
Social decisions in MAS

Francisco Grimaldo1 , Miguel Lozano2 and Fernando Barber3

Resumen— This paper presents MADeM, a multi-
modal agent decision making to provide virtual agents
with socially acceptable decisions. We consider multi-
modal decisions as those that are able to merge mul-
tiple information sources received from a MAS. MA-
DeM performs social decisions since it relies on auc-
tions, a well known market-based coordination mech-
anism. Our social agents express their preferences
for the different solutions considered for a specific
decision problem, using utility functions. Therefore,
coordinated social behaviors such as task passing or
planned meetings can be evaluated to finally obtain
socially acceptable behaviors. Additionally, MADeM
is able to simulate different kinds of societies (e.g.
elitist, utilitarian, etc), as well as social attitudes of
their members such as, egoism, altruism, indifference
or reciprocity. MADeM agents have been successfully
verified in a 3D dynamic environment while simulat-
ing a virtual university bar, where different types of
waiters (eg. coordinated, social, egalitarian) interact
to finally animate complex social scenes.

Palabras clave— Social Reasoning, Multiagent Re-
source Allocation, Welfare Economics.

I. Introduction and related work

DECISION making is the cognitive process lead-
ing to the selection of a course of action among

variations. There are several factors that influence
this process, although probably the most important
could be the amount of information the agent man-
ages when deciding its actions. This is specially im-
portant in multiagent contexts, since our aim is to
produce socially intelligent agents capable of display-
ing acceptabe decisions for a specific society model.
Socially intelligent agents are autonomous problem
solvers that have to achieve their goals by interacting
with other similarly autonomous entities [1]. This
kind of social agents is required in many complex
simulation environments: military/civil simulations,
social pedestrians in virtual cities, games, etc.

From virtual agents community, the behavioral an-
imation problem points to the construction of an in-
telligent system which is able to integrate the differ-
ent techniques required for the realistic simulation of
virtual humans behavior. Among them, we can in-
clude perception, motion control, goal selection, ac-
tion execution, communication between agents, in-
teraction with the environment, etc. Traditionally,
designers have sought to make their agents rational
so that they can behave efficiently (i.e. the shorter
the plan the better). Therefore, multiagent simula-
tions have incorporated group coordination due to
the fact that task-oriented agents (i.e. agents de-
voted to accomplish a set of goals) easily come into
conflicts in a resource bounded environment even

1Dpt. d’Informàtica, Univ. València, e-mail:
francisco.grimaldo@uv.es

2Dpt. d’Informàtica, Univ. València, e-mail:
miguel.lozano@uv.es

3Dpt. d’Informàtica, Univ. València, e-mail:
fernando.barber@uv.es

though their goals are compatible. For example in
Generalized Partial Global Planning (GPGP) [2],
agents merge the meta-plans describing their oper-
ational procedures and figure out the better action
in order to maximize the global utility. Collaboration
is supported in the RETSINA system [3] thanks to
the use of communicative acts that synchronize tasks
and occasionally manage conflicts. Team formation
and task coordination for heuristic search planning
characters is presented in [4] to adapt better to the
dynamism of shared environments.

Although this kind of approaches have shown effi-
cient task-oriented behaviors, human behavior is not
purely self-interested [5]. Instead, autonomous vir-
tual humans should also display social behaviors such
as interchanging information with their partners or
grouping and chatting with their friends. According
to this, the theories of group dynamics developed in
human social psychological sciences have recently in-
spired several models of interaction in artificial soci-
eties (e.g. the SGD model [6] or the social-reasoning
based on exchange values [7]).

The purpose of MADeM is to provide a MAS simu-
lation framework with agents managing multi-modal
social decisions. We introduce this kind of decisions
as those able to consider different focuses of atten-
tion coming from different sources. On the one hand,
different focuses of attention (i.e. points of view) are
required to provide more informed self-interested de-
cisions. For instance, when deciding their actions,
humans easily balance several aspects such as: ef-
ficiency, tiredness, skillfulness, mood, etc. On the
other hand, a MADeM agent integrates social influ-
ence by asking external agents about the points of
view the former is interested in. This feedback rep-
resents the preferences of the others for a specific sit-
uation, that basically includes certain resource and
task allocations (see section II-A). Internally, MA-
DeM is based on the MARA theory [8] and it uses
auctions as a basic procedure to provide the social
feedback mentioned (see [9] for a good set of social
welfare examples). However, we let the agents man-
age more than one auction and allocation associated
to each decision, so they can simulate multi-modal
social decisions in a MAS.

