
An Agents and Artifacts Approach

to Distributed Data Mining

Xavier Limón1, Alejandro Guerra-Hernández1, Nicandro Cruz-Ramı́rez1,
and Francisco Grimaldo2

1 Universidad Veracruzana, Departamento de Inteligencia Artificial, Sebastián
Camacho No 5, Xalapa, Ver., México 91000

xavier120@hotmail.com, {aguerra,ncruz}@uv.mx
2 Universitat de València, Departament d’Informàtica, Avigunda de la Universitat,

s/n, Burjassot-València, España 46100
francisco.grimaldo@uv.es

Abstract. This paper proposes a novel Distributed Data Mining (DDM)
approach based on the Agents and Artifacts paradigm, as implemented
in CArtAgO [9], where artifacts encapsulate data mining tools, inher-
ited from Weka, that agents can use while engaged in collaborative, dis-
tributed learning processes. Target hypothesis are currently constrained
to decision trees built with J48, but the approach is flexible enough to
allow different kinds of learning models. The twofold contribution of this
work includes: i) JaCA-DDM: an extensible tool implemented in the
agent oriented programming language Jason [2] and CArtAgO [10,9] to
experiment DDM agent-based approaches on different, well known train-
ing sets. And ii) A collaborative protocol where an agent builds an initial
decision tree, and then enhances this initial hypothesis using instances
from other agents that are not covered yet (counter examples); reduc-
ing in this way the number of instances communicated, while preserving
accuracy when compared to full centralized approaches.

Keywords: Multi-Agent System, Distributed Data Mining, CArtAgO,
Jason, Collaborative Learning.

1 Introduction

As the amount of data produced by the everyday systems grows and distribute,
the problems faced by Data Mining also grows. Being this the case, Data Min-
ing as a research field needs to keep the pace. Distributed Data Mining (DDM)
addresses the problem of mining huge amounts of distributed, even geographi-
cally, data. From the point of view of software engineering, DDM systems need to
exhibit various desirable characteristics, such as scalability, configuration flexibil-
ity and reusability [7]. Multi-Agent Systems (MAS) are inherently decentralized
and also distributed systems, being a good option to implement DDM systems
that cope with the requirements. Nowadays, agent-based DDM is growing in
popularity [14].

F. Castro, A. Gelbukh, M.G. Mendoza (Eds.): MICAI 2013, Part II, LNAI 8266, pp. 338–349, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



An Agents and Artifacts Approach to Distributed Data Mining 339

In this work we present JaCA-DDM, a novel approach to DDM based on the
Agents and Artifacts paradigm, as implemented in CArtAgO [9]. Agents in the
system are implemented in the well known agent oriented programming language
Jason [2]. CArtAgO artifacts play a big role in our approach, for obtaining a
modular, scalable, distributed Java based architecture, easy to design, implement
and maintain. We also present a distributed learning strategy that borrows ideas
from collaborative concept learning in MAS [3]. This strategy is an incremental
collaborative protocol that tries to enhance a model created with few instances,
by means of contradictory instances provided by the agents on the system. In
this way, it is possible to reduce the number of instances communicated, while
at the same time maintaining the accuracy of a centralized approach.

This paper presents a work in progress aimed to develop an agents & arti-
facts competitive approach for DDM. To this end, JaCA-DDM is used to create
an experimental setting aimed to test the differences in accuracy and number
of training examples used between our strategy and a traditional centralized
strategy. Being this comparison our main concern, we put aside many efficiency
aspects for the moment, but the main strategy and system architecture are open
enough to allow further efficiency enhancements.

This paper is organized as follows. Section 2 introduces the background for
this paper, this includes: DDM, agent based DDM, and CArtAgO environments.
Section 3 introduces JaCA-DDM and describes the generalities of our leaning
strategy. In section 4 the experimental setting and results obtained are addressed.
Finally, section 5 closes with a conclusion and future work.

