
A Partitioning Method based on Convex Hulls
for Crowd Simulations

Guillermo Vigueras, Miguel Lozano, J. M. Orduña and F. Grimaldo1

Resumen—Simulating the realistic behavior of large

crowds of autonomous agents is still a challenge for

the computer graphics community. In order to han-

dle large crowds, some scalable architectures have

been proposed. Nevertheless, the effective use of

distributed systems requires the use of partitioning

methods that can properly assign different sets of

agents to the existing distributed resources.

In this paper, we propose the improvement of the

partitioning method for distributed crowd simulations

by using irregular shape regions. Concretely, we pro-

pose the partition of the virtual world using convex

hulls. The performance evaluation results show that

the Convex Hull method outperforms the rest of the

considered methods in terms of both fitness function

values and execution times, regardless of the move-

ment pattern followed by the agents. These results

show that the shape of the regions in the partition can

improve the performance of the partitioning method,

rather than the heuristic method used.

Palabras clave— Crowd simulations, partitioning

method, convex Hull

I. Introducción

IN In recent years, crowd simulations have become
an essential tool for many virtual environment ap-

plications in education, training, and entertainment
[1], [2], [3]. These applications require both ren-
dering visually plausible images of the virtual world
and managing the behavior of high number of au-
tonomous agents. These requirements result in a
computational cost that highly increases with the
numbers of agents in the system. Thus, simulating
the realistic behavior of large crowds of autonomous
agents is still a challenge for the computer graphics
community.

In previous papers, we proposed a scalable archi-
tecture for crowd simulations that can manage large
crowds of autonomous agents at interactive rates
[4], [5]. For illustration purposes, Figure 1 shows
a scheme of this architecture. Each computer can
act either as a Client Computer (labeled in the fig-
ure as Clientx) that hosts a subset of agents, or as
an Action Server (labeled in the figure as ASx) that
contains a part of the virtual world database.

Nevertheless, the effective use of distributed sys-
tems requires to develop efficient partitioning algo-
rithms that find the best distribution of the exist-
ing agents to the action servers in the system. This
problem has been previously studied for PLAYSTA-
TION3 to display 15000-fishes crowd at 60 frames
per second [2]. This work incorporates spatial hash-
ing techniques and it also distributes the load among
the PS3-Cell elements. The same social forces model

1Dpto. de Informática, Universidad de
Valencia, e-mail: {Guillermo.Vigueras,
Miguel.Lozano,juan.orduna,francisco.grimaldo}@uv.es

Fig. 1. General scheme of the distributed crowd architecture

has been also integrated in a PC-Cluster with MPI
communications among the processors, although the
number of simulated agents is still low (512 agents)
and the execution times are far from interactive [6].
Finally, another work describes the use of a multi-
computer with 11 processors to simulate a crowd of
10.000 agents at interactive rates [7]. However, they
use static agent-processor assignment, and no work-
load balancing is provided. Also, there are purely
graphic approaches [8], [9] that are not concerned
with scalability problems because they are not fo-
cused on managing the behavior of high number of
autonomous agents.

Another proposal investigates several techniques
for partitioning a crowded virtual environment into
regions that can be managed by separate servers [10].
Region-based partitions, where each part of the dis-
tributed database contains the information of a dif-
ferent region of the virtual world, seem to be simplest
way of partitioning crowd simulations. However, sev-
eral problems arise when physically distributing the
database. First, in order to maintain the consis-
tency those agents near the borders of each region
need to check their actions with the corresponding
servers. This requires the exchanging of locking re-
quests among the computers hosting the partition
of the database. This constraint adds a significant
overhead, and therefore it must be minimized. Addi-
tionally, the partition must be properly balanced, in
order to avoid the saturation of the distributed sys-
tem. Otherwise, one or more computers can reach
saturation, greatly degrading the performance of the
entire system [11].

