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Abstract Due to the diversity and complexity of its projects, the Civil Engineer-
ing domain has historically encompassed very heterogeneous disciplines. From the
beginning, any Civil Infrastructure project is systematically divided into smaller
subprojects in order to reduce or isolate the overall complexity. However, as a par-
allel design work, these subdesigns may experience divergences which often lead to
design conflicts when they are merged back to the global design. If a high-quality
design is desired, these conflicts need to be detected and solved. We present a Multi-
agent system able to manage these design conflicts by detecting them, by assisting
the engineers in the negotiation of solutions, and finally by learning how to solve
future similar problems. The advantage of the system is that what is learned is not
one individual’s knowledge but the project’s global distributed cognition.
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1 Introduction and Related Work

Civil Engineering projects are a collaborative work. The integral development of
any civil infrastructure demands expertise in many different disciplines. Since de-
veloping a project as a whole is an overwhelming job, the works to be done are sys-
tematically classified and assigned to teams of experts holding the required skills for
each of them. Thus, for instance, structure engineers take responsibility for design-
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ing the skeleton of the infrastructure; sewerage engineers design the management of
waste waters and drainage; signaling is done by traffic experts, etc.

When working on the project, each team develops its part separately and period-
ically they all align their work by merging all their “subdesigns”. Then, engineers
evaluate the progress in order to find and solve the problems the project contains.
Nowadays, this task is performed manually by interpreting the project’s documenta-
tions and, when possible, by navigating a 3D computer model created by combining
all the subdesigns. However, this process can fail in detecting all the issues since
documentation may become difficult to be analyzed and some information may be
lost when constructing the global model. As a result, if a problem remains unde-
tected during the design time, it causes potentially large loses in resources after-
wards. Some authors have estimated the average costs caused by these undetected
problems in 5-10% of the total project budget [4]. Thus, given the size of Civil
Engineering projects, there is significant potential for improvement.

To improve interoperability between the different stakeholders, the industry has
traditionally defined new data exchange formats and it has extended the existing
ones . Whereas probably the most common format is DWG from AutoDesk, which
is still the de facto standard, there are others, e.g. CityGML or IFC [7], that also
enjoy a relative success. The latter even include extension mechanisms for “user-
defined” data structures as a way to consider particular needs. However, they can
hardly guarantee that those user-defined structures are understood by outsiders,
given that consumer applications need to implement mechanisms to support them.
This shows that the interoperability has not been completely reached yet. On the
other hand, Building Information Model (BIM) servers [4] offer a higher degree
of interoperability by storing CAD models together with management spreadsheets
and other documents in a centralized way and, thus, easing the project management.

Even though these efforts facilitate the control of the project, the detection of
problems and their resolution still require human interaction. Traditional approaches
have shown difficultes in tackling the challenges derived from distributed collab-
orative work but literature suggests that Multi-agent Systems (MAS) can better
equipped for facing these kind of problems. MAS have been already used in Civil
Infrastructure research in different situations. An example of controlling construc-
tion equipment is the system described by Zhang, Hammad, and Bahnassi where
sets of cranes synchronize their movements to transport materials from one loca-
tion to another in the construction area without crashing [12]. It is also possible to
find examples of MAS that focus on the distinct phases a typical project consists
of. Thus, Denk and Schnellenbach describe an agent-based tendering procedure
that covers the initial phase when the project is published and interested compa-
nies bid for it [13]; Udeaja and Tah [14] focus on the construction material sup-
ply chain that is managed collaboratively. Within the Construction phase the main
focus has been put on the formalization of expert knowledge and the negotiation
mechanisms to solve unexpected situations. Peña-Mora and Wang [10] presented
a Game Theory approach to solve various known conflict situations between the
Architect/Designer/Constructor settings when each agent competes for reducing the
impact of unexpected situations in the Construction area in its own interest. More re-
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cently Shen et al. studied the applicability of cognitive maps MAS in collaborative-
competitive working in construction projects where these maps are used to parame-
terize the agent’s beliefs within the MAS negotiation [16]. We propose using MAS
to assist in the detection of problems in the Design phase, where the definition of
a problem depends on how an expert sees the world according to her perspective.
Problems are solved attending to the project’s global benefit by means of negotiat-
ing alternatives to it. Finally, the MAS uses humans’ decisions as a way to capture
the project’s distributed congition that is exploited afterwards to train the system so
that it can suggest its own alternatives from the knowledge it has gained.

