking requests among the computers
hosting the partition of the database. This constraint adds
a significant overhead, and therefore it must be minimized.
Additionally, the partition must be properly balanced, in or-
der to avoid the saturation of the distributed system. Other-
wise, one or more computers can reach saturation, greatly
degrading the performance of the entire system [9].

In a previous work, we proposed a region-based ap-
proach for partitioning crowd simulations that improves the
performance of the partitioning method by using a gene-
tic search algorithm (GA) [7]. In this paper, we propose
the improvement of the partitioning method by using irre-
gular shape regions (convex hulls). We have compared this
method with two techniques that use rectangular regions.
One of them uses a heuristic search method (GA) and the
other one uses an algorithmic method (R-Tree). The perfor-
mance evaluation results show that the Convex Hull method
outperforms the rest of the considered methods in terms of
both fitness function values and execution times, regardless
of the movement pattern followed by the agents. As a result,
this method provides both less locking requests and better
balanced partitions than the other methods. These results
indicate that the shape of the regions in the partition has a
major influence on the performance of the partitioning me-
thod, rather than the search method used.

The rest of the paper is organized as follows: Section 2
describes different existing partitioning methods and how
they have been implemented for solving the partitioning
problem. Section 3 presents the performance evaluation of
the considered methods. Finally, Section 4 presents some
concluding remarks and future work to be done.

2. Region-Based Partitioning Methods

The partitioning problem consists of finding a near opti-
mal partition of regions (containing all the agents in the sy-
stem) that minimizes the number of agents near the borders
of the regions, and also that properly balances the number
of agents in each region. In order to model this problem, we

have defined the following fitness function to be minimized
[7]:

H(P) = ω1 · α(P) + ω2 · β(P), ω1 + ω2 = 1 (1)

The first term in this equation measures the number
of agents in the resulting partition P whose surroundings
(Area Of Interest or AOI [13]) crosses the region bounda-
ries. Each interaction of such agents will require the locking
of more than one of the servers, and this overhead must be
minimized. Concretely, α(P) is computed as the sum of all
the agents whose AOIs intersect two or more regions of the
virtual world (that is, the number of agents whose AOIs re-
side in more than one regions, see agk in Figure 1). β(P)
is computed as the standard deviation of the average num-
ber of agents that each region contains. Therefore, β(P)
measures how balanced the partition P is. Finally, ω1 and
ω2 are weighting factors between 0 and 1 that can be tuned
to change the behavior of the search as needed. Although
only the heuristic method uses this function for guiding the
search, for comparison purposes we have used H(P) as the
global fitness function for measuring the quality of the par-
titions provided by all the considered methods.

All the methods considered in this paper initially use the
k-means algorithm to obtain the initial partition. Once the
simulation starts, the partition should be adapted to the cur-
rent state of the crowd every server cycle. In order to imple-
ment all the considered methods, during the simulation each
server knows the location of the agents in its region and also
the number of agents and the mass center of the region as-
signed to its neighbor servers. While the heuristic method
uses a genetic algorithm (GA) guided by H(P) to search a
near-optimal partition of rectangular regions, the other two
methods use spatial clustering techniques to provide a near-
optimal partition. In the latter cases, the servers periodically
assign each of their agents agk to the server controlling the
region ri that minimizes the following function:

falloc(agk, ri) = dstMC(agk, ri)+
nAgs(ri) ∗ dstMC(agk, ri)

(2)

where falloc is the allocation function, nAgs(ri) provi-
des the number of agents in region ri, and dstMC(agk, ri)
corresponds to the Euclidean distance from agk to the cen-
ter of mass of the region ri. Since falloc should be minimi-
zed, the first term in falloc considers a spatial criterion and
the second term balances the server workload. Every time a
partition is updated, the corresponding state (center of mass
and number of agents) is sent to the neighbor servers.

2.1. R-tree

The R-Tree is one of the most popular dynamic index
structure for spatial searching [2]. We have implemented an

103

algorithmic partitioning method based on the optimization
of the area of the enclosing rectangle in each inner node.
The most interesting feature of this approach is that it is an
efficient structure for managing the partitioning problem,
since it let us to handle the crowd motion as insertions in
the tree, where the falloc criteria can be easily introduced.

