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Abstract. In this paper, we describe the framework created for imple-
menting AI-based animations for artificial actors in the context of IVE
(Intelligent Virtual Environments). The minMin-HSP (Heuristic Search
Planner) planner presented in [12] has been updated to deal with 3D dy-
namic simulation environments, using the sensory/actuator system fully
implemented in UnrealTM and presented in [10]. Here, we show how we
have integrated these systems to handle the necessary balance between
the reactive and deliberative skills for 3D Intelligent Virtual Agents (3DI-
VAs). We have carried out experiments in a multi-agent 3D blocks world,
where 3DIVAs will have to interleave sensing, planning and execution to
be able to adapt to the enviromental changes without forgetting their
goals. Finally, we discuss how the HSP agents created are adequated to
animate the intelligent behaviour of 3D simulation actors .

1 Introduction and previous work

Artificial humans and other kinds of 3D intelligent virtual agents (IVA) normally
display their intelligence through their navigation skills, full-body control, and
decision-taking formalisms adopted. The complexity involved in these agents,
normally suggests designing and executing them independently of the 3D graph-
ics engine, so the agent could be focussed on their behavioural problems (see
figure 1).

There are numerous applications that would require these kinds of agents,
especially in fields such us, entertainment, education or simulation [2]. We are
working towards the creation of a robust simulation framework for IVE simula-
tions, where different 3D embodied agents are able to sense their environment,
to take decisions according to their visible states, and finally to navigate in a
dynamic scenario performing the actions which will animate their behaviours in
real time.

There has been a great amount of research along the main behavioural re-
quirements of 3DIVA systems, from their physical appearance and motor system
to the cognitive one, as described in the spectrum introduced by Ayleth in [1].
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Early work in AI planning archiectures for 3DIVAs was undertaken by Badler
et al. They proposed an architecture based mainly on two components: a) Paral-
lel state-machines (PaT-Nets), which are good at sequencing actions to support
Jack’s high level behaviours, and b) the low level (reactive) loop (sense-control-
act, SCA) used to handle low level information mainly used for locomotion.
[2]. SodaJack [5] and Hide-and-Seek [3] systems are created through a combi-
nation of two planners: a hierarchical planner (ItPlans [4]), which controls the
main agent behaviours, and a specific purpose search planner, devoted to help
Jack in locating objects or other agents. In SodaJack, the character interleaves
planning and execution in a single-agent simulation, where reactivity and inter-
action wasn’t considered. On the other hand, Hide-and-Seek simulations intro-
duce a multi-agent framework in a dynamic environment, although the planning
schema remains the same. In this case, agent reactivity is achieved by compari-
sion between the perceived world state and the partial hierarchical plan, that is
regularly revised [3].

Behavioural animation based on Situation Calculus is another cognitive ap-
proach which has been adapted to virtual creatures [9]. However, the state space
model designed is more close to a declarative language than an agent centered
behavioural system.

Interacting Storytelling systems integrate AI techniques such as planning
with narrative representations to generate stories [14]. In [13], we discuss the use
of HTN’s [6] and HSP planning formalisms in Interactive Storytelling from the
perspective of story generation and authoring. The main difference between these
systems and the one presented here lies in the introduction of the perception
system presented in [10] which let the agents deal with partially observable 3D
dynamic environments.

Beliefs-Desires-Intentions (BDI) has adopted a significant number of im-
plemetations in order to build cognitive agent architectures. A reduced number
of them has also been applied to the current context, as VITAL [7] and SimHu-
man [8] platforms have shown. SimHuman shows a real-time platform for 3D
agents with planning capabilities, which represents from a 3DIVE perspective,
a similar approach to the multi-agent system presented in this paper. However,
we will concentrate on the planning formalism introduced and also how agents
deal with reactivity in the behavioural system designed.

Accordingly to this, the aim of this paper is to present a new agent system
which interleaves sense, plan, and execution tasks to deal with normal 3DIVE’s
multi-agent simulations, where normally intelligent characters modify and inter-
act autonomously with the 3D environment, guided by their AI based formalisms.

The next section shows an overview of the 3D multi-agent architecture im-
plemented, where the world modelling and sensory system fully integrated in
UnrealTM are briefly explained. Section 3 is focussed on the behavioural control
of the simulation agents created. We analyse the planning algorithm for dynamic
environments and the behavioural system designed to handle reactivity and goal
direction for 3DIVAs. Finally, section 4 shows the results obtained from this
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framework in a shared blocks world, where several agents have been introduced
to create an intelligent simulation environment.