2 Background

Data mining is a discipline that merges a wide variety of techniques intended for
the exploration and analysis of huge amounts of data, with the goal of finding
patterns and rules somewhat hidden in it [13]. Since data mining is about data,
it is important to know the origin and distribution of this data in order to
exploit it efficiently. A traditional way of doing data mining is using a centralized
schema. In this way, all the data and learned models are on the same site.
With the ubiquitous presence of computational networks, it is common to find
data belonging to the same system spreaded in various sites, even in sites that
are geographically far away from each other. From the data mining point of
view, some questions may arise in these distributed scenarios: Which is the best
strategy for constructing learning models that take into account the data from
all the sites?, What is the best way to face heterogeneous databases?, How can
the communication of the data and the data mining process be optimized?, How
can the privacy of the data be preserved?, Is there some efficient way to treat
cases where the data changes and grows constantly?

A lot of systems devoted to DDM have been created. According to the strategy
that they implement, those systems can be classified into two major categories
[7]: centralized learning strategies, and meta-learning strategies. In the central-
ized strategies, all the data is moved to a central site, and when all data is



340 X. Limón et al.

merged together, data mining algorithms are applied sequentially to produce a
single learning model. In general, the centralized strategy is inapplicable because
of the cost of data transmission. Meta-Learning refers to a general strategy that
seeks to learn how to combine a number of separate learning processes in an in-
telligent way [4]. The idea behind Meta-Learning is to collect locally generated
classification models and from there generate or simulate a single learning model.
To accomplish this, it is necessary to collect the prediction of the local classifica-
tion models on a validation data set, and then create a meta-level training data
set from the predictions of the locally generated classification models. To gen-
erate the final meta-level classification model from the meta-level training data
set, voting, arbitrating and combining techniques can be used [6]. Meta-learning
is an efficient and scalable way to do DDM since the data transmitted is limited
and the process is parallel, with a good load balance. Nevertheless, it is not as
efficient as its centralized counterpart when a new instance needs to be classified.
This is because the classification process is not direct, the classification query
has to traverse a decision process that maybe has various classification models
involved. Centralized learning is also simpler, to setup a meta-learning system
can be more difficult. Another disadvantage of distributed meta-learning is that,
because classifiers are not built globally on data, the model’s performance may
suffer as a result of incomplete information [11].

We propose an alternative learning strategy borrowed from SMILE [3], a set-
ting for collaborative concept learning in MAS, designed for maintaining the
consistency of the learned hypothesis when facing new evidence. A concept has
to be consistent with respect to a set of examples that can be received from the
environment or from other agents. The hypothesis is kept consistent through a
series of incremental revisions. In this way, the hypothesis is incrementally en-
hanced through a process that involves the use of counter examples (examples
not covered by the current hypothesis). We took this idea and translate it to
DDM terms.

Data mining is applied to a variety of domains that have their own particu-
larities, making it difficult to come with a general way of treating all scenarios.
MAS are a straight and flexible way to implement DDM systems since they
are already decentralized distributed systems. Each agent can do various tasks
concurrently and it can be seen as an independent process. The location of the
agents is in some degree irrelevant and transparent. The communication between
agents is done in a high abstract level, that makes it easy to implement sophis-
ticated protocols and behaviors. Some agent-based DDM systems [14] had been
done in the past with successful results, e.g., JAM [12], a Meta-learning agent
based DDM system, is one of the most influential. Our approach is closer to
centralized distributed DDM systems. The challenges of agent based DDM are
discussed in detail in [8].

A fundamental part of a MAS is the environment where it is deployed. It is
important to adequately model the environment such that the agents can be
able to perceive it, modify it, and exploit it. CArtAgO is an infrastructure and
architecture based on artifacts used for modeling computational environments in



An Agents and Artifacts Approach to Distributed Data Mining 341

multi-agent systems. With CArtAgO the concept of environment is simplified,
the environment is a set or artifacts.