This work aims at developing an intelligent system devoted to aid engineers in
managing design conflicts in civil infrastructure projects. The proposed system is
able to detect these conflicts, to assist engineers in the negotiation of solutions, and
finally to learn how to solve future similar problems. It follows a distributed multi-
agent approach incorporating well-known artificial intelligence techniques in order
to tackle the problem in a flexible and extensible way, thus providing the necessary
level of abstraction to be applied to different projects within this domain. Hence, this
ad hoc intelligent system contributes to increase strategic intelligence (i.e., knowl-
edge management + business intelligence + competitive intelligence) of companies
whose projects join teams with heterogeneous expertise working collaboratively.

Section 2 introduces the main components of the system: Semantic Conflict De-
tection, Distributed Conflict Solving, and the Learning Subsystem. A deep descrip-
tion of the Semantic Conflict Detection and Distributed Conflict Solving compo-
nents is out of the scope of this paper since it can be found in [5]. However, they
are are briefly introduced in sections 2.1 and 2.2 for the sake of readability. The
Learning Subsystem is described in section 2.3. Finally, in section 3 we describe a
use case in which the system was applied in order to illustrate its usefulness.

2 The Multi-agent System

Our system follows a distributed architecture approach allowing the engineers of
different expertises to design, through their client interfaces, a common Building
Information Model (BIM) that is stored at the server (see Figure 1). Notice that the
meaning (the semantics) of an object in the model, and in particular what it implies,
varies from who is looking at it. For instance, while a gas conduction could be seen
as a mere tube-shaped obstacle by an electrician engineer, it means much more for
the expert that is designing it. The former may only need to ensure that her designs
are not putting anything in the location already used by the gas conduction to avoid
object overlapping. On the other hand, the latter will have other concerns like, e.g.,
whether the material of the pipe is compatible, in terms of safety, with the distance
of such an electric installation. Hence, it is not only the object’s shape what is im-
portant, but also what the object means (i.e. its semantics) and, therefore, what it
implies. We refer to a semantic conflict when a problem of this type is detected. In
other words, a situation that may be correct from a single engineer’s point of view
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but where different interests collide when it is considered globally. In our system, we
define the semantics that each engineer cares about by means of OWL [1] ontologies
and SWRL [9] rules. They are used by each engineer’s Validator agent for detecting
and inferring problematic situations. When a conflict is detected, a solution for it
can be negotiated. The Validator agent that detected it notifies a Coordinator agent
residing at the BIM server. The Coordinator then conducts the negotiation with all
the stakeholders’ Negotiators which, upon an agreement on the solution for the con-
flict, apply it and register it in the Learning Subsystem for further analysis in order
to suggest solutions for future similar situations. Our agents ecosystem uses JADE
[2] as the MAS engine. We define a Profile as the set of the human expert engineer,
her semantic knowledge base, her Validator and Negotiator agents, and her Learning
Subsystem.