Next, we present the MADeM information do-
main, that basically includes the types of resources
being used (section II-A) and the agent preferences
representation (section II-B). Then, we explain the
decision making procedure, including the auctioning
process (section III) and the winner determination
problems faced (sections III-A, III-B). Section IV
presents the application example created to verify
MADeM. Finally, we show the social behaviors ob-
tained according to the main MADeM parameters.



II. MADeM: Multi-modal Agent Decision

Making

The multi-modal agent decision making presented
in this paper (MADeM) is based on the MARA the-
ory, thus, it shares a similar domain of definition but
making some additions to it. We summarize them as
follows:

• A set of agents A = {a1, ..., an} where each ai

represents a particular agent involved in the de-
cision. A vector of weights−→w =< w1, ..., wn > is
associated to each agent representing the inter-
nal attitude of the agent towards other individ-
uals. This information will be used to weigh the
information received from other agents (section
III-A).

• A set of resources to be allocated by the agents
R = {r1, ..., rm}. The definition of resources
we use is different from the classical definitions
found in the literature and it will be explained
in detail in section II-A.

• Instead of having only one utility function as in
classical MARA problems, each agent will have
a set of utility functions {U1, U2, ..., U q}. These
utility functions will be used to evaluate the al-
locations from different points of view. We bet-
ter explain the utility functions for our agents in
section II-B. Additionally, each agent will have
a vector of utility weights −→wu =< wu1

, ..., wuq
>

representing the importance given to each point
of view in the multi-modal agent decision mak-
ing.

An example illustrating the functionality of MA-
DeM could be a customer entering a virtual bar and
deciding which waiter to place his order to. Differ-
ent points of view could be considered: to ask the
nearer waiter (i.e. tiredness), to ask the less occu-
pied waiter (i.e. utilitarianism) or to ask a waiter
who is a friend of him (i.e. sociability). Auctions are
used to select the better candidates for each category.
In this case, utility weights would express personal
tendencies such as laziness, impatience or sociabil-
ity. Looking at them, MADeM would be able to
choose among these three possibilities. The details
of the whole winner determination procedure will be
explained in sections III-A and III-B.

A. Types of resources

In order to obtain social and intelligent behaviors,
we provide the agents with the ability to ask for opin-
ion or social feedback about different solutions for a
specific decision problem (e.g. whether to pass the
execution of a task to another agent or not). Agents
do this by following an auctioning mechanism in
which the resources being auctioned are tasks. Task
auctioning has been widely used in the MAS com-
munity but its application to social virtual agents is
not so common and needs to take new issues into
account. The novelty of our approach is that we do
not auction only the execution of a task as found in
the literature. Instead, the resource to be auctioned

is what we term task slots. We consider task slots as
slots that need to be assigned in order to execute a
task, thus, they can be considered as parameters of
the action. When considering any kind of task, we
differentiate two main types of task slots: agent slots

which correspond to agents that play different roles
in the task execution, as for example the executant
of the task or the beneficiary of the task; and object

slots, that correspond to objects needed to perform
the action.

We also differentiate slots depending on the role
they play in the task. There is a slot present in ev-
ery kind of task which is the agent who carries it out
(Age). Besides, we consider as general slots two addi-
tional slots present in many tasks: the main object of
the action (Objm) and the beneficiary or destinatary
in any sense of the action (Agd). For example, in the
Give action, Age is the agent who initially has the
object, Objm is the object being given and Agd is
the agent who receives the object. In any case, it is
always possible for a particular problem to consider
more task slots if necessary.