An artifact is a first order abstraction used for modeling computational envi-
ronments in MAS. Each artifact represents an entity of the environment, offering
services and data structures to the agents in order for them to improve their ac-
tivities, especially the social ones. Artifacts are also of great value in the design
and reutilization of multi-agent systems since their structure is modular, based
on object-oriented concepts. Artifacts are conceived as function-oriented com-
putational devices, functionality that the agents may exploit in order to fulfill
their individual and social activities. The vision proposed by CArtAgO impacts
directly in the agent theories about interaction and activity. Under this vision a
MAS is conceived as a set of agents that develop their activities in three distinct
ways: computing, interacting with other agents and using shared artifacts that
compose the computational environment.

Artifacts can be the objective of the agent activity as well as the tool the
agents use to fulfill their activities, reducing the complexity of their tasks. Since
the environment is composed by artifacts, the state of each artifact can be per-
ceived by the interested agents. The infrastructure of CArtAgO was designed
having in mind distributed environments. It is possible to define work-spaces to
determine the context where an artifact exists and can be perceived and used.
The distributed environment is transparent for the agent, the later is one of
the most valuable characteristics of CArtAgO. In this work, CArtAgO plays an
important role, and is one of the base technologies used to support JaCA-DDM.

3 JaCA-DDM: A Jason Multi-Agent System for DDM

JaCA-DDM (Jason & CArtAgO for DDM) is a Multi-Agent System implemented in
Jason and situated in a CArtAgO environment. JaCA-DDM is used to create and
run distributed learning experiments that are based on the collaborative learning
strategy explained later. Currently it supports J48 decision trees, but it can easily
be extended to support other classification learning approaches. The artifacts
provided by this environment encapsulate data mining tools as implemented by
WEKA[5]. In what follows, the artifacts, agents, and the workflow are described
in detail.

The MAS is composed by a coordinator agent and n workers. There are three
main types of artifacts used by the agents: Oracle, InstancesBase and Classi-
fierJ48. The coordinator uses the Oracle to extract information about the learn-
ing set and split it among the workers and itself. Each agent stores its training
examples in an InstancesBase artifact. Instances distribution is shown in figure
2 (page 344). The coordinator induces an initial model with its instances using
ClassifierJ48. Then it asks for contradictory instances as shown in figure 3
(page 345). The interactions amongst the artifacts are shown in figure 1. In what
follows, a more detailed account for each artifact is presented.

Since the main goal of JaCA-DDM is to experiment distributed learning scenar-
ios, we are interested in partitioning existing training data sets in a controlled



342 X. Limón et al.

way to enable comparisons with centralized scenarios. The single Oracle artifact
creates random stratified data partitions and distributes them among the agents.
An agent can use the Oracle artifact to: obtain the attributes information, as
described in the ARFF file; restart the artifact for a new running of the system;
recreate the artifact to run a new round in the cross-validation process; get the
number of instances stored in the artifact; and reinitialize the artifact with a
new training set. The port1 is used to get other artifacts linked with this one.
Usually InstancesBase artifacts are linked via this port to get set of instances.

ClassifierJ48 is a single artifact in charge managing and creating the learn-
ing model. An agent can execute a set of operations (◦) on an instance of this
artifact to: add a new training instance to the artifact; build a J48 classifier
with the instances stored in the artifact; print the tree representation of the
computed classifier; classify an instance; and restart the artifact for running a
new experiment. An agent can also link other artifacts to this one, so that the
linked artifacts can execute linked operations (�) on the Classifier48 for: get-
ting the J48 classifier; and classifying an instance. Observe that the artifact is
used to classify instances in two ways: i) An agent executes classifyInstance
over a string representing the instance to be classified, obtaining an integer rep-
resenting the instance class as defined in WEKA; ii) Another artifact executes
classifyInstance to classify an instance stored in that artifact. The port1 is
used to link other artifacts linked to this one. Usually InstancesBase artifacts
are linked via this port to classify instances.