2.2. A Genetic Algorithm

Genetic Algorithms (GA) consist of a search method ba-
sed on the concept of evolution by natural selection [8, 3].
GA start from an initial population, made of R chromo-
somes, that evolves following certain rules, until reaching
a convergence condition that maximizes a fitness function.
Each iteration of the algorithm consists of generating a new
population from the existing one by recombining or even
mutating chromosomes. In the GA proposed for solving
this problem [7], a chromosome consists of an integer array
that contains k rectangles, where k is the number of regions
in the partition. Hence, a chromosome defines a partition
of the virtual world in k regions. Thus, the searching pro-
blem can be faced using simple operators to combine the
rectangles in order to find the best partition [7].

2.3. Convex Hull

This approach is oriented to handle partitions as the con-
vex hull of the points that represent the agents locations in
a particular region. In our implementation, the target is to
reduce the area controlled by each server, in such a way that
the number of locking requests is reduced. Concretely, we
have implemented the Quickhull algorithm (QHull) [1] in
our system. As stated above, each server periodically up-
dates its region according to the falloc function. Once the
agents have been inserted, the convex hull can be recompu-
ted, so the center of mass and the number of agents can be
also updated.

As an example, Figure 2 shows a snapshot of the diffe-
rent partitions provided by the considered methods during a
simulation. Figure 2 a) and b) show the partitions provided
by the R-Tree and the GA methods, respectively. It can be
seen that both partitions use rectangular regions, although
the overlapping of the regions in the partition provided by
the GA method is lower than the overlapping of the regions
in the partition provided by the R-Tree method. Figure 2 c)
shows the partition provided by the Convex Hull method,
and it can be seen that there is no significant overlapping
among the regions of this partition.

3. Performance Evaluation

In this section, we present the performance evaluation
of the heuristic methods described in the previous section.

Figure 2. Snapshots of the partitions provi-
ded by a) R-Tree b) GA c) QHull methods

We propose the evaluation of the partitioning methods by
simulation. Concretely, we have evaluated each method in
a crowd simulation composed by 8000 autonomous agents
and with five regions. We have used ω1 and ω2 values of
0.6 and 0.4, respectively, for all the partitioning methods,
and we have applied the partitions provided by each method
to the crowd simulation. Concretely, we have extracted the
motion patterns of each agent off-line, and we have used this
information as an input for the considered methods. The si-
mulations have been performed on a sequential system con-
sisting of an Intel Core Duo processor running at 1600 MHz
and 2 GBytes of RAM.

We have evaluated two different crowd scenarios: an
evacuation and an urban environment. The evacuation sce-
nario consists of a structured 2-D world where there are se-

104

veral emergency exits. The autonomous agents must try to
escape from the world as soon as possible. For this scena-
rio we have used the same well-known movement patterns
considered in our previous work [7]. In order to achieve
these movement patterns, we have considered the following
2-D world configurations: full, where there are a lot of
emergency exits uniformly distributed within the 2-D world
(CCP pattern); perimeter, where all the emergency exits are
uniformly distributed along the four borders of the virtual
world (HP-Near); up, where there are only a few exits and
they are located at the top border of the world (HP-All); and
down, where there is only one exit located at the bottom bor-
der of the world (HP-All with a single hot-point).

The second scenario considers an urban environment
where the population size remains constant during the
whole simulation. In this way, the complexity of the parti-
tioning problem does not decrease with the simulation time.
This scenario contains twenty target locations randomly dis-
tributed within the virtual world. Each agent randomly se-
lects one of these targets and approaches it. Once the target
has been reached, then the agent randomly selects the next
target and repeats the process, until all the targets have been
reached. We have denoted this configuration as urban.

In order to measure the actual improvement that the dif-
ferent methods can provide to real systems, we have simu-
lated the five configurations shown above. However, due to
space limitations we will only show the results for the down
and the urban configurations. The results for the other con-
figurations were very similar to the ones shown here.