It can be seen that the classical task auctioning is
subsumed within our approach as it corresponds to
the auctioning of the Age slot. Moreover, the auc-
tioning of objects is also possible by auctioning the
appropriate task slot of the considered action (e.g.
the Objm slot of an action Own).

According to this, we represent resources or task
slots as r = task(slot), where we consider the slot
as a typed parameter according to an ontology de-
fined for the problem. An assignment of an element
(agent or object) to a slot is then represented as
task(slot) ← element, and an allocation P of ele-
ments to task slots has the following representation:

P = {t1(s1) ← e1, t1(s2) ← e2, . . . , t1(sn) ←
en, t2(s1)← en+1, . . . , tm(sn)← en∗m}

Therefore, we represent each one of the solutions
considered for a decision problem as an allocation of
this type.

For example, in the bar environment pre-
sented in section IV we have modelled the task
Give(Waiter, Object, Customer) as the action used
by waiters to give a product to a customer. In this
task we have 2 slots that may be auctioned: the Age,
which is the waiter that gives, and the Agd, which is
the customer that receives the product. These slots
would be represented as Give(Age) and Give(Agd).
Hence, a possible allocation for these slots could be
< Give(Age) ← a1, Give(Agd) ← a5 >, given that
a1 is a waiter and a5 is a customer.

B. Agent preferences

In the auctioning process, the auctioneer asks the
agents to bid for one or more task slot allocations,
each bidder then uses its utility functions to evaluate
and score the different allocations being considered.

MADeM agents use non-negative 2-additive utility
functions of the form:



Fig. 1. MADeM Procedure

U(P ) =
∑

p∈P

u(p) +
∑

p1,p2∈P

u(p1, p2) (1)

where u(p) is a utility function for a unique slot
assignment and u(p1, p2) is the extra utility value
given to the situation in which both assignments are
done. In order to obtain the utility functions (U(P ))
normalized in the range [0, 1], the utility functions
of all agents must be divided by the same constant,
which will depend on the particular problem.

Despite the fact that the types of resources being
auctioned are tasks, utility functions express bene-
fit. Therefore, agents would aim at maximizing their
utility. Using cost functions could also be possible
but agents would aim at minimizing their costs.

III. Decision making procedure

MADeM uses one-round sealed-bid combinatorial
auctions to choose among different solutions to a de-
cision problem. As mentioned above, a solution is
represented by an allocation of one or many task
slots. Auctioneer and bidder roles are not played by
fixed agents throughout the simulation. Instead of
that, every agent can dynamically adopt each role
depending on his/her needs or interests. For ex-
ample, an agent would be the auctioneer when he
wanted to pass a task to another agent following a
social behavior. On the other hand, agents receiving
the auction would bid their utility values provided
that they were interested in the task slots being auc-
tioned. Our model allows more than one auction
to be running at the same time. Similarly, agents
can participate in several auctions simultaneously.
Thus, this approach lies in between centralized and
distributed market-based allocation.

An overview of the multi-modal decision making
procedure followed by the agents to generate socially
acceptable decisions is shown in figure 1. This pro-
cedure is mainly based on the following steps:

1. Auctioning phase: This phase is carried out
by an agent (a1) who wants to socially solve
a decision problem (e.g. where to sit). This
agent then constructs the set of allocations rep-
resenting all the possible solutions for the prob-

lem (< P1, P2, ..., Pm >). These allocations
have the form of task slots assignations such
as SitAt(Objm) ← table1. Next, he auctions
them to a particular group of agents, that we
call the target agents. Each auction also in-
cludes a single type of utility function that the
agent is interested in evaluating from the oth-
ers (auk(< P1, P2, ..., Pm >, Uk)). As complex
decisions require to take into consideration more
than one point of view, the auctioneer agent can
start different auctions for the same set of allo-
cations (au1 through auq).
The process to select the target agents for an
auction varies depending on the kinds of task
slots being allocated. When dealing with agent
slots, the target agents can be extracted from
the type of the task slot being auctioned. For
example, in our bar environment, the task slot
Make Coffee(Age) should only be auctioned
to agents of the class Waiter. On the other
hand, when allocating object slots, the target
agents could be those agents that are somehow
related to objects of the same type as the task
slot being auctioned. For instance, the task slot
SitAt(Objm), where Objm corresponds with the
table where to sit at, could be auctioned to all
the agents related to a table in the environment.
When there is no type system available, the tar-
get agents would be the whole set of agents.