◯ addInstance(Instance)

♢ getModel(J48)
♢ classifyInstance(Instance,Int)

◯ buildClassifier()

◯ printTree(String)

◯ classifyInstance(String,Int)
◯ getTrainDataFromOracle()

◯ getNumTrainInstances(Int)

◯ reInitJ48(String,boolean)

ClassifierJ48

port1

◯ getInstances()

◯ sendAllInstances()

◯ searchSendContradictions(bool)

InstancesBase

port2port1

◯ trainingSetInfo(String,String)

♢ givePartition(Instances)

◯ restartOracle()

◯ recreateOracle()

◯ getNumTotalInstances(Int)

◯ reInitOracle(String,boolean)

Oracle

port1

♢ getTesting(Instances)

♢ getTraining(Instances)

Fig. 1. The main artifacts used in JaCA-DDM

InstancesBase is an artifact class implementing local repositories of instances
for the agents, so each agent has control of a InstancesBase artifact. Such an
artifact can be linked with an Oracle artifact, via port2, in order to execute
the linked operation givePartition to obtain a set of instances. It can be also
linked to a ClassifierJ48, via port1, in order to search for a contradiction
in the local repository and add it to the ClassifierJ48. A contradiction is an
instance wrongly classified by the current model.



An Agents and Artifacts Approach to Distributed Data Mining 343

Other artifact related to the experimental setting provided by JaCA-DDM in-
clude: the GUI artifact is a front end for launching experiments and setting the
different parameters for the experiment; the Evaluator artifact performs sta-
tistical operations with the results gathered, this operations include standard
deviation, medias and paired T-test.

The collaborative learning strategy proposed has the following characteristics:
there exists a central site, in this site the data is controlled by a special agent
known as the coordinator. In this central site a base model is induced using the
instances of the site, this base model serves as the first model that presumably
needs enhancement since it maybe was induced with few instances. The base
model can be shared between the different sites. The coordinator agent also
is in charge of the experiment control, initialization of artifacts, control of the
learning process, and managing the results. In each of the other sites, a worker
agent resides, this agent manages the data of its corresponding site and runs a
process with the purpose of finding contradictions between the base model and
the instances of the site. A contradiction exists when the model does not predict
the instance class correctly. The contradictory instances are sent to the central
site enhancing the base model in a posterior induction. The process repeats itself
until no contradictions are found.

To run the experiments we used a single computer to simulate different dis-
tributed scenarios consisting of various sites, the number of sites is configurable.
Despite using a single computer for the experiments, the system architecture is
flexible, it can also be applied in a true distributed environment without any
major change.

Before an experiment begins, the parameters for the experiment are set through
the GUI, those parameters include: database path, number of worker agents (in
this manner simulating various sites) and type of model evaluation (hold-out or
cross validation with its respective parameters). An experiment has the follow-
ing general workflow: first, the coordinator determines which agents are going
to participate in the experiment (currently all the agents participate). Then the
coordinator creates the artifacts needed passing the relevant parameters. From
there, each agent sends a request to Oracle, asking for its data partition. The
coordinator sends all its examples to ClassifierJ48 in order to create the base
model. Next, the coordinator begins the social process, asking to each worker,
one by one, if it has contradictory examples. If a worker finds a contradiction, the
contradictory example is sent to ClassifierJ48. When a worker finishes sending
all the contradictions, the coordinator may issue an induction request to Classi-
fierJ48, the frequency of this induction request can be tuned in order to increase
efficiency. This process continues until no more contradictions are found.

The interaction diagrams in figures 2 (data distribution) and 3 (learning
process) summarizes the workflow described earlier. These figures omit the In-
stancesBase artifacts for the sake of readability. Remembering that each agent
has an InstancesBase associated for the storage and administration of its
instances.



344 X. Limón et al.

Fig. 2. Data distribution

Our current learning strategy is linear in the sense that only one worker
agent at a time searches and sends contradictions. We are not exploiting yet the
concurrent and parallel facilities that the architecture of JaCa-DDM provides.

4 Experiments and Results

JaCa-DDM was used to create a series of experiments to compare our collabo-
rative learning strategy and a traditional centralized strategy. This comparison
takes into account the number of examples used for training, classification accu-
racy and time. Since we ran the experiments in a single multi-core computer and
not in a distributed system, the time results may not be fair because the cost
of communication is not present, nevertheless, for the sake of completeness, we
also show time results. A set of ten databases of the UCI repository [1] was used,
giving consistent results. Table 1 lists the five most representative databases that
are reported in the present.