2 System Architecture Overview

The multi-agent system designed is based on a distributed model that figure
1 shows. As mentioned before, this modular structure is adequate for 3D real
time graphic simulations, as it provides for a scalable and reusable framework
for both, 3D agents and environments.

As figure 1 shows, the architecture implemented is mainly divided into two
components: the world manager, responsible for managing the information flow
between the agent and the 3D environment (sense/act) [10], and the behavioural
system of the agent, devoted to handling reactivity and planning for the 3DIVAs
created (possibly running on a separate process or machine).

Fig. 1. System architecture overview

2.1 Behavioural Agent System

This system is the responsible for controlling the main components of the task-
oriented agent architecture that figure 2 shows. The main components are briefly
described now:

– The Agent Control Module contains two important agent components:
a) the Agent Memory (perceived world and internal state) and b) the Task
Control Model.
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Fig. 2. Internal agent architecture

The Agent Memory is a dynamic object container, which asynchronously
receives and updates new information from the perception module. We man-
tain two representation levels: low level information (location, size, ...) and
symbolic object centered data (properties and their perceived values ).

The Task Controller governs the agent activity anytime and it decides
what to do depending on the agent and world states. Figure 3 shows the
Finite State Machine (FSM) designed for general simulation task monitor-
ization. We are using a classical task definition, so tasks consist of several
primitive actions to be executed by the agent sequentially. IDLE will be the
initial and the final state, where the agent has nothing to do. Anytime the
agent generates a plan it goes to the WORKING state, and start sequenc-
ing the current task in its corresponding actions. WORKING is designed to
transite to NAVIGATE or EXECUTE depending on the current action to
carry out. NAVIGATE is simply used to undertake the go to action, and
EXECUTE will send an action request to the motor agent system and will
wait until the results are known. To detect when the current task (and plan)
should be aborted, the preconditions of the current task are regularly re-
vised in these states (WORKING, NAVIGATE, EXECUTE). SLEEP is a
state where the agent has no plan to carry out, normally this situation is
motivated by world changes that finally hide the agent’s goal states. To ani-
mate this situation the agent will look at the desired object and it will wait
until a new possible plan to carry out is achieved. In order to do this, the
agent will periodically translate from this state to the SEARCH one.

– The Reactive Navigation System of the agents created is based on the
3-layered Feed Forward Nerural Network presented in [11]. This local nav-
igation system is allowed to access the agent memory, where visible and
remembered objects are located. The main objective of this system is to
guarantee NAVIGATION free of obstacles in a multi-agent environment.
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– Planning module starts from the miniMin-HSP planner shown in [12], and
it will be described in further detail in the next section.

3 Planning Module

From planning’s point of view, all the agents are immersed in a highly dynamical
scenario - many agents may be working in the same area at the same time,
continuously transforming the environment.

A dynamic environment means that the planner must be able to deal with non
deterministic actions. However, it must be noted that the non determinism may
be of two different natures. The first is that the action by itself may have different
results with different probabilities for each result, as for example throwing a dice,
which has six different possible results with probabilities 1/6. We will call these
actions pure non deterministic actions. The second kind of nondeterministic
action is an action that, in an ideal world with no interferences is deterministic
(for example, to pickup a block in a blocks world planning problem), but in a
real multi agent world, this action may fail due to a change in the world that
doesn’t allow the action to be finished (other agent got the block), or the action
may succeed but the resulting state is a state that comes from a composition of
different actions, that are casually executed at a similar time by different agents
. We will call these actions casual non deterministic actions.

The way to deal with pure non deterministic actions is to model the problem
as a Markov Decision Problem (MDP) or a Partially Observable Markov Decision
Problem (POMDP) [16] where the possible states resulting from the actions have
a probability, and an optimal solution is a policy that has a minimum expected
cost. Algorithms that deal with these problems are the Minimax Real Time
Heuristic Search [17] and the RTDP [16].