2. Bidding phase: Since the auctioneer informs
about both the task slot allocations and the
utility functions being considered, bidders sim-
ply have to compute the requested utility func-
tions and return the values corresponding to
each auction back to the auctioneer (rak

i =<
Uk

i (P1), ..., U
k
i (Pm) >).

3. Winner determination phase: In this phase, the
auctioneer selects a winner allocation for each
launched auction, that is, for each point of view
being considered. To do this, he uses a classi-
cal winner determination problem, as explained
in section III-A. Afterwards, he chooses one fi-
nal winner allocation among these auction win-
ners using a multi-modal decision making pro-
cess. The details of this calculation are fully de-
scribed in section III-B. Thus, the final winner
allocation will represent an acceptable decision
for the society being simulated.

A. Winner Determination Problem

Once bidders have answered to an auction call
(no answering means no preference, therefore, util-
ity zero) the auctioneer agent has the utility values
(Ui(Pj)) given by each bidder (i ∈ A) to every al-
location being evaluated (Pj). Equation 2 groups
these utility values in a set of vectors, one for each
allocation.

−−−→
U(Pj) =< U1(Pj), ..., Un(Pj) > ∀j ∈ [1..m] (2)

Remember that every agent had an associated vec-



tor of weights representing its attitude towards the
other individuals (−→w ). According to it, the auction-
eer weighs the utility vectors in equation 2 doing a
component by component multiplication with the at-
titude vector as shown in equation 3.

−−−−→
Uw(Pj) =

−−−→
U(Pj) ∗ −→w ∀j ∈ [1..m] (3)

Attitude weights are used to model the social be-
havior of the auctioneer agent. For example, egoism
is modelled giving weight 1 to himself and 0 to all
other agents. In fact, a whole range of behaviors
between egoism and altruism can be modelled using
the vector of equation (4), where p = 0 represents
the previous behavior, p = 1 represents total altru-
ism and p = 0.5 represents an egalitarian behavior
or indifference between oneself and the rest of the
agents.

Egoism−Altruism : −→w =< p, ..., p, 1− p, p, ..., p >
wi = 1− p, wj 6=i = p, i = Myself

(4)
It is also possible to model reciprocal attitudes by

means of the vector −→w . A simple example is shown
in equation 5, where weights are based on the inter-
change of favors between agents.

Reciprocity : wi =
Favors from(i)

Favors to(i)
(5)

In order to behave socially, the auctioneer attends
to the social welfare value when selecting the winner
allocation of an auction. Thus, the winner deter-
mination problem chooses the allocation that maxi-
mizes the welfare of the society (see equation 6).

Winner = Pw ←→ sw(Pw) = max
j∈[1..m]

sw(Pj) (6)

To compute the social welfare of an allocation, the
auctioneer uses Collective Utility Functions (CUFs)
and the weighted utilities defined in equation 3 (as
shown in equation 7). MADeM allows to select
among different CUFs when evaluating the social
welfare of an allocation, each one related to a kind
of society: utilitarian, egalitarian, elitist and nash.

sw(P ) = cuf(
−−−−→
Uw(P )) (7)

cufutil = Σuw(i) cufegal = min{uw(i)}
cufelitist = max{uw(i)} cufnash = Πuw(i)

(8)

B. Multi-modal decision making

An agent can ask other agents about different
points of view (e.g. efficiency, tiredness, etc). In
order to do this, he performs several auctions with
different types of utility functions (see parameter Uk

in figure 1). Once all these auctions have been re-
solved, the auctioneer has the winner allocation for

each point of view and the social welfare obtained
provided that allocation is adopted (see equation 9).

auction1({P1, P2, ..., Pm}, U
1) −→ (Pw1, sw(Pw1))

...

auctionk({P1, P2, ..., Pm}, U
k) −→ (Pwk, sw(Pwk))

(9)