A randomized stratified policy was used to distribute the data among the
agents. Stratification ensures that each data partition conserves the ratio of
class distribution. Stratified cross validation with 10 folds and 10 repetitions
was applied. For each database, experiments were done with 1, 10, 30, 50 and
100 worker agents. For comparison, the same data partitions were used for both
strategies. Two tailed paired T test with 0.05 degrees of significance are used
to verify if there are significant differences between both strategies. The re-
sults are presented confronting the collaborative model against the centralized
one (CollvsCen column in table 3) and the collaborative model against the base



An Agents and Artifacts Approach to Distributed Data Mining 345

Fig. 3. Learning process

Table 1. Data Sets

Data Set Instances Attributes Classes

adult 48842 15 2
german 1000 21 2
letter 20000 17 26
poker 829201 11 10

waveform 5000 41 3

model (CollvsBas column in the same table). 0 means there is not significant
difference; 1 means that the first strategy paired won; and -1 means that the
first strategy lost. J48 was used with pruning and the rest of the WEKA options
set to default.

Table 2 shows the number of examples used to learn. For the collaborative
model (Collab), the standard deviation is also shown, because of the variations in
each experiment (100 runs). This table shows that our strategy definitely reduces
the number of training examples used to induce the model. This can be seen for
example in the results for the adult database (except for 1 worker agent) where



346 X. Limón et al.

Table 2. Number of instances used to learn

Data Set Wks Total Centralized Base Collab

adult 1 48842 43957 21978 27468.85 ± 107.53
adult 10 48842 43957 3996 16121.10 ± 147.73
adult 30 48842 43957 1417 15162.07 ± 142.62
adult 50 48842 43957 861 15403.52 ± 163.40
adult 100 48842 43957 435 16063.00 ± 221.61

german 1 1000 900 450 698.20 ± 15.68
german 10 1000 900 81 613.64 ± 13.94
german 30 1000 900 29 614.03 ± 16.20
german 50 1000 900 17 618.74 ± 15.94
german 100 1000 900 8 629.59 ± 16.10

letter 1 20000 18000 9000 11803.68 ± 164.30
letter 10 20000 18000 1636 8349.14 ± 217.90
letter 30 20000 18000 580 8259.17 ± 238.86
letter 50 20000 18000 352 8389.38 ± 227.43
letter 100 20000 18000 178 8628.10 ± 284.24

poker 1 829201 746280 373140 374100.00 ± 14.24
poker 10 829201 746280 67843 71419.50 ± 150.61
poker 30 829201 746280 24073 38988.50 ± 1750.09
poker 50 829201 746280 14632 48773.50 ± 994.89
poker 100 829201 746280 7388 81041.50 ± 1141.97

waveform 1 5000 4500 2250 3836.38 ± 33.40
waveform 10 5000 4500 409 3534.60 ± 34.54
waveform 30 5000 4500 145 3523.18 ± 34.12
waveform 50 5000 4500 88 3543.13 ± 34.50
waveform 100 5000 4500 44 3561.68 ± 37.20

only about 35% of the instances where used for training in our strategy. The
standard deviation results show that our strategy is stable enough. Base reports
the number of examples used to construct the initial model. Total reports the
number of available examples.

Table 3 reports the accuracy of the obtained models. This table also shows,
as mentioned, the results for paired T-test. Standard deviation is due to data
random distribution for each experiment. Our approach (Collab) maintains a
similar accuracy when compared with the centralized strategy. Even in the cases
where our approach loses, the difference is very small, e.g., the poker database.
There are significant differences in those cases because the standard deviation
of the centralized strategy is small.