In a previous work, we proposed a region-based
approach for partitioning crowd simulations that im-
proves the performance of the partitioning method
by using a genetic search algorithm (GA) [12]. In this

paper, we propose the improvement of the partition-
ing method by using irregular shape regions (con-
vex hulls). We have compared this method with two
techniques that use rectangular regions. One of them
uses a heuristic search method (GA) and the other
one uses an algorithmic method (R-Tree). The per-
formance evaluation results show that the Convex
Hull method outperforms the rest of the considered
methods in terms of both fitness function values and
execution times, regardless of the movement pattern
followed by the agents. As a result, this method
provides both less locking requests and better bal-
anced partitions than the other methods. These re-
sults indicate that the shape of the regions in the
partition has a major influence on the performance
of the partitioning method, rather than the search
method used.

The rest of the paper is organized as follows: Sec-
tion II describes different existing partitioning meth-
ods and how they have been implemented for solv-
ing the partitioning problem. Section III presents
the performance evaluation of the considered meth-
ods. Finally, Section IV presents some concluding
remarks and future work to be done.

II. Region-Based Partitioning Methods

The partitioning problem consists of finding a near
optimal partition of regions (containing all the agents
in the system) that minimizes the number of agents
near the borders of the regions, and also that prop-
erly balances the number of agents in each region.
In order to model this problem, we have defined the
following fitness function to be minimized [12]:

H(P) = ω1 · α(P) + ω2 · β(P), ω1 + ω2 = 1
(1)

The first term in this equation measures the num-
ber of agents in the resulting partition P whose sur-
roundings (Area Of Interest or AOI [13]) crosses the
region boundaries. Each interaction of such agents
will require the locking of more than one of the
servers, and this overhead must be minimized. Con-
cretely, α(P) is computed as the sum of all the agents
whose AOIs intersect two or more regions of the vir-
tual world (that is, the number of agents whose AOIs
reside in more than one regions, see agk in Figure 1).
β(P) is computed as the standard deviation of the
average number of agents that each region contains.
Therefore, β(P) measures how balanced the parti-
tion P is. Finally, ω1 and ω2 are weighting factors
between 0 and 1 that can be tuned to change the
behavior of the search as needed. Although only the
heuristic method uses this function for guiding the
search, for comparison purposes we have used H(P)
as the global fitness function for measuring the qual-
ity of the partitions provided by all the considered
methods.

All the methods considered in this paper initially
use the k-means algorithm to obtain the initial parti-
tion. Once the simulation starts, the partition should
be adapted to the current state of the crowd every

server cycle. In order to implement all the considered
methods, during the simulation each server knows
the location of the agents in its region and also the
number of agents and the mass center of the region
assigned to its neighbor servers. While the heuris-
tic method uses a genetic algorithm (GA) guided
by H(P) to search a near-optimal partition of rect-
angular regions, the other two methods use spatial
clustering techniques to provide a near-optimal par-
tition. In the latter cases, the servers periodically as-
sign each of their agents agk to the server controlling
the region ri that minimizes the following function:

falloc(agk, ri) = dstMC(agk, ri)+
nAgs(ri) ∗ dstMC(agk, ri)

(2)

where falloc is the allocation function, nAgs(ri)
provides the number of agents in region ri, and
dstMC(agk, ri) corresponds to the Euclidean dis-
tance from agk to the center of mass of the region
ri. Since falloc should be minimized, the first term
in falloc considers a spatial criterion and the second
term balances the server workload. Every time a par-
tition is updated, the corresponding state (center of
mass and number of agents) is sent to the neighbor
servers.

A. R-tree

The R-Tree is one of the most popular dynamic in-
dex structure for spatial searching [14]. We have im-
plemented an algorithmic partitioning method based
on the optimization of the area of the enclosing rect-
angle in each inner node. The most interesting fea-
ture of this approach is that it is an efficient structure
for managing the partitioning problem, since it let us
to handle the crowd motion as insertions in the tree,
where the falloc criteria can be easily introduced.

B. A Genetic Algorithm

Genetic Algorithms (GA) consist of a search
method based on the concept of evolution by nat-
ural selection [15], [16]. GA start from an initial
population, made of R chromosomes, that evolves
following certain rules, until reaching a convergence
condition that maximizes a fitness function. Each it-
eration of the algorithm consists of generating a new
population from the existing one by recombining or
even mutating chromosomes. In the GA proposed
for solving this problem [12], a chromosome consists
of an integer array that contains k rectangles, where
k is the number of regions in the partition. Hence, a
chromosome defines a partition of the virtual world
in k regions. Thus, the searching problem can be
faced using simple operators to combine the rectan-
gles in order to find the best partition [12].