The final winner allocation is then chosen using
the vector of utility weights −→wu. MADeM taked the
values in −→wu as weights assigned to each utility func-
tion. Hence, the final winner allocation is that which
maximizes the welfare of the society after having
multiplied it by the corresponding utility weight (see
equation 10),

Pw = Pwi ←→ sw(Pwi) = max
i∈[1..k]

wu(i) ∗ sw(Pwi)

(10)

IV. Application example

In this section we show how we have integrated
MADeM into a multi-agent framework oriented to
simulate socially intelligent characters in 3D virtual
environments. This framework is developed over Ja-
son [10], which allows the definition of BDI agents us-
ing an extended version of AgentSpeak(L) [11]. Here,
we have created a virtual university bar where wait-
ers take orders placed by customers. The typical
objects in a bar, such as a juice machine, behave like
dispensers that have an associated time of use to sup-
ply their products (e.g. 2 minutes to make an orange
juice) and they can only be occupied by one agent at
a time. Therefore, waiters should coordinate to avoid
conflicts. Besides, waiters are social linked with their
friends and this social network is used when decid-
ing whether to do favors, to promote social meetings,
etc.

Waiters serve orders basically in two steps: first,
using the corresponding dispenser (e.g. the grill to
produce a sandwich); and second, giving the prod-
uct to the customer. Though, tasks are always auc-
tioned using MADeM before their execution in order
to find good social allocations. Hence, the slot be-
ing auctioned will be the executor of the task (Age)
for both of them (see table I). The classes of ob-
jects used to describe task slots are extracted from
the object taxonomy defined in the world ontology.
Therefore, the set of allocations among which to de-
cide is represented in equation 11. That is, for each
task, a waiter evaluates whether to carry out the task
against the chance to pass it to another waiter and
perform his next task.

{

P0 = {t(Age)←Myself}
Pi = {t(Age)← ai, tnext(Age)←Myself}

(11)
Waiters take into account three points of view

when calling MADeM: performance, chatting and



TABLA I

Tasks and slots being considered.

Tasks/ Age Objm Agd

Slots
Use Waiter Dispenser -
Give Waiter Product Customer

tiredness. Equations 12 and 13 define the utility
values returned by the performance utility function
for the tasks Use and Give. This function aims at
maximizing the number of tasks being performed at
the same time and represents the waiters’ willingness
to serve orders as fast as possible. Social behaviors
defined for a waiter are oriented to animate chats
among his friends at work. Therefore, waiters imple-
ment the social utility function detailed in equations
14 and 15, where Near computes the distance be-
tween the agents while they are executing a pair of
tasks. These functions evaluate social interest as the
chance to meet a friend in the near future, thus per-
forming a planned meeting. Finally, equation 16 de-
fines the tiredness utility function for a waiter. This
later function implements the basic principle of mini-
mum energy, widely applied by humans at work. The
type of society being simulated for waiters is elitist,
thus, waiters will choose those allocations that max-
imize the utility functions previously defined.

Uperf (Use(Age)← a) =






















0 if a 6= Myself
1 if (a = Myself)∧

IsUsing(Myself, Objm)∧
not(IsComplete(Objm))]

1
ttobefree+tqueue

Otherwise

(12)

Uperf (Give(Age)← a) =






















0 if a 6= Myself
1 if (a = Myself)∧

CurrentTask = ’Give’∧
not(HandsBusy(Myself) < 2)]

1
ttobefree

Otherwise

(13)

Usoc(t1(Age)← a1, t2(Age)← a2) =






















0 if a1 6= Myself ∨ a2 6= Auctioneer
1 if (a1 = Myself)∧ a2 = Auctioneer∧

IsFriend(a1, a2) ∧Near(Pos(t1), Pos(t2))∧
ExecT ime(t2) > RemainT ime(CurrentTask)

0 Otherwise
(14)

Usoc(t(Age)← a) =






















0 if a 6= Auctioneer
1 if a = Auctioneer ∧ IsFriend(a, Myself)
∧Near(Pos(CurrentTask), Pos(t))∧
∧T imeToStart(t, a) = Now∧

0 Otherwise
(15)

TABLA II

Results for different types of waiters.