Fig. 1 Overview of the system

2.1 Semantic Conflict Detection

Ontologies are the formalization of concepts from which knowledge is built and that,
in contrast to the classical attribute/value approach, provide semantic abstraction to
the model. Our system builds the semantics of the BIM model by means of a layered
structure of ontologies. A Base Ontology defining the core concepts needed for any
civil infrastructure project is provided by default to each Profile and, on top of it,
engineers can stack more Profile-specific ontologies to achieve the level of abstrac-
tion desired. The core concepts of the Base Ontology are: 1) Feature, the basic
object of a model; 2) Geometry, the shape of a Feature; 3) hasGeometry
and its inverse isGeometryOf, used to set the relationship between a Feature
and a Geometry; 4) Attribute, defining one of the properties of a Feature;
5) hasAttribute and its inverse isAttributeOf, used to set the relationship
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between a Feature and an Attribute; 6) hasRelationship and its inverse
isRelationshipOf, defining a generic relationship between two Features; 7)
Problem, to capture individual errors in the project; and 8) Conflict, which is
used to mark a subclass of Problem that has to be negotiated in order to be solved.
In turn, Profile-specific ontologies extend these concepts with other ones that are
of interest for particular fields of expertise such as: a Building or a Road for
a building designer. Complementing the ontologies, engineers also provide SWRL
rules to allow advanced reasoning. SWRL rules infer more concepts by specifying
an antecedent that, when it turns out to be true, it implies that what is expressed in
the consequent is also true. For instance, a RoadExhaustedConflict can be
detected by a road designer when the building designer places a new building in
a parcel where the road connecting to that parcel cannot hold the new population
brought by the building. As engineers work in parallel, changes are performed to
the model. These changes are monitorized by the Validator agents, that executes the
Reasoning Engine when changes to the model are detected. Thus, both the set of
ontologies and the rules defined by the engineers are used by the Validator agents
to analize the model from each Profile’s perspective in order to find Conflicts.
More details about the semantic conflict detection can be found at [5].

2.2 Conflict Solving Protocol

When conflicts are detected, engineers have the possibility to solve them by means
of negotiation. The negotiation follows a Multi-Agent Resource Allocation [3] ap-
proach, as a general mechanism that assists the engineers in evaluating the possible
alternative solutions and in making socially acceptable decisions. Thus, they are
required to express their preferences about the solutions, which are then used to
select those that maximize the welfare of the group. As the allocation procedure,
we use a ContractNet-like protocol involving two rounds. In the first round, once
a conflict has been detected by a Validator agent, it is notified to the Coordinator
agent. Then, the Coordinator informs all the Negotiators about the conflict and asks
for alternatives to solve it through a Call For Solutions. In turn, Negotiators record
the alternatives provided by the engineers and send them back to the Coordinator,
who is in charge of collecting all the proposals. The solutions consists of operations
that, when applied to the model, avoid the conflict. Invalid or repeated solutions are
discarded and the set of remaining solutions is distributed again, thus starting the
second round of the protocol. In this phase, engineers express their preferences by
giving a score ranging from 0 (lowest) to 10 (highest) to each alternative and their
corresponding Negotiators send this information to the Coordinator. Then, the Co-
ordinator performs a winner determination process that leads to the selection of the
alternative that maximizes the global welfare. The Nash social welfare function is
used, as it ensures that the chosen solution is the most preferred one while also bal-
ancing the utility level among the negotiators. Finally, the solution is broadcasted
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to all the engineers and it is applied to the BIM model. As previously stated, more
details about this distributed conflict solving mechanism can be found at [5].

2.3 Learning Subsystem

It seems possible to predict what the result of a negotiation will be if we have a
model that is semantically rich enough to contain sufficient information. We used
Machine Learning (ML) techniques to capture the distributed cognition that results
in the selection of a feasible solution for a given type of conflict. From the advent of
Nash’s formalization of the bargaining problem [8], the negotiation can be method-
ically approached. Thus, the negotiation can be seen as a black box that captures all
the subtleties (the context, the points of view, etc.) in which we input the problem
and a solution is obtained in the output. But it requires that the engineers express
their utility functions which are especially elusive to be defined a priori in dynamic
and complex environments. That is the case of Civil Infrastructure projects where
not even the set of parameters to such functions are easily known. The negotiation
protocol we use solves this problem by asking each engineer’s preferences on the
possible alternatives, resulting in a solution. This way, we can capture the global
behavior pattern while the complexity of the system remains at reasonable levels.
We can keep a record of the inputs to the problem (i.e. the conflict and the context
in which it occurs) and the solution (consisting of operations applied to the model),
given by the engineers and use it as a training set from which the agents in the
MAS can learn. As a result, after several rounds of negotiation to conflicts showing
similarities, the agent can suggest the solution to a newly detected conflict.

In our system, when the Validator agent detects a conflict, it queries the Learn-
ing Subsystem (LS) for known solutions to the conflict. The query consists of the
conflict and the Features involved in it and the relationships among them, that is,
the conflict’s context. If possible solutions are known, they are presented to the user
so she can choose and directly apply the most suitable. If there are no known solu-
tions or the ones proposed by the Validator are not satisfactory then the negotiation
described in section 2.2 occurs. After this negotiation, all engineers will agree on a
new solution. The Negotiators then apply it to the model and register it into the LS.