However, in a virtual environment, the most common kinds of actions are
the casual non deterministic actions. These kinds of actions have one expected
resulting state with high probability and many unexpected resulting states with
low probability. During the planning process, we consider these actions as deter-
ministic ones, so each agent starts planning from the current state perceived from
its sensors under classical planning assumptions. In this way, planning is used
to generate the necessary agent intentions.However, it is necessary to choose
a robust algorithm in order to recover from perturbations, normally when the
expected results are not achieved.

Another challenge that the planner must face is that it must work in real
time. The planner is used for a visual simulation, so it shouldn’t take more than
a few seconds to choose the action to execute.

The technique commonly used to solve these problems is to interleave plan-
ning and plan execution. In this way, it is not necessary to obtain a complete
plan from the initial state to the goal state before beginning the execution of
the first action. The agent only needs to advance the plan sufficiently to choose
the first action, then it can execute the action and continue the planning from
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Fig. 3. Task Controler

the resulting execution state, until it is able to choose the next action, repeating
the cycle until the goal state is reached.

The algorithm we use to control the interleaving of planning and action
execution is a greedy search, as described in [16]. We have also included memory
facilities to avoid past states. The different steps of the algorithm are represented
in figure 4, where c(a, s) is the cost of applying the task a in the state s, and
h(sa) is an estimation of the cost from state sa to the goal state.

1. Evaluate each task a applicable in current state s as

Q(a, s) = c(a, s) + h(sa)

where sa is state predicted after doing a in s.

2. Apply action a that minimizes Q(a, s), breaking ties randomly

3. Observe the resulting state s′.

4. Exit if resulting state s′ is a goal state, else set s to s′ and go to 1.

Fig. 4. Greedy Search Algorithm

It can be clearly seen that this algorithm implements a sense - plan - act cycle.
Step 1 corresponds to the planning phase, step 2 to the action execution and step
3 to the sensorization phase. The sensorization is fundamental for dealing with
the non determinism of the actions, as the agent can’t know the resulting state
of an action. If the action observed in step 3 (s′) is not the same as the predicted
state (sa) the algorithm continues the search from s′. To deal with the possible
failure of the actions, we have made step 2 of the algorithm interruptible. For
example, in the multi-agent blocks world scenario, agent1 may plan the task of
Picking up block1. This task is translated into two primitive actions: go to block1
and pick up block1. But it may happen that while agent1 is going to block1,
another agent takes it. In this case the task is no longer possible and the current
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action is interrupted, so the algorithm continues with step 3 for identifying the
new state and planning once again.

For the planning phase of the algorithm, which corresponds with step 1 of
the previous algorithm, we use the Minimin algorithm [15], which is similar to
the Minimax algorithm but more oriented to single agent real time search. This
algorithm searches forward from the current state to a fixed depth and applies
the heuristic evaluation function to the nodes at the search frontier. We use an
alpha pruning to avoid searching all the frontier nodes. This alpha pruning is
similar to the alpha-beta pruning of the Minimax algorithm, and it has been
shown to be very efficient with high branching factor [15]. The heuristics we are
using for the Minimin algorithm consists of a relaxed search (no preconditions
considered) until a goal state or the maximum depth are detected. The nodes at
this maximum depth (the heuristic frontier) are given a heuristic value according
to the atoms distance to the goal state.

The Planner Module we have described has the advantage of being very
robust at any perturbation or unexpected change in the world and also efficient
enough for the purpose of the module, although the quality of the solution (with
respect to the optimal one) relies heavily on the heuristic used. However as
occurs in other behavioural simulation domains such as storytelling, the optimal
plan is not really a requirement. Furthermore, it is easy to realise that to extract
plans in a multiagent environment it is insuficcient to guarantee that the goal
state will be reached by the agent, as it is always possible to create another
agent (agent2) that undoes the actions done by the agent1, independently of
the algorithm used.

Other similar algorithms to the one presented here are the RTA* or LRTA*
[15]. Although they need some adjustment to be able to function in a highly
dynamical environment.

4 Results

The flexibilty of the simulation system created lets us design a high number of
experiments in different 3D simulation environments. Furthermore, as occurs in
storytelling, the full potential of story generation derives from the interaction of
character behaviours while they compete for action resources (pre-conditions).
As occurs in storytelling, in this case, the story can only carry forward if the
character has re-planning capabilities.