C. Convex Hull

This approach is oriented to handle partitions as
the convex hull of the points that represent the
agents locations in a particular region. In our im-
plementation, the target is to reduce the area con-
trolled by each server, in such a way that the number

of locking requests is reduced. Concretely, we have
implemented the Quickhull algorithm (QHull) [17] in
our system. As stated above, each server periodically
updates its region according to the falloc function.
Once the agents have been inserted, the convex hull
can be recomputed, so the center of mass and the
number of agents can be also updated.

As an example, Figure 2 shows a snapshot of the
different partitions provided by the considered meth-
ods during a simulation. Figure 2 a) and b) show
the partitions provided by the R-Tree and the GA
methods, respectively. It can be seen that both par-
titions use rectangular regions, although the over-
lapping of the regions in the partition provided by
the GA method is lower than the overlapping of
the regions in the partition provided by the R-Tree
method. Figure 2 c) shows the partition provided
by the Convex Hull method, and it can be seen that
there is no significant overlapping among the regions
of this partition.

Fig. 2. Snapshots of the partitions provided by a) R-Tree b)
GA c) QHull methods

III. Performance Evaluation

In this section, we present the performance evalu-
ation of the heuristic methods described in the previ-
ous section. We propose the evaluation of the parti-
tioning methods by simulation. Concretely, we have

evaluated each method in a crowd simulation com-
posed by 8000 autonomous agents and with five re-
gions. We have used ω1 and ω2 values of 0.6 and 0.4,
respectively, for all the partitioning methods, and we
have applied the partitions provided by each method
to the crowd simulation. Concretely, we have ex-
tracted the motion patterns of each agent off-line,
and we have used this information as an input for
the considered methods. The simulations have been
performed on a sequential system consisting of an
Intel Core Duo processor running at 1600 MHz and
2 GBytes of RAM.

We have evaluated two different crowd scenarios:
an evacuation and an urban environment. The evac-
uation scenario consists of a structured 2-D world
where there are several emergency exits. The au-
tonomous agents must try to escape from the world
as soon as possible. For this scenario we have used
the same well-known movement patterns considered
in our previous work [12]. In order to achieve these
movement patterns, we have considered the follow-
ing 2-D world configurations: full, where there are a
lot of emergency exits uniformly distributed within
the 2-D world (CCP pattern); perimeter, where all
the emergency exits are uniformly distributed along
the four borders of the virtual world (HP-Near); up,
where there are only a few exits and they are located
at the top border of the world (HP-All); and down,
where there is only one exit located at the bottom
border of the world (HP-All with a single hot-point).

The second scenario considers an urban environ-
ment where the population size remains constant
during the whole simulation. In this way, the com-
plexity of the partitioning problem does not decrease
with the simulation time. This scenario contains
twenty target locations randomly distributed within
the virtual world. Each agent randomly selects one
of these targets and approaches it. Once the target
has been reached, then the agent randomly selects
the next target and repeats the process, until all the
targets have been reached. We have denoted this
configuration as urban.

In order to measure the actual improvement that
the different methods can provide to real systems, we
have simulated the five configurations shown above.
However, due to space limitations we will only show
the results for the down and the urban configurations.
The results for the other configurations were very
similar to the ones shown here.

Figure 3 shows the fitness function values provided
by each partitioning method for the down simula-
tion. In this figure,the X-axis represents the simula-
tion time in milliseconds, and the Y-axis represents
the fitness function values.

Figure 3 shows that the QHull method provides
the best fitness function values during the whole
simulation. Concretely, the values provided by this
method are about 50% (or less) of the values pro-
vided by the other two methods in the first two thirds
of the simulation. The differences only decrease to-
wards the end of the simulation. The reason is that

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time

H(P)

QHull
Rtree

GA

Fig. 3. Fitness function values provided by the partitioning
methods for the down simulation

as the agents exit the virtual world the population
size decreases, and so does the complexity of the par-
titioning problem.