Fig. 2 Learning subsystem
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Reich [11] carried out an extensive review where he analyzed experiments with
ML in Civil Infrastructure concluding that there is no ML technique that solves all
the problems but instead some work better than others depending on the problem.
We designed our learning system in a way that it is easily extendable with standard
techniques (e.g, ID3, C4.5, K-Means, etc. [15]) as well as with experimental ones.

As already mentioned, a solution consists of operations applied to the model that
change its state from a, say, “conflicted status” to a “valid status”. Thus, the solu-
tions directly rely on what the supported operations are, and also what and how the
parameters for those operations are. In Civil Infrastructure, spatial operations are
predominant. Consider, for instance, the operation “move object A 3 meters in di-
rection D”. A closer look at that operation shows that it takes five parameters: the
object, the distance the object is going to be moved and the direction (which in 3D
needs three coordinates). The spatial nature of the operations forces some prepro-
cessing to be done before it becomes a useful solution for the learning. Imagine that
this solution was produced as a result of the conflict “the object A is overlapping
the object B”. If we store the solution as it is, in the eventual event that new similar
“object F is overlapping the object G” conflict is detected, upon a request to the LS
for a solution to this conflict, it will respond with the “move object A 3 meters in
direction D” which is obviously wrong. A way to overcome this problem is to store
the solutions in a symbolic way. In other words, instead of “move object A 3 meters
towards direction D” we would express it as “move TheObjectThatIsOverlapping
AwayFromTheObjectItOverlapsWith”. And make the corresponding substitutions in
each different case of the conflict. The Knowledge Base of the LS is equipped with
the Knowledge Filters (see Figure 2) which is an extendable set of filters meant
for endowing the solutions with a level of abstraction as necessary. The filters are
applied forward and in reverse order for storing and querying respectively.

On the other hand, Machine Learning (ML) algorithms are very sensitive to the
way data is stored and to its noise. In order to accommodate the data to the algorithm
in use, the Data Adapter (DA) is included. The prediction of a solution the algorithm
does is based on the conflict and its context. However, while the conflict belongs to
a finite set of conflict types (otherwise it could not have been detected), the context
where it occurs varies. The DA is in charge of transforming the data in the database
to fit the algorithm’s needs while no relevant information is lost.

3 Use case

To test the proposed approach, we have applied our system to a real project con-
sisting in the design of the electricity installation of a power plant carried out by
“Vianova Plan og Trafikk AS” in Norway. We prefer using a real use case as there is
to our knowledge no standard and suitable benchmark to test our approach against.
Even though some CAD benchmarks have been proposed [6], they focus on the size
of the dataset as well as on the computation time. Instead, we aim at finding conflicts
and learning how to solve them without the need to write a routine on purpose.
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In this use case, the design is done by two profiles, one designing the foundation
of the installation (Foundation Profile) and the other designing the structure hold-
ing the electric cables (Structure Profile). The use case consists of 4592 ontology
entities and the reasoning time takes 50 seconds. During validation, conflicts can be
detected such as the bolts of a foundation that is used to fix a structure not fitting
in the holes the Structure Profile designed for them due to some measurement mis-
understanding. This kind of conflict is detected 80 times, one per each bolt in the
foundation, through the following SWRL rule:

Bolt(?b)∧Hole(?h)∧
isGeometryO f (?b,?bg)∧ isGeometryO f (?h,?hg)∧

isClosest(?bg,?hg)∧distance(?bg,?hg,?d)∧
isGreaterT han(?d,0)→ BoltDoesntFit(?b,?h)

This rule would tag the feature b as a conflict of type BoltDoesntFit if,
when transversing the model, b is a Bolt feature and h is a Hole feature such that
they are the closest Hole/Bolt pair in the model (given by their geometries) and the
distance between them is greather than 0.