Finally, table 4 shows the mean time (ms) for inducing a model. From this
results it is obvious that our strategy has its process overhead, this is more
noticeable in small databases like german. Nevertheless, as the database grows,
the advantages of our strategy begin to show up. This is specially true for the
poker database, where the time efficiency actually improves. This boost in the
time efficiency occurs because as the data grows it is more efficient to do multiple
inductions with a small amount of data, rather than doing a single induction with



An Agents and Artifacts Approach to Distributed Data Mining 347

Table 3. Accuracy results

Data Set Wks Centralized Base Collab CollvsCen CollvsBas

adult 1 86.00 ± 0.44 85.78 ± 0.48 86.32 ± 0.45 1 1
adult 10 85.97 ± 0.44 84.75 ± 0.57 86.22 ± 0.56 1 1
adult 30 85.99 ± 0.43 83.84 ± 0.73 86.25 ± 0.57 1 1
adult 50 86.02 ± 0.44 83.54 ± 0.89 86.28 ± 0.51 1 1
adult 100 85.98 ± 0.43 82.20 ± 1.58 86.30 ± 0.52 1 1

german 1 72.05 ± 3.73 71.33 ± 4.05 71.82 ± 4.02 0 0
german 10 71.57 ± 3.74 68.38 ± 3.81 71.73 ± 3.78 0 1
german 30 71.83 ± 4.11 68.14 ± 3.89 71.18 ± 4.00 0 1
german 50 71.75 ± 4.0 66.56 ± 5.56 71.51 ± 3.96 0 1
german 100 72.50 ± 3.73 65.36 ± 7.94 71.79 ± 4.09 -1 1

letter 1 87.98 ± 0.76 83.74 ± 0.87 88.18 ± 0.74 1 1
letter 10 88.07 ± 0.70 69.28 ± 1.35 88.26 ± 0.70 1 1
letter 30 87.96 ± 0.80 57.86 ± 1.69 88.23 ± 0.84 1 1
letter 50 88.09 ± 0.73 51.26 ± 2.23 88.26 ± 0.80 1 1
letter 100 88.02 ± 0.67 40.35 ± 3.11 88.26 ± 0.76 1 1

poker 1 99.78 ± 0.01 99.76 ± 0.010 99.79 ± 0.01 0 0
poker 10 99.78 ± 0.01 99.06 ± 0.11 99.74 ± 0.01 -1 0
poker 30 99.79 ± 0.01 96.47 ± 0.25 99.76 ± 0.01 -1 0
poker 50 99.79 ± 0.01 92.22 ± 1.36 99.33 ± 0.02 -1 0
poker 100 99.79 ± 0.01 87.99 ± 0.40 98.99 ± 0.79 -1 1

waveform 1 75.35 ± 1.87 74.77 ± 2.03 75.24 ± 1.75 0 1
waveform 10 75.36 ± 1.99 70.89 ± 2.22 75.08 ± 1.88 0 1
waveform 30 75.35 ± 1.90 67.52 ± 3.03 74.69 ± 2.09 -1 1
waveform 50 75.05 ± 1.74 65.44 ± 3.26 74.85 ± 1.94 0 1
waveform 100 75.21 ± 1.99 62.76 ± 4.54 74.99 ± 2.04 0 1

a big amount of data. Since our strategy pretends to be applied in scenarios where
the amount of data is really big, this result is very promising.

As we continue to develop our approach, a more in depth analysis about the
results and consequences of our collaborative learning strategy will be done. For
the present paper, we limited our analysis to the most noticeable facts as an
evidence of the plausibility of the approach.

5 Conclusions and Future Work

In this paper we presented JaCa-DDM, an extensible tool that we proposed to
run a series of experiments of DDM. The principles entailed by JaCa-DDM make
it easy to extend and improve it. This is due to the modular nature of the system
and the fact that agents and artifacts raise the level of abstraction, so we can
think naturally in terms of shared services, communication and workflow.