Agent σNTasks NChats Tasks/s
Coordinated 6.73 5 0,91
Social 4.37 29.4 0.65
Egalitarian 2.74 6.6 0.62
Self-interested - - 0.17

U tir(t(Age)← a) =

{

1− tasks done
total tasks

if a = Myself
0 Otherwise

(16)

V. Results

In order to verify the social outcomes obtained
with MADeM agents, we have simulated differ-
ent types of waiters serving customers. The re-
sults shown in this section correspond to simulations
where 10 waiters attend 100 customers.

As we have previously mentioned, we have mod-
elled an elitist society of waiters within which agents
attend to three points of view (i.e. performance,
sociability and tiredness), each of them represented
by its own utility function. In this context, utility
weights can be adjusted to create different types of
social waiters. For example, a coordinated waiter
could be an agent that chooses its decisions following
performance 75% of the times and following sociabil-
ity or tiredness in the rest of the situations. The vec-
tor of utility weights for a coordinated waiter would
then be −→wu =< 0.75, 0.125, 0.125 >, where each com-
ponent represents the importance given to each util-
ity function being evaluated. Similarly, we have de-
fined social waiters as agents with the following vec-
tor of utility weights −→wu =< 0.125, 0.75, 0.125 >
and egalitarian waiters as agents with −→wu =<
0.125, 0.125, 0.75 >. Table II summarizes some re-
sults obtained with coordinated, social and egalitar-

ian waiters against self-interested waiters with no
social mechanism included. Coordinated waiters per-
form better (see column Tasks/s) since the majority
of conflicts caused by the use of the same dispenser
(e.g. the coffee machine) are resolved with special-
ization, that is, by passing the task to another waiter
already using the dispenser. On the other hand, so-

cial waiters take more time to serve customers but
animate a greater number of chats among friends (see
the mean number of chats being animated in column
NChats). Egalitarian waiters look at the tiredness
utility function and try to allocate the task to the
least tired waiter, therefore, the standard deviation
in the number of tasks performed by each agent tends
to zero (see column σNTasks). Finally, self-interested

waiters demonstrate to perform worse than any kind
of social waiter. As this agents are unable to do task
passing nor chatting, columns σNTasks and NChats
are not considered.

Besides the possibility to define the importance
of each point of view through the vector of utility
weights −→wu, MADeM allows for the definition of a



TABLA III

Results for different personal weights.

Coordinated σFavours Favours
Indifference 7.57 6.9
Reciprocity 1.15 8.8
Altruism 5.94 17
Egoism 1.41 0.7

Social σFavours Favours
Indifference 3.52 8.7
Reciprocity 1.76 7.8
Altruism 6.66 12.7
Egoism 0.81 0.4

Egalitarian σFavours Favours
Indifference 7.58 13.6
Reciprocity 2.4 15.5
Altruism 4.44 17.9
Egoism 0.47 0.1

vector of personal weights −→w that models the atti-
tude of an agent towards the other individuals. Ta-
ble III shows the results obtained for the previously
defined waiters using the models of attitude intro-
duced in section III-A. Agents using indifference

do not apply any modification over the utilities re-
ceived, therefore, we consider the results of this at-
titude as the base values to compare with for each
type of waiter. Reciprocity weights utilities attend-
ing to the ratio of favors already done between the
agents. This attitude produces equilibrium in the
number of favors exchanged as it can be seen in col-
umn σFavours. Altruism has been implemented in
such a way that the weight given to oneself utilities
is 0.25 whereas the weights for the rest of the agents
is 0.75. As expected, altruist agents do more favors,
since the importance given to the other’s opinions is
three times the importance given to their own opin-
ion (see high values for the mean number of favors
exchanged Favours). On the other hand, egoism
weights are 0.75 to oneself and 0.25 to the others,
thus, agents rarely do favors (see low values in col-
umn Favours).