Figure 4 shows the execution times required by
each partitioning method for the down simulation.
This figure shows on the X-axis the simulation time
(in milliseconds), and it shows on the Y-axis the
execution times (in milliseconds) required by each
method for computing the provided partition in each
cycle of the simulation. Figure 4 shows on the one
hand that the QHull method requires the short-
est execution times. This method requires around
one third of the execution time required by the GA
method, and around one fifth of the time required by
the R-Tree method. The ratio between the different
execution times remains constant during the simu-
lation. On the other hand, Figure 4 shows that the
execution times required for all the methods decrease
as the simulation proceeds, since the agents exit the
virtual world.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time

Exec. time

QHull
Rtree

GA

Fig. 4. Execution times required by the partitioning methods
for the down simulation

In order to show the performance of the partition-
ing methods when the population size remains con-
stant during the whole simulation, Figure 5 shows
the fitness function values provided by each parti-
tioning method for the urban simulation. This fig-
ure shows that in this case all the plots have simi-
lar shapes, and after a stabilizing period (about 200
milliseconds) all the plots show a flat slope. Figure 5
clearly shows that again the QHull method provides

the best fitness function values, being around 50%
lower (better) than the values provided by the GA
method and around one third of the values provided
by the R-Tree method.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 200 400 600 800 1000

Time

H(P)

QHull
Rtree

GA

Fig. 5. Fitness function values provided by the partitioning
methods for the urban simulation

Figure 6 shows the execution times required by
each partitioning method for the urban simulation.
This figure also shows great differences in the ex-
ecution times requires by each method. Again,
the QHull method requires execution times that are
around one third of the times required by the GA
method and around one fifth of the R-Tree method.

 50

 100

 150

 200

 250

 300

 350

 400

 0 200 400 600 800 1000

Time

Exec. time

QHull
Rtree

GA

Fig. 6. Execution times required by the partitioning methods
for the urban simulation

These results show that the QHull method pro-
vides the best fitness function values while requiring
the shortest execution times. However, the actual
benefits that each method provides to the crowd sim-
ulation should be measured. Table I shows the per-
formance of the partitioning methods in terms of the
average number of locking requests produced in each
AS cycle among the computers hosting the database.
Each value shown in this table is the average value
for all the AS cycles of the simulation time. Also,
this table shows the average standard deviation for
the average number of agents assigned to each server.
(that is, how balanced the provided partitions are).

Table I shows that the behavior of each method
does not depend on the movement pattern of the
agents, since similar results are provided for both
the urban and the down patterns. Although they
are not shown here due to space limitations, these

Down
Method Locks Std. Deviation

GA 1133.76 1471.68
RTree 1903.52 327.39
QHull 723.19 351.49

Urban
Method Locks Std. Deviation

GA 1895.97 694.31
RTree 3156.02 989.74
QHull 1022.98 439.6

TABLA I

Actual performance provided by the different

methods.

results were also similar for the other evacuation
patterns. As Table I shows, for all the considered
patterns the GA method provided an intermediate
number of locking requests and the highest standard
deviations (the worst balanced partitions). The R-
Tree method provided the highest number of locking
requests and the lowest standard deviations (the best
balanced partitions). Finally, the QHull method pro-
vided the lowest number of locking requests and also
the lowest standard deviation. Thus, we can con-
clude that this method is the most appropriate one
for solving the partitioning problem in distributed
crowd simulations.

IV. Conclusions

In this paper, we have proposed the improvement
of the partitioning method for distributed crowd sim-
ulations by using irregular shape regions (convex
hulls). We have compared this method with both
a heuristic method and an algorithmic method that
use rectangular regions.

The performance evaluation results show that the
Convex Hull method outperforms the rest of the con-
sidered methods, in terms of both fitness function
values and execution times, regardless of the move-
ment pattern followed by the agents. As a result, this
method provides the best performance in terms of
both locking requests and workload balancing. These
results show that the shape of the regions in the par-
tition can improve the performance of the partition-
ing method, rather than the search method used.

Acknowledgment

This work has been jointly supported by the
Spanish MEC, the European Commission FEDER
funds, and the University of Valencia under grants
Consolider-Ingenio 2010 CSD2006-00046, TIN2009-
14475-C04-04, and UV-BVSPIE-07-1788

Referencias

[1] Paul A Kruszewski, “A game-based cots system for simu-
lating intelligent 3d agents,” in BRIMS ’05: Proceedings
of the 2005 Behavior Representation in Modelling and
Simulation Conference, 2005.