As the results in the previous section show, our learning strategy is promissory.
Our initial expectation of reducing the number of training instances used to train
the model while conserving the accuracy of a traditional centralized strategy
was fulfilled. Now we have the challenge to improve the learning strategy to



348 X. Limón et al.

Table 4. Processing time in milliseconds

Data Set Wks Centralized Collab Data Set Wks Centralized Collab

adult 1 1393.97 5913.78 letter 1 795.76 5435.10
adult 10 1419.80 14191.26 letter 10 816.49 17850.55
adult 30 1435.85 15167.84 letter 30 813.13 18120.53
adult 50 1441.34 12626.48 letter 50 826.68 14723.98
adult 100 1465.65 9720.67 letter 100 848.36 11643.36

german 1 10.14 68.16 poker 1 143236.00 180256.00
german 10 7.70 264.52 poker 10 147610.00 120582.00
german 30 6.70 385.76 poker 30 145595.00 53229.00
german 50 6.73 402.97 poker 50 148476.00 54364.50
german 100 6.89 546.88 poker 100 147646.00 54837.00

waveform 1 372.84 3330.27
waveform 10 370.02 9056.13
waveform 30 377.05 9371.32
waveform 50 390.79 6669.84
waveform 100 399.83 6933.90

enhance efficiency as well as to do a more in depth analysis of the benefits
and consequences of this approach. This analysis has to take into account more
databases with a wide range of characteristics as well as more classification
techniques, and not only J48. As it was mentioned earlier, we ran the experiments
in a single computer, simulating various distributed sites. In the future, we hope
to do experiments in a true distributed setting. In this way, we can have a
better account of time results that will help us to move forward in the efficiency
enhancements that we want to implement.

Acknowledgements. First author was supported by the Conacyt scholarship
320544. Second author was supported by the Conacyt project 78910.

References

1. Bache, K., Lichman, M.: UCI machine learning repository (2013)
2. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems

in Agent Speak using Jason, vol. 8. Wiley-Interscience (2007)
3. Bourgne, G., El Fallah Segrouchni, A., Soldano, H.: SMILE: Sound multi-agent

incremental learning. In: Proceedings of the 6th International Joint Conference on
Autonomous Agents and Multiagent Systems, p. 38. ACM (2007)

4. Chan, P.K., Stolfo, S.J.: On the accuracy of meta-learning for scalable data mining.
Journal of Intelligent Information Systems 8(1), 5–28 (1997)

5. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:
The weka data mining software: an update. ACM SIGKDD Explorations Newslet-
ter 11(1), 10–18 (2009)

6. Prodromidis, A., Chan, P., Stolfo, S.: Meta-learning in distributed data mining
systems: Issues and approaches. Advances in Distributed and Parallel Knowledge
Discovery 3 (2000)



An Agents and Artifacts Approach to Distributed Data Mining 349

7. Rao, V.S.: Multi agent-based distributed data mining: An overview. International
Journal of Reviews in Computing 3, 83–92 (2009)

8. Rao, V.S., Vidyavathi, S., Ramaswamy, G.: Distributed data mining and agent
mining interaction and integration: A novel approach (2010)

9. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems:
an artifact-based perspective. Autonomous Agents and Multi-Agent Systems 23(2),
158–192 (2011)

10. Ricci, A., Viroli, M., Omicini, A.: Construenda est CArtAgO: Toward an infras-
tructure for artifacts in MAS. Cybernetics and Systems 2, 569–574 (2006)

11. Secretan, J.: An Architecture for High-Performance Privacy-Preserving and Dis-
tributed Data Mining. PhD thesis, University of Central Florida, Orlando, Florida
(2009)

12. Stolfo, S., Prodromidis, A.L., Tselepis, S., Lee, W., Fan, D.W., Chan, P.K.: Jam:
Java agents for meta-learning over distributed databases. In: Proceedings of the
3rd International Conference on Knowledge Discovery and Data Mining, pp. 74–81
(1997)

13. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques. Morgan Kaufmann (2005)

14. Zeng, L., Li, L., Duan, L., Lu, K., Shi, Z., Wang, M., Wu, W., Luo, P.: Distributed
data mining: a survey. Information Technology and Management 13(4), 403–409
(2012)


	An Agents and Artifacts Approach to Distributed Data Mining
	Introduction
	Background
	JaCA-DDM: A Jason Multi-Agent System for DDM
	Experiments and Results
	Conclusions and Future Work