Agent’s preferences can sometimes go against per-
sonal attitudes. For example, whereas reciprocity

tries to balance the number of favors, tiredness tends
to assign tasks to the least tired waiter (see the
greater σFavours for egalitarian waiters). Another
example is egoism applied to egalitarian waiters, in
this case no task at all is passed among the agents
(Favours = 0.1). However, agent’s preferences can
also empower personal attitudes. For instance, altru-

ism applied to coordinated waiters produces a high
level of specialization. This type of agents produces
big values for σFavours as the agents already using
a dispenser (e.g. a juice machine) keep on getting
products from the dispenser following both an altru-
ist and a coordinated behavior that reduces collisions
for the use of an exclusive resource. Despite that,
personal weights have demonstrated to produce sim-
ilar effects on the agents regardless of the kind of

waiter being considered (i.e. coordinated, social or
egalitarian).

VI. Conclusions

The decision making approach presented in this
paper aims at incorporating human style social rea-
soning for character animation. According to this,
we have presented MADeM as a market based multi-
modal agent decision making for social MAS that is
able to obtain different kind of coordinated behaviors
for the agents involved. On the one hand, MADeM
decisions allow the agents to manage several points
of view related to its actions. This social feedback
is modelled via utility functions that express the dif-
ferent preferences of each agent for the allocations
received for each solution being considered. As an
example, a group of socially intelligent waiters has
been created that consider different points of view in
their decision making: performance, sociability and
tiredness. On the other hand, MADeM allows the
agents to model specific attitude towards the others.
The attitudes modelled include indifference (do not
modify the other’s utility), reciprocity (use the ratio
of favors between the agents involved), altruism (the
more work for me the better) or egoism (the more
work for the others the better).

Acknowledgments

This work has been jointly supported by European
Commission FEDER funds and the Spanish MEC
under grants Consolider Ingenio-2010 CSD2006-
00046 and TIN2006-15516-C04-04.

Referencias

[1] L. M. Hogg and N. Jennings, “Socially intelligent rea-
soning for autonomous agents,” IEEE Transactions on
System Man and Cybernetics, vol. 31, no. 5, pp. 381–393,
2001.

[2] K. S. Decker and V. R. Lesser, Readings in Agents, chap-
ter Designing a family of coordination algorithms, 1997.

[3] J. A. Giampapa and K. Sycara, “Team-oriented agent co-
ordination in the RETSINA multi-agent system,” Tech.
report CMU-RI-TR-02-34, Robotics Institute-Carnegie
Mellon University, 2002.

[4] F. Grimaldo, M. Lozano, F. Barber., and J.M. Orduña,
“Integrating social skills in task-oriented 3D IVA,” in
IVA’05. 2005, Springer-Verlag LNAI.

[5] Steven De Jong, Karl Tuyls, and Katja Verbeeck, “Ar-
tificial agents learning human fairness,” in AAMAS ’08,
2008, vol. 2, pp. 863–871.

[6] Rui Prada and Ana Paiva, “Believable groups of syn-
thetic characters,” in AAMAS ’05, 2005, pp. 37–43.

[7] M. Ribeiro, A. C. da Rocha, and R. H. Bordini, “A
system of exchange values to support social interactions
in artificial societies,” in AAMAS’03, ACM, Ed., 2003.

[8] Yann Chevaleyre, Paul E. Dunne, Ulle Endriss, Jerome
Lang, Michel Lemaitre, Nicolas Maudet, Julian Pad-
get, Steve Phelps, Juan A. Rodriguez-Aguilar, and Paulo
Sousa, “Issues in multiagent resource allocation,” in In-
formatica, 2006, pp. 3–31.

[9] Yann Chevaleyre, Ulrich Endriss, Sylvia Estivie, and
Nicolas Maudet, “Welfare engineering in practice: On
the variety of multiagent resource allocation problems,”
in ESAW, 2004, pp. 335–347.

[10] R. H. Bordini and J. F. Hübner, “Jason,” Available at
http://jason.sourceforge.net/, March 2007.

[11] A. S. Rao, “AgentSpeak(L): BDI agents speak out in a
logical computable language,” in Proc. of MAAMAW’96,
Springer Verlag, Ed., 1996, number 1038 in LNAI, pp.
42–55.