[2] Craig Reynolds, “Big fast crowds on ps3,” in sandbox ’06:
Proceedings of the 2006 ACM SIGGRAPH symposium
on Videogames, New York, NY, USA, 2006, pp. 113–121,
ACM.

[3] Miguel Lozano, Pedro Morillo, Daniel Lewis, Dirk Rein-
ers, and Carolina Cruz-Neira, “A distributed framework

for scalable large-scale crowd simulation,” in Virtual
Reality, Second International Conference, ICVR 2007,
Held as part of HCI International 2007, Beijing, China,
July 22-27. 2007, vol. 4563 of Lecture Notes in Computer
Science, pp. 111–121, Springer.

[4] Miguel Lozano, Pedro Morillo, Juan Manuel Orduña, and
Vicente Cavero, “On the design of an efficient architerc-
ture for supporting large crowds of autonomous agents,”
in Proceedings of IEEE 21th. International Conference
on Advanced Information Networking and Applications
(AINA’07), May 2007, pp. 716–723.

[5] Guillermo Vigueras, Miguel Lozano, and Juan M.
Orduña, “A scalable architecture for crowd simulation:
Implementing a parallel action server,” in Proceedings of
the 37th International Conference on Parallel Processing
(ICPP-08). 2008, IEEE Computer Society Press.

[6] Bo Zhou and Suiping Zhou, “Parallel simulation of group
behaviors,” in WSC ’04: Proceedings of the 36th confer-
ence on Winter simulation. 2004, pp. 364–370, Winter
Simulation Conference.

[7] M. J. Quinn, R. A. Metoyer, and K. Hunter-Zaworski,
“Parallel implementation of the social forces model,” in
In Proceedings of the Second International Conference in
Pedestrian and Evacuation Dynamics, 2003, pp. 63–74.

[8] N. Pelechano, J. M. Allbeck, and N. I. Badler, “Con-
trolling individual agents in high-density crowd simula-
tion,” in SCA ’07: Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer anima-
tion, Aire-la-Ville, Switzerland, Switzerland, 2007, pp.
99–108, Eurographics Association.

[9] Adrien Treuille, Seth Cooper, and Zoran Popovic, “Con-
tinuum crowds,” in SIGGRAPH ’06: ACM SIGGRAPH
2006 Papers. 2006, pp. 1160–1168, ACM.

[10] Anthony Steed and Roula Abou-Haidar, “Partitioning
crowded virtual environments,” in VRST ’03: Procee-
dings of the ACM symposium on Virtual reality software
and technology, New York, NY, USA, 2003, pp. 7–14,
ACM.

[11] P. Morillo, J. M. Orduña, M. Fernández, and J. Duato,
“Improving the performance of distributed virtual envi-
ronment systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 16, no. 7, pp. 637–649, 2005.

[12] Miguel Lozano, Juan Manuel Orduña, and Vicente
Cavero, “A genetic approach for distributing semantic
databases of crowd simulations,” in Proceedings of 21th.
International Parallel and Distributed Symposium Work-
shops. March 2007, IEEE Computer Society Press.

[13] S. Singhal and M. Zyda, Networked Virtual Environ-
ments, ACM Press, 1999.

[14] Antonin Guttman, “R-trees: a dynamic index struc-
ture for spatial searching,” in SIGMOD ’84: Proceedings
of the 1984 ACM SIGMOD international conference on
Management of data, New York, NY, USA, 1984, pp.
47–57, ACM.

[15] Zbigniew Michalewicz, Genetic Algorithms + Data
Structures = Evolution Programs, Springer, 1994.

[16] Randy L. Haupt and Sue Ellen Haupt, Practical Genetic
Algorithms, Ed. Willey, 1997.

[17] C. Bradford Barber, David P. Dobkin, and Hannu Huh-
danpaa, “The quickhull algorithm for convex hulls,”
ACM Trans. Math. Softw., vol. 22, no. 4, pp. 469–483,
1996.