The two profiles negotiate to solve the first conflict. In the alternative proposal
round, the Foundation profile suggests to move the left leg of the two-legged struc-
ture so it fits with the bolts. The leg is represented by a StructurePart feature
which contains an attributed called Leg with value “Right”. To make the leg fit in
the foundation bolts it needs to move 3 centimeters to the left (X axis) and 1 cm
downards (Y axis), i.e. it needs to move to the distance d1 = (−0.03,−0.01,0)
(alternative A1). The Structure profile suggest to move the bolt to the distance
d2 = (0.03,0.01,0) (alternative A2). In the second round, the profiles express their
preferences. Structure profile gives a value of 1, and 5 to A1 and A2 respectively
because, say, she knows that the structure parts are already delivered by the supplier
and changing them would be very costly while moving the bolts does not seem to
be a big deal. The Foundation profile, in turn, gives a value of 7, and 4 because she
does not know about the structure parts situation but would prefer others to change
while she admits that moving the bolts is a relatively small effort. As a result, A2 is
selected as a solution. Similar negotiations follow for the rest of conflicts with same
results with the only difference that when the bolt is supposed to fit the “Left” leg
of the structure, it is moved in the opposite direction, i.e. d1 = (−0.03,−0.01,0).
The results were stored in the LS using only one simple Knowledge Filter that re-
places the name of the features involved by symbolizers (#@#, in this case) so they
can be more generally applied. Table 1 shows the (simplified) database created from
this. We only show the necessary columns on the table due to space restrictions.
In this case, the actual table is composed of 15 columns storing other relationships
the bolts have and attributes that are not relevant since they take the same values in
all the records. We used an ID3 decision tree as the ML algorithm which automati-
cally detects that what defines the direction where the bolt is to be moved is the Leg
attribute of the “StructurePart” feature.
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Table 1 Simplified database for this conflict. Each row represents a conflict and its negotiated solu-
tion (CTF=ConflictedFeatureType, CWF=ConflictedWithFeature, CWFRF=CWF-RelatedFeature,
“#@#“ is a symbol refering to the feature that is in conflict that is substituted and restored by the
Knowledge Filter)

CTF CWFType CWFRF1 ... CWFRF1AttrLeg ... Solution
Bolt Hole StructurePart Right MoveFeatureCmd(#@#,-0.03,-0.01,0.0)
Bolt Hole StructurePart Left MoveFeatureCmd(#@#,0.03,0.01,0.0)

Thus, once the system collects enough information, Validator agents can find the
learned solutions from the LS that can be applied without further negotiations. No-
tice, however, that the amount of negotiations required could be reduced by having
an extra Knowledge Filter substituting the distance vector within the parameters of
the solution by a symbol as explained in section 2.3.

4 Discussion

As computers became more powerful, they allowed to execute bigger and more
complex programs. The industry producing software for Civil Engineering creates
software packages with newer and more powerful features. Today’s engineers can
perform more complex tasks with these advanced tools. However, these tools consist
of pre-established algorithms with the only possibility of parameterizing them as a
means to adapt them to one situation or to another. Furthermore, the tools are meant
to be executed once the user decides to invoke them. In other words, they are not
designed to make decisions but to execute them.

It is assumed that the only way to improve is creating new algorithms. In our
opinion, this approach is, somehow, preventing the creation of software that solves
conflicts in distributed design settings. Because of the overwhelming amount of
factors converging in a conflict, it seems not possible to write algorithms covering
all the issues. Even worse, the necessary information that influences a distributed
decision may simply not be available for the computer system. In fact, most of the
information is still residing only in the engineers head. It is simply too difficult to
input every detail into a system which, in turn, needs to be prepared to store it.

The proposed system takes another approach. By following a semantic know-
ledge-driven approach, the system is able to detect conflicts and to propose auto-
mated solutions, which is of great utility for solving any managerial problem and
decisional scenarios. While humans make decisions, the system tracks them and
captures the distributed cognition that allows making the right decisions in the par-
ticular context the project occurs in. Thus, the system capitalizes on the conflict
resolution made by humans. What is a problem in the begining turns out to be a
valuable asset that is exploited by the system to learn and to improve. Then, engi-
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neers are no longer limited to what software packages allow since it is the software
what evolves and adapts to their needs.

The future work will focus on testing the system in more use cases to deeper
study how the system performance compares to humans with regard to the quality
of the decisions made.
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