Figure 5 shows the trace of one of the simulations performed in a BlocksWorld
inspired 3D environment, composed of 4 tables, 4 cubes and two agents. The ini-
tial state perceived by both agents is the same, however their goals are indepen-
dent. Agent1 has to invert the cubes0-3 which are placed on table0, and Agent2
will do it with cubes2-1, placed on table2 (tables1,3 are free). Although it is clear
that an optimal plan, in terms of the total number of actions performed by all
actors is possible to achieve, we are more interested now in checking the robust-
ness of the planning system created, as it will have to face complex situations
where the goal state can move away or even disappear. For example, initially



8 Miguel Lozano, Francisco Grimaldo, Fernando Barber

the Agent2 decides to move the cube3 to the cube2, however Agent1 gets the
cube2 before. This situation is detected by Agent2 who aborts its current plan
and searchs again from the new state perceived, deciding this time to drop the
picked cube(2) on the cube1, as it is now free.

Agent 1 Agent 2

pick c2 c1 pick c3 c0

drop c3 c2

drop c3 c1

drop c2 c0

Abort()

action(goto)
action(goto)

action(goto)

action(pick)

action(pick)

action(goto)

action(drop)

pick c1 t2

action(goto)

Abort()

action(goto)

action(drop)

pick c3 c1
pick c2 c0

action(goto)

action(pick)

action(goto)

drop c3 t1

action(pick)

action(goto)

action(drop)

drop c2 c1

SLEEP

action(goto)

action(drop)

pick c2 c1

SLEEP

pick c0 t0

drop c0 c3

action(goto)

action(pick)

action(goto)

action(drop)

Agent 1 Agent 2

SLEEP

drop c2 c0

pick c1 t2

drop c1 c2

action(goto)

action(pick)

(Continue ...) (Continue ...)

------------------------  Initial State  -----------------------

cube0 on table0  -  cube3 on cube0

cube1 on table2  -  cube2 on cube1

Goal State

cube0 on cube3

Goal State

cube1 on cube2

Fig. 5. Simulation trace example

As there is no muti-agent task coordination 3 between the agents, a conflict
situation is generated again when both agents drop their cubes and they disturb
themselves. Agent1 faces this situation, moving away cube3, while Agent2 picks
up cube2. At this moment Agent2 searchs again, however, a plan can not be
provided, as Agent1 is moving cube3, son Agent2 has no way to know its final
location. Once Agent1 drops cube3 on one of the free tables, Agent2 decides to
drop the cube previously picked on cube1 (so it will produce a new initial state
from Agent1’s point of view) and finally, it achieves its goals as it moves cube0
to its final position on cube3. Agent1 can finish now without more problems, so
that finally all cubes are compiled in a single stack, which is a possible solution
to the 2-Agent problem designed.

5 Conclusions

We have described an agent architecture that interleaves perception, planning
and action, to be able to adapt itself to the changes produced by users or agents.
3 we can consider the current agent task as its short-term intentions, while complete

plans can be viewed as long-term ones
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Fig. 6. Snapshot of the simulation framework in real time

We have shown how to combine planning and reactivity (based on the precon-
dition checking performed by the agents while they are working) in order to
manage complex environmental simulations in 3D. This can be also very use-
ful for behavioural character animation, for example when a character detects
that another one is moving the cube that it will need in the future, we can ani-
mate this situation through a suprise agent dialogue (eg: ... where are you going
with this cube?). Reactivity tunning can be also easily introduced, as the agents
can always try to follow their current task, and anly re-plan after their actions.
Furthermore, it is easy to see how new informative heuristic functions can be
introduced in the planning system to finally influence the agent behaviour(in a
similar way as narrative concepts can guide actor’s decision taking in storytelling
domains). Heuristics can derive mainly from two information soruces: a) from
perception: where typically object distances or other kind of situation recogni-
tion can be easily introduced, b) from the agent internal state: as showed in
[13], agents could also manage some fluents (eg. mood, etc.) which finally assist
its decision taking. From storytelling system’s point of view, the behavioural
approach presented lets the agents to autonomously deal with reactivity and
long-term dependencies in similar 3D simulation scenarios (in storytelling do-
mains, normally is the author who apriori introduces the narrative content using
AND/OR graphs composed by independent sub-problems, so agent behaviours
based on long-term dependencies can not be considered).

Summarizing, the storytelling inspired agents created are able to adapt them-
selves to the enviromental changes they are producing anytime, which is an im-
portant point when simulating intelligent and believables character’s behaviours.
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