Figure 3 shows the fitness function values provided by
each partitioning method for the down simulation. In this
figure,the X-axis represents the simulation time in millise-
conds, and the Y-axis represents the fitness function values.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time

H(P)

QHull
Rtree

GA

Figure 3. Fitness function values provided by
the partitioning methods for the down simu-
lation

Figure 3 shows that the QHull method provides the best
fitness function values during the whole simulation. Con-
cretely, the values provided by this method are about 50%
(or less) of the values provided by the other two methods in
the first two thirds of the simulation. The differences only
decrease towards the end of the simulation. The reason is
that as the agents exit the virtual world the population size
decreases, and so does the complexity of the partitioning
problem.

Figure 4 shows the execution times required by each par-
titioning method for the down simulation. This figure shows
on the X-axis the simulation time (in milliseconds), and it
shows on the Y-axis the execution times (in milliseconds)
required by each method for computing the provided parti-
tion in each cycle of the simulation. Figure 4 shows on the
one hand that the QHull method requires the shortest exe-
cution times. This method requires around one third of the
execution time required by the GA method, and around one
fifth of the time required by the R-Tree method. The ratio
between the different execution times remains constant du-
ring the simulation. On the other hand, Figure 4 shows that
the execution times required for all the methods decrease
as the simulation proceeds, since the agents exit the virtual
world.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time

Exec. time

QHull
Rtree

GA

Figure 4. Execution times required by the par-
titioning methods for the down simulation

In order to show the performance of the partitioning me-
thods when the population size remains constant during the
whole simulation, Figure 5 shows the fitness function values
provided by each partitioning method for the urban simula-
tion. This figure shows that in this case all the plots have si-
milar shapes, and after a stabilizing period (about 200 mil-
liseconds) all the plots show a flat slope. Figure 5 clearly
shows that again the QHull method provides the best fitness
function values, being around 50% lower (better) than the
values provided by the GA method and around one third of

105

the values provided by the R-Tree method.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 200 400 600 800 1000

Time

H(P)

QHull
Rtree

GA

Figure 5. Fitness function values provided by
the partitioning methods for the urban simu-
lation

Figure 6 shows the execution times required by each par-
titioning method for the urban simulation. This figure also
shows great differences in the execution times requires by
each method. Again, the QHull method requires execution
times that are around one third of the times required by the
GA method and around one fifth of the R-Tree method.

 50

 100

 150

 200

 250

 300

 350

 400

 0 200 400 600 800 1000

Time

Exec. time

QHull
Rtree

GA

Figure 6. Execution times required by the par-
titioning methods for the urban simulation

These results show that the QHull method provides the
best fitness function values while requiring the shortest exe-
cution times. However, the actual benefits that each method
provides to the crowd simulation should be measured. Ta-
ble 1 shows the performance of the partitioning methods in
terms of the average number of locking requests produced
in each AS cycle among the computers hosting the database.

Each value shown in this table is the average value for all
the AS cycles of the simulation time. Also, this table shows
the average standard deviation for the average number of
agents assigned to each server. (that is, how balanced the
provided partitions are).

Down
Method Locks Std. Deviation

GA 1133.76 1471.68
RTree 1903.52 327.39
QHull 723.19 351.49

Urban
Method Locks Std. Deviation

GA 1895.97 694.31
RTree 3156.02 989.74
QHull 1022.98 439.6

Table 1. Actual performance provided by the
different methods.

Table 1 shows that the behavior of each method does not
depend on the movement pattern of the agents, since simi-
lar results are provided for both the urban and the down
patterns. Although they are not shown here due to space
limitations, these results were also similar for the other eva-
cuation patterns. As Table 1 shows, for all the considered
patterns the GA method provided an intermediate number
of locking requests and the highest standard deviations (the
worst balanced partitions). The R-Tree method provided the
highest number of locking requests and the lowest standard
deviations (the best balanced partitions). Finally, the QHull
method provided the lowest number of locking requests and
also the lowest standard deviation. Thus, we can conclude
that this method is the most appropriate one for solving the
partitioning problem in distributed crowd simulations.

4. Conclusions

In this paper, we have proposed the improvement of the
partitioning method for distributed crowd simulations by
using irregular shape regions (convex hulls). We have com-
pared this method with both a heuristic method and an al-
gorithmic method that use rectangular regions.

The performance evaluation results show that the Con-
vex Hull method outperforms the rest of the considered me-
thods, in terms of both fitness function values and execu-
tion times, regardless of the movement pattern followed by
the agents. As a result, this method provides the best per-
formance in terms of both locking requests and workload
balancing. These results show that the shape of the regions
in the partition can improve the performance of the partitio-
ning method, rather than the search method used.

106

References

[1] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The quick-
hull algorithm for convex hulls. ACM Trans. Math. Softw.,
22(4):469–483, 1996.

[2] A. Guttman. R-trees: a dynamic index structure for spatial
searching. In SIGMOD ’84: Proceedings of the 1984 ACM
SIGMOD international conference on Management of data,
pages 47–57, New York, NY, USA, 1984. ACM.

[3] R. L. Haupt and S. E. Haupt. Practical Genetic Algorithms.
Ed. Willey, 1997.

[4] P. A. Kruszewski. A game-based cots system for simulating
intelligent 3d agents. In BRIMS ’05: Proceedings of the
2005 Behavior Representation in Modelling and Simulation
Conference, 2005.

[5] M. Lozano, P. Morillo, D. Lewis, D. Reiners, and C. Cruz-
Neira. A distributed framework for scalable large-scale
crowd simulation. In Virtual Reality, Second International
Conference, ICVR 2007, Held as part of HCI International
2007, Beijing, China, July 22-27, volume 4563 of Lecture
Notes in Computer Science, pages 111–121. Springer, 2007.

[6] M. Lozano, P. Morillo, J. M. Orduña, and V. Cavero. On
the design of an efficient architercture for supporting large
crowds of autonomous agents. In Proceedings of IEEE
21th. International Conference on Advanced Information
Networking and Applications (AINA’07), pages 716–723,
May 2007.

[7] M. Lozano, J. M. Orduña, and V. Cavero. A genetic ap-
proach for distributing semantic databases of crowd simu-
lations. In Proceedings of 21th. International Parallel and
Distributed Symposium Workshops. IEEE Computer Society
Press, March 2007.

[8] Z. Michalewicz. Genetic Algorithms + Data Structures =
Evolution Programs. Springer, 1994.

[9] P. Morillo, J. M. Orduña, M. Fernández, and J. Duato. Im-
proving the performance of distributed virtual environment
systems. IEEE Transactions on Parallel and Distributed Sy-
stems, 16(7):637–649, 2005.

[10] N. Pelechano, J. M. Allbeck, and N. I. Badler. Con-
trolling individual agents in high-density crowd simula-
tion. In SCA ’07: Proceedings of the 2007 ACM
SIGGRAPH/Eurographics symposium on Computer anima-
tion, pages 99–108, Aire-la-Ville, Switzerland, Switzerland,
2007. Eurographics Association.

[11] M. J. Quinn, R. A. Metoyer, and K. Hunter-Zaworski. Paral-
lel implementation of the social forces model. In In Procee-
dings of the Second International Conference in Pedestrian
and Evacuation Dynamics, pages 63–74, 2003.

[12] C. Reynolds. Big fast crowds on ps3. In sandbox ’06:
Proceedings of the 2006 ACM SIGGRAPH symposium on
Videogames, pages 113–121, New York, NY, USA, 2006.
ACM.

[13] S. Singhal and M. Zyda. Networked Virtual Environments.
ACM Press, 1999.

[14] A. Steed and R. Abou-Haidar. Partitioning crowded virtual
environments. In VRST ’03: Proceedings of the ACM sym-
posium on Virtual reality software and technology, pages 7–
14, New York, NY, USA, 2003. ACM.

[15] A. Treuille, S. Cooper, and Z. Popovic. Continuum crowds.
In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers, pages
1160–1168. ACM, 2006.

[16] G. Vigueras, M. Lozano, and J. M. Orduña. A scalable archi-
tecture for crowd simulation: Implementing a parallel action
server. In Proceedings of the 37th International Conference
on Parallel Processing (ICPP-08). IEEE Computer Society
Press, 2008.

[17] B. Zhou and S. Zhou. Parallel simulation of group behaviors.
In WSC ’04: Proceedings of the 36th conference on Winter
simulation, pages 364–370. Winter Simulation Conference,
2004.

107

